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Abstract

A pattern of interaction that arises again and again in programming,
is a “handshake”, in which two agents exchange data. The exchange is
thought of as provision of a service. Each interaction is initiated by a
specific agent —the client or Angel, and concluded by the other —the
server or Demon.

We present a category in which the objects —called interaction struc-
tures in the paper— serve as descriptions of services provided across such
handshaken interfaces. The morphisms —called (general) simulations—
model components that provide one such service, relying on another. The
morphisms are relations between the underlying sets of the interaction
structures. The proof that a relation is a simulation can serve (in princi-
ple) as an executable program, whose specification is that it provides the
service described by its domain, given an implementation of the service
described by its codomain.

This category is then shown to coincide with the subcategory of “gen-
erated” basic topologies in Sambin’s terminology, where a basic topology
is given by a closure operator whose induced sup-lattice structure need
not be distributive; and moreover, this operator is inductively generated
from a basic cover relation. This coincidence provides topologists with a
natural source of examples for non-distributive formal topology. It raises
a number of questions of interest both for formal topology and program-
ming.

The extra structure needed to make such a basic topology into a real
formal topology is then interpreted in the context of interaction structures.
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1 Introduction, preliminaries and notation

Programmers rarely write self-standing programs, but rather modules or com-
ponents in a complete system. The boundaries of components are known as
interfaces, and these usually take the form of collections of procedures. Com-
monly, a component exports or implements a “high-level” interface (for example
files and directory trees in a file system) by making use of another “low-level”
interface (for example segments of magnetic media on disk drives). There is,
as it were, a conditional guarantee: the exported interface will work properly
provided that the imported one works properly.

One picture for the programmer’s task is therefore this:

Export ⇐ ⇐ Import
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The task is to “fill the box”. In this picture the horizontal dimension shows
interfaces. The exported, higher-level interface is at the left and the imported,
lower-level interface at the right. The vertical dimension shows communication
events (calls to and returns from procedures), with data flowing from top to
bottom: c and r communicate data from the environment, while r and c com-
municate data to the environment. The labels c (for command or call) and r
(for response or return) constitute events in the higher level interface, while c
and r are at the lower level. The pattern of communication is that first there is
a call to the command c, then some number of repetitions of interaction pairs
cr, then finally a return r.

The picture this gives of the assembly of a complete system is that one has a
series of boxes, with input arrows linked to output arrows by a “twisted pair of
wires” reminiscent of the Greek letter “χ”. This is indeed a kind of composition
in the categorical sense, where the morphisms are components. The paper is
about this category.
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How can we describe interfaces? Interface description languages (such as IDL
from http://www.omg.org/) commonly take the form of signatures, i.e. typed
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procedure declarations. The type system is “simply typed”, and it is used in
connection with encoding and decoding arguments for possible remote trans-
mission. It addresses other mechanistic, low-level and administrative issues.
However an interface description ought to describe everything necessary to de-
sign and verify the correctness of a program that uses the interface, without
knowing anything about how it might be implemented. It should state with
complete precision a contract, or in Dijkstra’s words a “logical firewall” between
the user and implementer of an interface.

We define this category in (essentially) Martin-Löf’s type theory, a construc-
tive and predicative type theory in which the type-structure, is sufficiently rich
to express specifications of interfaces with full precision. One reason for work-
ing in a constructive type theory is that a model for program components in
such a setting is ipso facto a “working” model. In principle, one may write
executable program components in this framework, and exploit type-checking
to ensure that they behave correctly. In practice, one has to code programs in
real programming languages. Nevertheless, one can perhaps develop programs
in a dependently typed framework, using type-checking to guide and assist the
development (as it were a mental prosthesis), run the programs to debug the
specifications, and then code the programs in a real programming notation.

Our model is constructed from well-known ingredients. Since the seminal
work of Floyd, Dijkstra and Hoare [12, 10, 20] there has been a well established
tradition of specifying commands in programming languages through use of
predicate transformers, and roughly speaking the objects of our category are
predicate transformers on a state-space. Equally well established is the use
of simulation relations to verify implementations of abstract data types, and
roughly speaking, the morphisms of our category are simulation relations, or
more precisely, relations together with a proof that they are simulations. The
computational content of a simulation is contained in this (constructive) proof.

However, the “natural habitat” of the notions of predicate transformer and
simulation is higher-order (impredicative) logic. To express these notions in a
predicative framework, we work instead with concrete, first-order representa-
tions in which their computational content is made fully explicit. Again, the
key ideas are fairly well-known, this time in the literature of constructive math-
ematics and predicative type theory. Our contribution is only to put them to
use in connection with imperative programming.

Finally, our excuse for submitting a paper on programming to a conference
on formal topology is that our category of interfaces and components turns
out to coincide almost exactly with the category of basic topologies and basic
continuous relations in Sambin’s approach to formal topology. At the least, one
can hope that further development of this approach to program development
can benefit from research in the field of formal topology. One may also hope
that work in formal topology can benefit in some way from several decades of
intensive research in the foundations of imperative programming and perhaps
even gain a new application area.

1.1 Plan of the paper

The first main section (2) begins with two ways in which the notion of subset can
be expressed in type theory. Then set up some machinery for dealing with binary
relations, to illustrate how our notions of subset have repercussions on higher
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order notions. In essence, we obtain besides the ordinary notion of relation a
more computationally oriented notion of transition structure, that pre-figures
our representation of predicate transformers.

The next two sections (3 and 4) concern the notion of monotone predicate
transformer. In the first of these sections (3), we review the notion of predi-
cate transformer as it occurs in the theory of inductive definitions and in the
semantics of imperative programming. The main points here are that predi-
cate transformers form a complete lattice under pointwise inclusion, that they
possess also a monoidal structure of sequential composition, and moreover that
there are two natural forms of “iteration”. Section 4 is devoted to a predicative
analysis of the notion of predicate transformer. This exploits the distinction
drawn in section 2 between our two forms of the notion of subset. We represent
predicate transformers by objects called interaction structures, and show that
our representations supports the same algebraic structure.

