$info502: Syst\`eme d'exploitation$

TD 2 : gestion de la mémoire

Thibault Carron et Pierre Hyvernat
Pierre.Hyvernat@univ-savoie.fr
Tibault.Carron@univ-savoie.fr

Exercice 1 : Allocation de mémoire

On suppose que l'état de la mémoire RAM est décrit par le tableau suivant :

10	10	20	30	10 5	30	20	10	15	20	20
10	10	20	30	10 3	30	20	10	10	20	20

(Les tailles sont en Ko, et les blocs en gras sont utilisés, alors que les autres sont libres.)

Des requêtes d'allocation de mémoire arrivent dans cet ordre là : 20 Ko, 10 Ko, 5 Ko et 25 Ko.

Question 1. À quelles adresses sont alloués les blocs si on utilise la politique "First Fit"?

Question 2. À quelles adresses sont alloués les blocs si on utilise la politique "Best Fit"?

Question 3. À quelles adresses sont alloués les blocs si on utilise la politique "Worst Fit"?

Question 4. À quelles adresses sont alloués les blocs si on utilise la politique "Next Fit"?

Question 5. Pour chacune de ces politiques, chercher un exemple de demande d'allocation / desallocation qui est visiblement inefficace.

Question 6. En partant d'une mémoire libre de 1 Mo, utilisez le système des zones siamoises ("buddy system") pour allouer la mémoire des processus suivants :

- processus A, requête de 50 Ko
- processus B, requête de 150 Ko
- processus C, requête de 60 Ko
- processus D, requête de 60 Ko
- processus E, requête de $60~\mathrm{Ko}$
- processus D, fin
- processus C, fin
- processus E, fin
- processus A, fin
- processus F, requête de 125 Ko
- processus G, requête de 150 Ko
- processus F, fin
- processus G, fin
- processus B, fin

(Rappel: 1 Ko = 2^{10} o = 1024 o et 1 Mo = 2^{20} o = 1024 Ko.)

Exercice 2: Mémoire virtuelle, pagination

Pour simplifier les "calcul", nous allons utiliser des pages de taille 2000 octets. (Normalement, la taille d'une page serait une puissance de 2 : 2048 octet dans notre cas...)

Question 1. La table de pages est la suivante

Page	Adresse virtuelle	In/Out	\mathbf{Cadre}
0	0 – 1999	In	20
1	2000 – 3999	Out	22
2	4000 – 5999	In	200
3	6000 - 7999	In	150
4	8000-9999	Out	30
5	10000 - 11999	Out	50
6	12000 - 13999	In	120
7	14000 - 15999	In	101

Parmi les adresses virtuelles suivantes, lesquelles génèrent un defaut de page?

- 10451
- 5421
- 14123
- 9156

Pour celles qui ne génèrent pas de defaut de page, quelle est l'adresse physique référencée?

Question 2. On suppose que le système ne comporte que quatre cadres de page :

Page	Chargement	Dernière référence	Modification	Référence
0	167	374	1	1
1	321	321	0	0
2	254	306	1	0
3	154	331	0	1

Quelle page serait remplacée par :

- l'algorithme FIFO
- l'algorithme LRU ("Least Frequently Used")
- l'algorithme NRU ("Not Frequently Used")
- l'algorithme de la deuxième chance

Question 3. Un programme possède 3 cadres de page et fait référence au pages suivantes :

$$0, 9, 0, 1, 8, 1, 8, 7, 8, 7, 1, 2, 8, 2, 7, 8, 2, 3, 8, 3$$

Combien de défauts de page sont générés si on utilise

- le remplacement FIFO
- le remplacement LRU
- le remplacement optimal?

Question 4. (Paradoxe de Belady)

On suppose qu'un programme référence les pages suivantes :

En utilisant le remplacement FIFO, combien de défauts de pages sont générés si on dispose de

- trois cadres de page
- quatre cadres de page?

Qu'en pensez-vous?