
166 Introduction to Modern Cryptography

for second preimage resistance or preimage resistance of a hash functions H
that require fewer than 2` evaluations of H (though see Section 5.4.3).

Finding meaningful collisions. The birthday attack just described gives a
collision that is not necessarily very useful. But the same idea can be used to
find “meaningful” collisions as well. Assume Alice wishes to find two messages
x and x′ such that H(x) = H(x′), and furthermore x should be a letter from
her employer explaining why she was fired from work, while x′ should be
a flattering letter of recommendation. (This might allow Alice to forge an
appropriate tag on a letter of recommendation if the hash-and-MAC approach
is being used by her employer to authenticate messages.) The observation
is that the birthday attack only requires the hash inputs x1, . . . , xq to be
distinct; they do not need to be random. Alice can carry out a birthday-type
attack by generating q = Θ(2`/2) messages of the first type and q messages of
the second type, and then looking for collisions between messages of the two
types. A small change to the analysis from Appendix A.4 shows that this gives
a collision between messages of different types with probability roughly 1/2.
A little thought shows that it is easy to write the same message in many
different ways. For example, consider the following:

It is hard/difficult/challenging/impossible to imagine/believe that
we will find/locate/hire another employee/person having similar
abilities/skills/character as Alice. She has done a great/super job.

Any combination of the italicized words is possible, and expresses the same
point. Thus, the sentence can be written in 4 ·2 ·3 ·2 ·3 ·2 = 288 different ways.
This is just one sentence and so it is actually easy to generate a message that
can be rewritten in 264 different ways—all that is needed are 64 words with
one synonym each. Alice can prepare 2`/2 letters explaining why she was fired
and another 2`/2 letters of recommendation; with good probability, a collision
between the two types of letters will be found.

5.4.2 Small-Space Birthday Attacks

The birthday attacks described above require a large amount of memory;
specifically, they require the attacker to store all O(q) = O(2`/2) values {yi},
because the attacker does not know in advance which pair of values will yield
a collision. This is a significant drawback because memory is, in general,
a scarcer resource than time. It is arguably more difficult to allocate and
manage storage for 260 bytes than to execute 260 CPU instructions. Further-
more, one can always let a computation run indefinitely, whereas the memory
requirements of an algorithm must be satisfied as soon as that amount of
memory is needed.

We show here a better birthday attack with drastically reduced memory
requirements. In fact, it has similar time complexity and success probability
as before, but uses only constant memory. The attack begins by choosing a

Hash Functions and Applications 167

random value x0 and then computing xi := H(xi−1) and x2i := H(H(x2(i−1)))

for i = 1, 2, (Note that xi = H(i)(x0) for all i, where H(i) refers to i-fold
iteration of H .) In each step the values xi and x2i are compared; if they are
equal then there is a collision somewhere in the sequence x0, x1, . . . , x2i−1.
The algorithm then finds the least value of j for which xj = xj+i (note that
j ≤ i since j = i works), and outputs xj−1, xj+i−1 as a collision. This attack,
described formally as Algorithm 5.9 and analyzed below, only requires storage
of two hash values in each iteration.

ALGORITHM 5.9
A small-space birthday attack

Input: A hash function H : {0, 1}∗ → {0, 1}`
Output: Distinct x, x′ with H(x) = H(x′)

x0 ← {0, 1}`+1

x′ := x := x0

for i = 1, 2, . . . do:
x := H(x)
x′ := H(H(x′))
// now x = H(i)(x0) and x′ = H(2i)(x0)
if x = x′ break

x′ := x, x := x0

for j = 1 to i:
if H(x) = H(x′) return x, x′ and halt
else x := H(x), x′ := H(x′)
// now x = H(j)(x0) and x′ = H(i+j)(x0)

How many iterations of the first loop do we expect before x′ = x? Consider
the sequence of values x1, x2, . . ., where xi = H(i)(x0) as defined before. If
we model H as a random function, then each of these values is uniformly and
independently distributed in {0, 1}` until the first repeat occurs. Thus, we
expect a repeat to occur with probability 1/2 in the first q = Θ(2`/2) terms
of the sequence. We show that when there is a repeat in the first q elements,
the algorithm finds a repeat in at most q iterations of the first loop:

CLAIM 5.10 Let x1, . . . , xq be a sequence of values with xm = H(xm−1).
If xI = xJ with 1 ≤ I < J ≤ q, then there is an i < J such that xi = x2i.

PROOF The sequence xI , xI+1, . . . repeats with period ∆
def
= J − I. That

is, for all i ≥ I and k ≥ 0 it holds that xi = xi+k·∆. Let i be the smallest
multiple of ∆ that is also greater than or equal to I. We have i < J since the
sequence of ∆ values I, I +1, . . . I +(∆− 1) = J − 1 contains a multiple of ∆.
Since i ≥ I and 2i− i = i is a multiple of ∆, it follows that xi = x2i.

168 Introduction to Modern Cryptography

Thus, if there is a repeated value in the sequence x1, . . . , xq, then there is
some i < q for which xi = x2i. But then in iteration i of our algorithm, we
have x = x′ and the algorithm breaks out of the first loop. At that point in
the algorithm, we know that xi = xi+i. The algorithm then sets x′ := x(= xi)
and x := x0, and proceeds to find the smallest j ≥ 0 for which xj = xj+i.
(Note j 6= 0 because |x0| = `+ 1.) It outputs xj−1, xj+i−1 as a collision.

Finding meaningful collisions. The algorithm just described may not
seem amenable to finding meaningful collisions since it has no control over the
elements sampled. Nevertheless, we show how finding meaningful collisions is
possible. The trick is to find a collision in the right function!

Assume, as before, that Alice wishes to find a collision between messages
of two different “types,” e.g., a letter explaining why Alice was fired and a
flattering letter of recommendation that both hash to the same value. Then,
Alice writes each message so that there are ` − 1 interchangeable words in
each; i.e., there are 2`−1 messages of each type. Define the one-to-one function
g : {0, 1}` → {0, 1}∗ such that the `th bit of the input selects between messages
of type 0 or type 1, and the ith bit (for 1 ≤ i ≤ `− 1) selects between options
for the ith interchangeable word in messages of the appropriate type. For
example, consider the sentences:

0: Bob is a good/hardworking and honest/trustworthy worker/employee.
1: Bob is a difficult/problematic and taxing/irritating worker/employee.

Define a function g that takes 4-bit inputs, where the last bit determines the
type of sentence output, and the initial three bits determine the choice of
words in that sentence. For example:

g(0000) = Bob is a good and honest worker.

g(0001) = Bob is a difficult and taxing worker.

g(1010) = Bob is a hardworking and honest employee.

g(1011) = Bob is a problematic and taxing employee.

Now define f : {0, 1}` → {0, 1}` by f(x)
def
= H(g(x)). Alice can find a

collision in f using the small-space birthday attack shown earlier. The point
here is that any collision x, x′ in f yields two messages g(x), g(x′) that collide
underH . If x, x′ is a random collision then we expect that with probability 1/2
the colliding messages g(x), g(x′) will be of different types (since x and x′ differ
in their final bit with that probability). If the colliding messages are not of
different types, the process can be repeated again from scratch.

5.4.3 *Time/Space Tradeoffs for Inverting Functions

In this section we consider the question of preimage resistance, i.e., we
are interested in algorithms for the problem of function inversion. Here, an
algorithm is given y = H(x) for uniform x, and the goal is to find any x′ such