The objects of our category are interaction structures over a set of states.
The next section (section 5) is about morphisms between these objects. It is
convenient to unfold our answer in three stages. In the first step we define a
restricted notion of linear simulation (that is indeed connected with the linear
implication of linear logic) for which an interaction in the domain is simulated
by exactly one interaction in the codomain. In the second step, we move to the
Kleisli category for a monad connected with the reflexive and transitive closure
of an interaction structure; we call the morphisms in the Kleisli category general
simulations. In the third and last step, taking a hint from formal topology, we
take a quotient of general simulations, by passing to the saturation of a relation.
The last step captures the idea that two relations may have the same simulating
potential, modulo some hidden interactions.

Up to this point, the constructions have been motivated by considerations
from imperative programming. In section 6, we examine the connection with
formal topology. Firstly, our category of interaction structures and general
morphisms corresponds exactly to Sambin’s category of inductively defined basic
topologies. Secondly, formal topology goes beyond basic topology by adding a
notion of convergence, that allows for an analysis of the notion of point. The
remainder of section 6 is concerned with a tentative interpretation of this extra
structure.

We conclude with some questions raised in the course of the paper, and
acknowledgment of some of the main sources of our ideas.

1.2 Mathematical framework(s)

We work in a number of different foundational settings, that we have tried to
stratify in the following list.

• At the bottom, the most austere is Martin-Löf’s type theory ([29, 32]),
with a principle of inductive definitions similar to that used by Petersson
and Synek in the paper [33], with certain forms of universe type, but
without any form of propositional equality.

Our category of interfaces and components can be defined using only pred-
icative type theory with inductive definitions. In fact the category has
been defined and its basic properties proved in such a theory using the
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Agda “programming” language ([8]). The proof scripts can be found at
http://iml.univ-mrs.fr/∼hyvernat/academics.html.

• To this we add rules for propositional equality, which is necessary to round-
out the programming environment to a language for fully constructive
(intuitionistic and predicative) mathematics.

This is not the right place to try to analyze the notion of equality, in any
of its manifestations: definitional, propositional, judgmental, intensional,
extensional and so on. It is however a source of non-computational phe-
nomena in type theory, and the history of predicative type theory (if not
also its future) is one of a constant struggle with this notion. We wish to
carefully track the use of the equality relation (and cognate notions such
as singleton predicate). That is we prefer to work with “pre-sets” rather
than “setoids” [21].

• We also add a principle for coinductive definitions. The foundations of
coinduction in predicative mathematics are not yet entirely clear. We
simply use co-inductive definitions in the most “straightforward” way,
meaning by this that our constructs seem to make good computational
sense. One reference for the kind of coinductive definitions we will use can
be found in [19].

• At various points, it seems necessary to relax the stricture of predicativity.
In particular, we invoke the Knaster-Tarski theorem. This lacks a strictly
predicative justification. Since we are trying to devise computationally-
oriented analogues of certain impredicative constructions, it is necessary
to look at matters from the impredicative point of view, if only for com-
parison.

• Finally, at the highest or most abstruse level, we shall occasionally make
use of classical, impredicative reasoning, thus going beyond any straight-
forward computational interpretation. Working at this level Hyvernat
([23, 22]) has identified surprising connections between an impredicative
variant of our category and classical linear logic, even of second order.

1.3 Type theoretic notation

Our notation is based (loosely) on Martin-Löf’s type theory, as expounded for
example in [29, 32]. In the paper we call this simply “type theory”.

• To say that a value v is an element of a set S, we write v ∈ S. On the
other hand, to say that o is an object of a proper type T (such as Set , the
type of sets), we write o : T .

• We use standard notation as in, for example [29, 32], for indexed cartesian
products and disjoint unions. This is summarized in the following table:

product sum
dependent version (Π a ∈ A)B(a) (Σ a ∈ A)B(a)
non-dependent A → B A×B
element in normal form (λa ∈ A) b (a, b)
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We iterate those constructions with a comma. Using the Curry-Howard
isomorphism, we might also use the logical ∀ and ∃ as notations for Π
and Σ.
We use the same notation at the type level.

• Instead of the binary disjoint union A + B, we prefer to use a notation in
which constructors can be given mnemonic names, as is common in pro-
gramming environments based on type theory. For example, the disjoint
union A + B itself could be written data in0(a ∈ A) | in1(b ∈ B). As the
eliminative counterpart of this construction, we use pattern matching.

We also use ad-lib pattern matching in defining functions by recursion,
rather than explicit elimination rules (recursors, or “weakly initial ar-
rows”).

• We use simultaneous inductive definitions of a family of sets over a fixed
index-set (as in [33, 32]), with similar conventions.

At an impredicative level, we will make use of µ-expressions for inductively
defined sets, predicates, relations, and predicate transformers.

2 Two notions of subset

We will be concerned with two notions of subset, or more accurately two forms
in which a subset of a set S may be given:

{ s ∈ S | U(s) } or { f(i) | i ∈ I } .

The first we call “predicate form” —U is a predicate or propositional function
with domain S. The second we call “indexed form”, or “family form” —f is a
function from the index set I into S. Other terminology might be “comprehen-
sion” versus “parametric”, or “characteristic” versus “exhaustive”.

For example, here are two ways to give the unit circle in the Euclidean plane:
(note that we do not require in indexed form that the function f is injective)

{
(x, y) ∈ R2 | x2 + y2 = 1

}
or { (sin θ, cos θ) | θ ∈ R } .

Of course, what we write in one form we may write in the other:

{ s | (s, ) ∈ (Σ s ∈ S)U(s) } ; (predicate rewritten as family)

{ s ∈ S | (∃i ∈ I) s =S f(i) } . (family rewritten as predicate)

To turn a predicate into an indexed family, we take as index the set of proofs
that some elements satisfy the predicate, and for the indexing function the first
projection. To turn an indexed family into a predicate, we make use of the
equality relation “=S” between elements of S, and in essence form the union of
a family of singleton predicates:

⋃
i∈I {f(i)}.

So it may seem that what we have here is a distinction without any real
difference. Note however that the essence of a predicate is a (set-valued) function
defined on S, while the essence of an indexed family is a function into S, so that
there is a difference in variance. To make this clear, let us define two functors
which take a set S to the type of predicate-form subsets of S, and to the type
of indexed-form subsets of S.
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Definition 1 Define the following operations:

• Pow(S) ∆= S → Set, where we may write U : Pow(S) as { s ∈ S | U(s) };
and if f ∈ S1 → S2, then
Pow(f) : Pow(S2) → Pow(S1)

U 7→ {
s1 ∈ S1 | U

(
f(s1)

) }

We write U ⊆ S as a synonym for U : Pow(S). Note that Pow(f) is
usually written f−1.

• Fam(S) ∆= (Σ I : Set) S → I, where we may write (I, x) : Fam(S) as
{x(i) | i ∈ I }; and if f ∈ S1 → S2, then
Fam(f) : Fam(S1) → Fam(S2)

{x(i) | i ∈ I } 7→ { f(x(i)) | i ∈ I }
The first functor is contravariant, while the second is covariant. So the distinc-
tion we have made corresponds after all to a well-known (even banal) difference.

In a predicative framework, both these functors cross a “size” boundary:
they go from the category of (small) sets to the category of (proper) types. In
fact these functors can be extended to endo-functors at the level of types, going
from the category of (proper) types to itself. Remark however that the transla-
tions between subsets and families can not be carried out in either direction at
the level of types.

• Going from families to subsets would require a propositional (i.e. set-
valued) equality relation between the objects of arbitrary types, rather
than merely between the elements of a set.

• Going from a propositional function defined on a type to an indexed family
is in general impossible since we require the indexing set to be . . . a set.

This will become important when we iterate or compose our two variants of the
power-functor.

If we call into question, or try to work without the idea of a generic notion
of propositional equality, the two notions of subset fall into sharp relief. In basic
terms, the intuition of the distinction is that a family is something computa-
tional, connected with what we “do” or produce. On the other hand, a predicate
is something specificational, connected with what we “say” or require.

How does the algebraic structure of predicates compare with that of indexed
families? As for predicates, the situation is the normal one: if we interpret the
logical constants constructively, they form a Heyting algebra. With the equality
relation, the lattice is atomic, with singleton predicates for atoms. The inclusion
and “overlap” relations are defined as follows:

Definition 2 Let U and V be two subsets of the same set S; define:

• s ε U
∆= U(s) (i.e. s ε U iff “U(s) is inhabited”);

• U ⊆ V
∆= (Π s ∈ S) U(s) → V (s); (i.e. (∀s ∈ S) s ε U → s ε V )

• U G V
∆= (Σ s ∈ S)U(s) ∧ V (s).

The importance of G in a constructive setting has been stressed by Sambin: it
is a positive version of non-disjointness, dual to inclusion.
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Remark. The confusion between the two meanings of “⊆” can always be resolved
(“⊆” is a synonym for : Pow( ) and denotes inclusion of subsets). For a full account
of traditional set theoretic notions in “subset theory”, we refer to [39]. Here are two
examples:

• SFull
∆
= { s ∈ S | > } contains all the elements of S. We write it simply S;

• U × V
∆
= { (s, s′) ∈ S × S | s ε U and s′ ε V }.

What now about families? In the presence of equality, which allows us to
pass from a family to the corresponding predicate, their algebraic structure is
the same as that of predicates. However, if we abstain from use of equality, the
situation is as follows. The construction of set indexed suprema can be carried
through

⋃
i∈I { fi(t) | t ∈ Ti } ∆= { fi(t) | (i, t) ∈ (Σ i ∈ I)Ti } ,

which gives a sup-lattice. Additionally for any s ∈ S we can form the singleton
family { s | i ∈ I } taking for I any non-empty set.

We cannot say that an element of S belongs to a family { f(i) | i ∈ I }. Still
less can we say that one family includes another, or overlaps with it (as this
requires an equation). What we can state however is that a family is included
in a predicate, or that it overlaps with it:

{ f(i) | i ∈ I } ⊆ U
∆= (∀i ∈ I)U

(
f(i)

)
;

{ f(i) | i ∈ I } G U
∆= (∃i ∈ I)U

(
f(i)

)
.

To summarize, predicates have a rich algebraic structure. In contrast, the
structure of families is impoverished, supporting only suprema operations of
various kinds. To compensate, we have a concrete, computational form of the
notion of subset.

2.1 The general notion of binary relation

A binary relation between two sets S1 and S2 is a subset of the cartesian product
S1 × S2, or to put it another way, a function from S1 to subsets of S2:

Pow(S1 × S2) = (S1 × S2) → Set
' S1 → (S2 → Set)
= S1 → Pow(S2) .

We will leave implicit the isomorphism (“currying”) between the two versions.
There are thus two ways to write “s1 and s2 are related through R ⊆ S1 × S2”:
either “(s1, s2) ε R” or “s2 ε R(s1)”.

Because relations are subset valued functions, they inherit all the algebraic
structure of predicates pointwise. Additionally, we can define the following
operations.

Converse:
R ⊆ S1 × S2

R∼ ⊆ S2 × S1

with (s2, s1) ε R∼ ∆= (s1, s2) ε R .

Equality: eq ⊆ S × S with eq(s) = {s} . (This requires equality!)
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Composition:
Q ⊆ S1 × S2 R ⊆ S2 × S3

Q #R ⊆ S1 × S3

with (s1, s3) ε (Q #R) ∆= (∃s2 ∈ S2) (s1, s2) ε Q and (s2, s3) ε R .

Reflexive and transitive closure:
R ⊆ S × S

R∗ ⊆ S × S

with R∗ ∆= eq ∪R ∪ (R #R) ∪R3 ∪ . . . (inductive definition)

Note that the “reflexive” part requires equality to be definable.

Post and pre-division:

• Q ⊆ S1 × S3 R ⊆ S2 × S3

(Q / R) ⊆ S1 × S2

with (s1, s2) ε (Q / R) ∆= R(s2) ⊆ Q(s1) ;

• Q ⊆ S1 × S3 R ⊆ S1 × S2

(R \Q) ⊆ S2 × S3

with (R \Q) ∆= (Q∼/R∼)∼ .

These operators satisfy a wealth of familiar algebraic laws, from which we want
to recall only the following.

• Composition and equality are the operators of a monoid. Composition is
monotone in both arguments, and in fact commutes with arbitrary unions
on both sides.

• Post-composition ( # R) is left-adjoint to post-division ( / R); similarly,
pre-composition (R # ) is left-adjoint to pre-division (R \ ).

• Converse is involutive and reverses composition: (Q #R)∼ = R∼ #Q∼.

• For each function f ∈ S1 → S2, its graph relation gr f ⊆ S1 × S2 sat-
isfies both eqS1

⊆ (gr f) # (gr f)∼ (totality), and (gr f)∼ # gr f ⊆ eqS2

(determinacy).

2.2 Transition structures

What happens to the notion of a binary relation if we replace the contravariant
functor Pow( ) with the co-variant functor Fam( )? This gives two candidates
for a computational representation of relations:

Fam(S1 × S2) and S1 → Fam(S2) .

• In more detail, an object of the first type consists of a set I, together with
a pair of functions with I as their common domain: f ∈ I → S1 and
g ∈ I → S2. Such a pair is commonly known as a span.

• On the other hand, an object T of the second type consists of a function F
which assigns to each s ∈ S1 a family of S2’s, that we may write

F (s) = {n(s, t) | t ∈ A(s) } .
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Where A : S1 → Set and n ∈ (Π s1 ∈ S1) A(s1) → S2. We call this a
transition structure. When no confusion arises, we write “s[a]” instead of
“n(s, a)”.

In contrast with the situation with relations, any isomorphism that can
be defined between spans and transition structures seems to require use of an
equality relation. Transition structures are inherently asymmetric. There is
a genuine bifurcation between spans and transition structures. In this paper
we shall be concerned only with transition structures. To some extent, the
relationship between spans and transition structures remains to be explored.

Transition structures sometimes provide a more appropriate model than re-
lations for “asymmetric” situations in which one of the terms of the relation has
priority or precedence in some sense.

• The notion of an occurrence of a subexpression of a first-order expression
can be represented by a transition structure on expressions, in which the
set A(s) represents the set of positions within s, and s[a] represents the
subexpression of s that occurs at position a.

• In general rewriting systems, an expression is rewritten according to a
given set of rewriting rules. In state s, each rule can be represented by an
a ∈ A(s), where s[a] is the result of the rewriting of s by the rule a.

• A deterministic automaton that reads a stream of characters, changing
state in response to successive characters can be represented by a transi-
tion structure. In such a case, one usually writes s

a−→ s′ for s[a] = s′.

In comparison with relations, transition structures have weaker algebraic
properties. There are transition structure representations for equality relations
and more generally the graphs of functions, and for indexed unions, composi-
tion, and closure operations such as reflexive and transitive closure: transition
structures form a Kleene algebra.

Composition:
T1 : S1 → Fam(S2) T2 : S2 → Fam(S3)

(T1 # T2) : S1 → Fam(S3)

where the components (T1 # T2).A and (T1 # T2).n of T1 #T2 are defined as:

(T1 # T2).A(s1)
∆= (Σ t1 : T1.A(s1)) T2.A(s1[t1])

(T1 # T2).n(t1, t2)
∆= (s1[t1])[t2] .

Identity: eq : S → Fam(S) with T ( ) ∆= {∗} and s[ ] ∆= s. Note that the
equality relation is not necessary to define this interaction structure.

The definitions are straightforward, and the reader is encouraged to try the case
of reflexive and transitive closure for themselves.

On the other hand, transition structures are not closed under intersection,
converse, or division. They can however be used as pre-components to relations,
and as post-divisors of relations. The definitions, which make no use of equality,
are as follows.

(s1, s3) ε (T #R) ∆= T (s1) G R∼(s3) ;
(s1, s2) ε (R / T ) ∆= T (s2) ⊆ R(s1) .

11



(In the first equation, T : S1 → Fam(S2) and R ⊆ S2×S3, while in the second,
R ⊆ S1 × S3 and T : S2 → Fam(S3).)

Note that we can define the relation corresponding to a transition structure
by precomposing the transition structure to equality: if T : S1 → Fam(S2),
define T ◦ : S1 → Pow(S2) as T # eqS2

.

3 Predicate transformers

3.1 Motivations and basic definitions

A predicate transformer is a function from subsets of one set to subsets of
another:

Pow(S2) → Pow(S1) = Pow(S2) → S1 → Set
' (

Pow(S2)× S1

) → Set
' (

S1 × Pow(S2)
) → Set

' S1 →
(
Pow(S2) → Set

)
= S1 → Pow

(
Pow(S2)

)
.

As these isomorphisms show, from another point of view, a predicate transformer
is nothing but a higher-order relation (between elements of one set and subsets
of another).

Since the mid-70’s, predicate transformers have been used as denotations
for commands such as assignment statements in imperative programming lan-
guages. Some predicate transformers commonly considered in computer sci-
ence are the weakest precondition operator, the weakest liberal precondition,
the strongest postcondition (all introduced by Dijkstra), and the weakest and
strongest invariant of a concurrent program (introduced by Lamport). Per-
haps the most fundamental of these is the weakest precondition. In weakest
precondition semantics, one associates to a program statement P a predicate
transformer |P | mapping a goal predicate (which one would like to bring about)
to an initial predicate (which ensures that execution of P terminates in a state
satisfying the goal predicate). On the other hand, the weakest liberal precon-
dition is more relevant in connection with predicates which one would like to
avoid or maintain.

In an effort to cut down the semantic domain of predicate transformers to
those that are in some sense executable, various “healthiness” properties1 have
been required of predicate transformers. In the 80’s and 90’s reasons emerged
for relaxing most such restrictions, except for the most basic, monotonicity. In
explanation of monotonicity, if a goal predicate is weakened (made easier to
achieve), the corresponding initial predicate should be weakened. More techni-
cally, the Knaster-Tarski theorem is heavily exploited in developing the seman-
tics of recursion and iteration. In the following, the qualification “monotone”
will be implicit: all predicate transformers will be monotone, except where ex-
plicitly indicated.

An active field of computer science instigated by Morgan, Morris, Back,
and von Wright is now founded on the use of monotone predicate transformers

1like strictness, distribution over intersections, distribution over directed unions
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not just as a semantic domain for commands, but as a framework for devel-
oping imperative programs from specifications. This field is called “refinement
calculus”; the canonical reference for the refinement calculus is Back and von
Wright’s textbook [4].

The refinement calculus is a “wide spectrum” language in the sense that
both programs and specifications are represented by monotone predicate trans-
formers. (In contrast, in type theory programs and specifications lie, roughly
speaking, on opposite sides of the “∈” symbol.) Specifications are manipulated
into an executable form (acquiring various healthiness conditions), until they
can be coded in a real programming notation.

3.2 Algebraic structure

The lattice structure of predicates lifts pointwise to the level of relations. Anal-
ogously, the lattice structure lifts to the level of predicate transformers:

• predicate transformers are ordered by pointwise inclusion:

F ⊆ G
∆= “(∀U ⊆ S) F (U) ⊆ G(U)” ;

i.e. “F ⊆ G” is a shorthand for the judgment “U ⊆ S ` F (U) ⊆ G(U)”
and is not an actual proposition or set.

• they are closed under intersection and union:
(⋃

i Fi

)
(U) ∆=

⋃
i

(
Fi(U)

)
;(⋂

i Fi

)
(U) ∆=

⋂
i

(
Fi(U)

)
.

The bottom and top of the lattice are conventionally called abort and magic
respectively. The predicate transformer abort transforms all predicates to the
empty predicate: it is impossible to achieve anything by use of a resource sat-
isfying abort. On the other hand, magic transforms all predicates to the trivial
predicate, which always holds. A resource fulfilling the magic specification could
be used to accomplish anything, even the impossible.

Just as relations support not only a lattice structure, but also a monoidal
structure of composition, so it is with predicate transformers. Predicate trans-
formers are of course closed under composition:

F #G ∆= F ·G ;

and the unit of composition is conventionally called skip:

skip(U) ∆= U .

Both relational and predicate transformer compositions are monotone. The dis-
tributivity laws satisfied by “#” are however quite different from the case of
relations. With relations, composition distributes over unions on both sides,
though not (in general) over intersections. With predicate transformers, com-
position distributes over both intersections and unions on the left, though not
in general over either intersection or union on the right.
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3.3 Angelic and demonic update

Somewhat as a function f ∈ S1 → S2 lifts to a relation (gr f) : S1 → Pow(S2),
so a relation R : S1 → Pow(S2) lifts to a predicate transformer. However in
this case there are two lift operations. These are conventionally called angelic
and demonic update.

R : S1 → Pow(S2)

〈R〉, [R] : Pow(S2) → Pow(S1)

with:2

〈R〉(U) ∆= { s1 ∈ S1 | R(s1) G U } ; (angelic update)

[R](U) ∆= { s1 ∈ S1 | R(s1) ⊆ U } . (demonic update)

Note also that 〈R∼〉(U) is nothing but the set of states related by R∼ to
states that satisfy U or, in other words, the direct relational image of U under
R. When there is no danger of confusion, we shall in the following write R(U)
for 〈R∼〉(U) and R for 〈R∼〉.

At first sight, the angelic and demonic updates may look a little strange.
What do they have to do with programming? In two particular cases though,
they are immediately recognizable, namely when firstly, the relation is included
in the equality relation on a state-space; and secondly when the relation is the
graph of a function.

Assertions and assumptions: when the relation R is a subset of the identity
relation (which can be identified with a predicate U), the angelic update
〈U〉 is known as an assertion (that the Angel is obliged to prove), whereas
the demonic update [U ] is known as an assumption (that the Demon is
obliged to prove). Assertion and assumption satisfy the equivalences:

〈U〉(V ) = U ∩ V and [U ](V ) = { s ∈ S | U(s) → V (s) } .

Assignments: because singleton predicates {s} satisfy the equivalences

{s} G U ⇔ s ε U ⇔ {s} ⊆ U ,

it follows that if f ∈ S1 → S2, we have 〈gr f〉(U) ' U · f ' [gr f ](U).
In this case the predicate transformer commutes with arbitrary intersec-
tions and unions. The canonical example of such an update is the assign-
ment statement x := e where x is a state variable, and e is a “side-effect
free” mathematical expression that may refer to the values of other state
variables. This is interpreted as the “substitution” predicate transformer
U 7→ { s ∈ S | f(s) ε U }, where f ∈ S → S is the function that maps a
state s to the state s′ in which all variables except x have the same value
as in s, and the value of x in s′ is the denotation of the expression e in
state s.3

2Note that we have diverged slightly from the notation of Back and von Wright. In their
notation, the angelic update 〈R〉 is written {R}.

3It would take us too far afield to fully explain the syntax and semantics of state variables
and assignment statements.
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3.4 Fundamental adjunction

Perhaps the most fundamental law in the refinement calculus, with the same
pivotal rôle as Sambin’s “fundamental adjunction” in his development of basic
topology through basic pairs ([35]) is the following Galois connection between
angelic and demonic updates.

Proposition 1 Suppose R ⊆ S1 × S2; we have, for all U ⊆ S1, V ⊆ S2

〈R∼〉(U) ⊆ V ⇔ U ⊆ [R](V ) ,

which is commonly written 〈R∼〉 a [R].

Proof: Straightforward. ¤
Points 1 and 2 of the following corollary are the ground for all the development
of basic topology from “basic pairs” ([35]). Recall that an interior [closure]
operator is a predicate transformer P satisfying:

closure interior
U ⊆ P (U) P (U) ⊆ U
U ⊆ P (V ) ⇒ P (U) ⊆ P (V ) P (U) ⊆ V ⇒ P (U) ⊆ P (V )

Corollary 1 We have:

1. 〈R∼〉 # [R] is an interior operator, in particular: 〈R∼〉 # [R] ⊆ skip;

2. [R] # 〈R∼〉 is a closure operator, in particular: skip ⊆ [R] # 〈R∼〉;
3. [R] = [R] # 〈R∼〉 # [R] and 〈R∼〉 = 〈R∼〉 # [R] # 〈R∼〉;
4. 〈R∼〉 commutes with all unions and [R] commutes with all intersections.

Proof: Straightforward. ¤
Back and von Wright’s textbook on the refinement calculus contains many

normal form theorems that relate the properties of a predicate transformer to
its expression in the refinement calculus. Among these, the most general is the
following. It provides one motivation for the analysis of predicate transformers
given in section 4 below.

Theorem 13.10. Let S be an arbitrary monotonic predicate trans-
former term. Then there exist state relation terms P and Q such
that S = 〈P 〉 # [Q]. ([4], p. 220, with {Q} changed to 〈Q〉)4

In other words, so far as monotone predicate transformers are concerned, it
suffices to consider those in which an angelic update is followed by a demonic
update. In section 4, we will represent predicate transformers by such a com-
position, where the update relations are each given by transition structures.

4The proof given is an manipulation in higher-order logic, in which the relation Q is taken
to be the membership relation.

15



3.5 Iterative constructions

The most interesting construct are connected with iteration. (One of the main
applications of our category will be to model iterative client-server interaction,
in section 4.5.)

In the case of relations and transition structures, there is a single notion of
iteration, namely the reflexive and transitive closure. However in the case of
predicate transformers, there are two different iteration operators: one orien-
tated toward the Angel, and the other toward the Demon.

According to the Knaster-Tarski theorem, each monotone predicate trans-
former F : Pow(S) → Pow(S) possesses both a least fixpoint µF and a greatest
fixpoint νF . They can be defined as:

(µX) F (X) ∆=
⋂ {U ⊆ S | F (U) ⊆ U } : Pow(S) ;

(ν X)F (X) ∆=
⋃ {U ⊆ S | U ⊆ F (U) } : Pow(S) .

Note that the intersection and union operators are applied to a higher order
predicate (a predicate of predicates, rather than a family of predicates). In a
predicative framework we therefore run into difficult questions about the justi-
fication of those very general forms of induction and coinduction. In this paper
we attempt no answer to these foundational questions: we need to consider only
certain forms of “tail” recursion, in which the µ- or ν-bound variable occurs only
as the right-hand operand of #.

The two operations we need are written ∗ and ∞, and are characterized by
the laws:5

F : Pow(S) → Pow(S)

F ∗, F∞ : Pow(S) → Pow(S)

with the rules:

skip ∪ (F # F ∗) ⊆ F ∗ ,
skip ∪ (F #G) ⊆ G

F ∗ ⊆ G
;

F∞ ⊆ skip ∩ (F # F∞) ,
G ⊆ skip ∩ (F #G)

G ⊆ F∞
.

We may define these operations using µ and ν as:

F ∗(U) ∆= (µX)U ∪ (F #X) and F∞(V ) ∆= (ν X) V ∩ (F #X) .

Both are iterative constructions. In the case of F ∗ the iteration must be
finite and the Angel chooses when to exit. In the case of F∞, the iteration may
be infinite, and the Demon chooses when (if ever) to exit.

Proposition 2 If F is a predicate transformer, then F ∗ is a closure operator
and F∞ is an interior operator.

5Yet again we diverge from (and indeed clash with) the usual notation of Back and von
Wright’s refinement calculus. What we call angelic iteration, and write F ∗ is written there F ∅
(and also called angelic iteration). What we call demonic iteration and write F∞ is written
there F ∗, and called weak iteration.
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Proof: We give only the proof that F ∗ is a closure operator. The proof that
F∞ is an interior operator is completely dual.

• U ⊆ F ∗(U): we know that F ∗(U) is a pre-fixpoint of X 7→ U ∪ F (X),
which means that U ∪ F

(
F ∗(U)

) ⊆ F ∗(U), and so U ⊆ F ∗(U).

• U ⊆ F ∗(V ) ⇒ F ∗(U) ⊆ F ∗(V ). Suppose that U ⊆ F ∗(V ). Since F ∗(U)
is the least pre-fixpoint of X 7→ U∪F (X), it suffices to show that F ∗(V ) is
also a pre-fixpoint of this operator, i.e. that U∪F

(
F ∗(V )

) ⊆ F ∗(V ). Since
F ∗(V ) is a pre-fixpoint for X 7→ V ∪ F (X), we have F

(
F ∗(V )

) ⊆ F ∗(V ),
and by hypothesis, we have U ⊆ F ∗(V ). We can conclude.

It is worth noting that the operation ∗ itself is a closure operation on the lattice
of predicate transformers, but that ∞ is not an interior operator.

¤
Some other properties of those operations are given by the following lemma.
First, a definition:

Definition 3 Suppose F is a predicate transformer.

1. an F -invariant, (or simply an invariant when F is clear) is a post-fixpoint
of F , i.e. a predicate U satisfying U ⊆ F (U);

2. an F -saturated predicate, (or simply a saturated predicate when F is
clear) is a pre-fixpoint of F , i.e. a predicate U satisfying F (U) ⊆ U .

We have:

Lemma 3.1 If F is a predicate transformer on S and U ⊆ S, we have:

• F ∗(U) is the strongest (i.e. least) F -saturated predicate including U ;

• F∞(U) is the weakest (i.e. greatest) F -invariant contained in U .

Proof: We will prove only the second point, as the first one is completely dual.

• F∞(U) is contained in U : this is a consequence of F∞ being an interior
operator. (Proposition 2.)

• F∞(U) is F -invariant: F∞(U) is the greatest post-fixpoint of the operator
X 7→ U ∩ F (X); in particular, F∞(U) ⊆ U ∩ F

(
F∞(U)

)
, which implies

that F∞(U) ⊆ F
(
F∞(U)

)
.

• F∞(U) is the greatest such invariant: suppose that V is another invariant
contained in U , i.e. we have V ⊆ F (V ) and V ⊆ U . This implies that
V is a post-fixpoint of the above operator. Since F∞(U) is the greatest
post-fixpoint, we conclude directly that V ⊆ F∞(U).

¤

4 Interaction structures

4.1 Motivations

As in the case of relations, we obtain another more computationally oriented
notion of predicate transformer by replacing the Pow( ) functor with the Fam( )
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functor. There is again more than one way to do this. We will focus on the struc-
ture arising from the representation of predicate transformers as S → Pow2(S′):

w : S → Fam2(S′) .

Expanding the definition of Fam( ), we see that the declaration of w consists of
the following data:

1. a function A : S → Set ;

2. a function D : (Π s ∈ S) A(s) → Set ;

3. a function n : (Π s ∈ S, a ∈ A(s)) D(s, a) → S′.

In essentials, the invention of this structure should be attributed to Peters-
son and Synek (though similar constructions were implicitly present in earlier
works: [41, 16, 11]). In [33], they introduced a set-constructor for a certain
inductively defined family of trees, relative to the signature

A : Set
B(x) : Set where x ∈ A
C(x, y) : Set where x ∈ A, y ∈ B(x)
d(x, y, z) ∈ A where x ∈ A, y ∈ B(x), z ∈ C(x, y)

which is nothing more than a pair of a set A and an element of A → Fam2(A).
We will make use of (a slight variant of) their definitional schema in defining
one of our iteration operators below, namely “angelic iteration”.

4.2 Applications of interaction structures

This type is rich in applications. Broadly speaking these applications fall under
two headings: interaction and inference.

Interaction. This is our main application.

S: we take S to model the state space of a device. We prefer to call this
the state of the interface as the device itself may have a complicated
internal state which we need not understand to make use of the device.
For example, think of s ∈ S as the state of one’s bank balance, as it is
observed by someone using an ATM.6

A: for each state s ∈ S, we take the set A(s) to model the set of commands
that the user may issue to the device. For example, think of a ∈ A(s) as
a request to withdraw cash from an ATM.

D: For each s ∈ S and a ∈ A(s), we take D(s, a) to model the set of responses
that the device may return to the command a. It is possible that there is
more than one response that the device may legitimately return to a given
command. For example, think of the response Service Unavailable to
a withdrawal request.

6Automatic Teller Machine —a cash machine.
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n: For each s ∈ S, command a ∈ A(s) and response d ∈ D(s, a), we take
n(s, a, d) to model the next state of the interface. Note that the next
state is determined by the response. This means that the current state of
the system can always be computed from its initial state, together with a
complete record of commands and responses exchanged ab initio.

The two agents interacting across such a command-response interface are con-
ventionally called the Angel (for a pronoun we use “she”), and the Demon
(“he”). The Angel issues commands and receives responses. She is active, in
that she has the initiative in any interaction. The Demon is passive, and merely
obeys instructions, to each of which he returns a response. The terminology
of Angels and Demons is rife in the refinement calculus literature, in which an
interface is thought of as a contract regulating the behavior of two parties, the
Angel and Demon. We have named the two components of an interaction struc-
ture A and D after them. (Alternative dramatis personae might be ∃loise and
∀belard, Opponent and Defendant, Master and Slave, Client and Server.)

Other applications that have broadly the same interactive character are in-
dicated in the following table.

idiom S A D n
game state moves counter-moves next state
system state system call return next state
experiment knowledge stimulus response
examination knowledge question answer

Inference. A second style of application of the structure (which plays no
explicit rôle in this paper) is to model an inference system, or (to use Aczel’s
term) a rule-set. One does not attempt here to capture the idea of a schematic
rule, but rather the inference steps that are instances of such rules.

S: we may take the elements of the set S to model judgments that can stand
‘positively’ at the conclusion or occur ‘negatively’ as some premise of an
inference step.

A: for each judgment s ∈ S, we may take the elements of the set A(s) to
model inference steps with conclusion s.

D: for each judgment s ∈ S and inference step a ∈ A(s) by which s can be
inferred, we may take the elements of the set D(s, a) to index, locate, or
identify one of the family of premises required to infer s by inference step
a.

n: for each judgment s ∈ A, inference step a ∈ A(s), and index d ∈ D(s, a)
for a premise of that inference step, we may take n(s, a, d) to model the
judgment to be proved at premise d in inference step a.

Instead of judgements and inference steps, we may consider grammatical cate-
gories and productions as in Petersson and Synek’s original application ([33]),
or sorts and (multi-sorted) signatures.
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4.3 Definition and basic properties

Definition 4 If S and S′ are sets, an object w of type S → Fam2(S′) is called
an interaction structure (from S to S′). We refer to the components of w as
follows:

w.A : S → Set
w.D : (Π s ∈ S) w.A(s) → Set
w.n ∈ (Π s ∈ S, a ∈ w.A(s)) w.D(s, a) → S′

When no confusion is possible, we prefer to leave the “w.” implicit, and simply
write A, D and n, possibly with decorations. We also use the notation s[a/d] as
a synonym for w.n(a, s, d) when w is clear from the context.

Before examining the objects of this type in more detail, we mention some
other representations of predicate transformers:

• S1 → Pow2(S2) ' Pow(S2) → Pow(S1): this is the notion studied in
section 3, or in Back and von Wright’s book ([4, sec. 5.1, p. 251]) under
the name “choice semantics”;

• S1 → Pow
(
Fam(S2)

) ' Fam(S2) → Pow(S1): this notion is very similar
to the previous one (they are equivalent in the presence of equality). To
our knowledge, this type has never been considered as a viable notion;

• S1 → Fam
(
Pow(S2)

)
: because a subset on a proper type need not be

equivalent to a set indexed family on the same type, this notion is intrin-
sically different from the previous two. This is the notion used by Aczel
to model generalized inductive definitions in [2]. This is also the structure
used in [9] under the name axiom set.

From our perspective, this notion seems to abstract away the action of the
Demon: the Angel doesn’t see the Demon’s reaction, but only a property
of the state it produces. The Demon’s reaction is in some sense “hidden”.

There are other variants based on types isomorphic to Pow(S2) → Pow(S1)
such as Fam(S2) → Fam(S1), Pow(S2 × Fam(S1)) and so on. We have not
investigated all the possibilities systematically, but none of them seems to fit
our purpose.

Associated with an interaction structure w from S to S′ are two monotone
predicate transformers w◦ and w• : Pow(S′) → Pow(S). Both are concerned
with the notion of “reachability” of a predicate (on S′) from a state (in S). The
difference is which agent tries to bring about the predicate: either the Angel (in
the case of w◦) or the Demon (in the case of w•).

Definition 5 If w = (A,D, n) is an interaction structure on S, define:
(recall that “∃” and “∀” are synonyms for “Σ” and “Π”)

s ε w◦(U) ⇔ (∃a ∈ A(s)
) (∀d ∈ D(s, a)

)
s[a/d] ε U ;

s ε w•(U) ⇔ (∀a ∈ A(s)
) (∃d ∈ D(s, a)

)
s[a/d] ε U .

Of these, lemma 4.1 below shows that ◦ is more fundamental.
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Definition 6 If S and S′ are sets, and w is an interaction structure from S to
S′, define w⊥ : S → Fam2(S′) as follows.

w⊥.A(s) ∆= (Π a ∈ w.A(s)) w.D(s, a)
w⊥.D(s, ) ∆= w.A(s)
w⊥.n(s, f, a) ∆= s[a/f(a)]

As we’ll see in proposition 3, this is a constructive version of the dual operator
on predicate transformers. Although this operation doesn’t enjoy all the duality
properties of its classical version (in particular, it is not provably involutive),
we still have the following:

Lemma 4.1 For any interaction structure w, we have: w• = (w⊥)◦.

Proof: Axiom of choice. ¤
The converse w◦ = (w⊥)• holds classically but not constructively.

4.3.1 Lattice structure, monoidal operations

We define inclusion between interaction structures by interpreting them as pred-
icate transformers via the ◦ operator:

Definition 7 Define w1 ⊆ w2
∆= w1

◦ ⊆ w2
◦.

Once again, this is not a proposition, but only a judgment.
In contrast with the impoverished structure of transition structures rela-

tive to relations, interaction structures support the full algebraic structure of
monotone predicate transformers, as we now show.

Definition 8 Define the following operations on interaction structures:

Updates If T = (A,n) : S → Fam(S′) is a transition structure, then

〈T 〉.A(s) ∆= A(s) [T ].A(s) ∆= {∗}
〈T 〉.D(s, a) ∆= {∗} [T ].D(s, ) ∆= A(s)
〈T 〉.n(s, a, ) ∆= s[a] [T ].n(s, , a) ∆= s[a] .

Extrema If (wi)i∈I is an indexed family of interaction structures, then

(
⋃

i wi).A(s) ∆= (Σ i ∈ I)wi.A(s) = s ε (
⋃

i wi).A
(
⋃

i wi).D
(
s, (i, a)

) ∆= wi.D(s, a)
(
⋃

i wi).n
(
s, (i, a), d

) ∆= wi.n(s, a, d)

and

(
⋂

i wi).A(s) ∆= (Π i ∈ I) wi.A(s) = s ε (
⋂

i wi.A)
(
⋂

i wi).D(s, f) ∆= (Σ i ∈ I)wi.D(s, a)
(
⋂

i wi).n
(
s, f, (i, d)

) ∆= wi.n
(
s, f(i), d

)
.
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Composition Suppose w1 and w2 are interaction structures S1 → Fam2(S2)
and S2 → Fam2(S3); define a structure w1 # w2, called the sequential
composition of w1 and w2. having type S1 → Fam2(S3) with components:

A(s1)
∆= (Σ a1 ∈ A1(s1))

(Π d1 ∈ D1(s1, a1)) A2(s1[a1/d1])
D

(
s1, (a1, f)

) ∆= (Σ d1 ∈ D1(s1, a1))D2

(
s[a1/d1], f(d1)

)

n
(
s1, (a1, f), (d1, d2)

) ∆= s1[a1/d1][f(d1)/d2] .

i.e. a command in (w1 # w2).A(s) is given by a command in w1.A(s), and
a continuation f giving, for all responses d in w1.D(s, a) a command in
w2.A(s[a/d]). Note that (w1 # w2).A = w1

◦(w2.A).

Unit

skip.A(s) ∆= {∗}
skip.D(s, ) ∆= {∗}
skip.n(s, , ) ∆= s .

These operations satisfy the expected laws:

Proposition 3

skip◦ = skip ;
〈T 〉◦ = 〈T ◦〉 ;
[T ]◦ = [T ◦] ;
(
⋃

i wi)◦ =
⋃

i(wi
◦) ;

(
⋂

i wi)◦ =
⋂

i(wi
◦) ;

(w1 # w2)◦ = w1
◦ # w2

◦ ;
(w◦)⊥ = { · w◦ · { (only classically) .

Proof: Routine. Note that though to define the relation T ◦ requires use of
equality, one can define the predicate transformers 〈T ◦〉 and [T ◦] without it.
For the last point, we have constructively that

s ε (w◦)⊥(V ) iff (∀U ⊆ S) s ε w◦(U) ⇒ U G V

which can be taken as the definition of the dual for an arbitrary monotonic
predicate transformer. This variant is better behaved in a constructive setting,
and classically equivalent to the { · · { definition.

¤
In view of this proposition, we may regard interaction structures as concrete

representations of monotone predicate transformers that support many useful
operators of the refinement calculus. (Iteration will be dealt with in subsection
4.4 on the following page.) As a result, we allow ourselves to overload the name
w of an interaction structure to mean also w◦.

4.3.2 Factorization of interaction structures

It is worth observing that any interaction structure w : S → Fam2(S′′) is equal
to the composition 〈Ta〉 # [Td] where Ta : S → Fam(S′), Td : S′ → Fam(S′′)
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and S′ = (Σ s ∈ S)w.A(s). The transition structures Ta (which “issues the
command”) and Td (which “performs the command”) are defined as follows:

Ta.A
∆= w.A Td.A

(
(s, a)

) ∆= w.D(s, a)
Ta.n(s, a) ∆= (s, a) Td.n

(
(s, a), d

) ∆= w.n(s, a, d)

This factorization should be compared with the normal form theorem for pred-
icate transformers mentioned on page 15. Just as 〈Ra〉 # [Rd] is a normal form
for monotone predicate transformers, so (with transition structures replacing
relations) it is a normal form for interaction structures.

In this connection, one can define a symmetric variant of the notion of in-
teraction structure, consisting of two arbitrary sets S and S′ with either (i) a
pair of relations between them, or (ii) a pair of transition structures in opposite
directions. We have used the name “Janus structure” for type-(ii) structures
(based on transition structures in different directions). Markus Michelbrink has
used the name “interactive game” for type-(i) structures. Michelbrink’s work
shows that these to be highly interesting structures. The relation they bear
to monotone predicate transformers seems not unlike that the natural numbers
bear to the (signed) integers.

4.4 Iteration

We now define the iterative constructs ∗ and ∞ on interaction structures.

4.4.1 Angelic iteration

Definition 9 Let w : S → Fam2(S); define

w∗.A ∆= (µX : S → Set) (λ s ∈ S)
data exit

call(a, f) where a ∈ S(s)
f ∈ (Π d ∈ D(s, a))X(s[a/d])

w∗.D(s,exit) ∆= data nil

w∗.D
(
s,call(a, f)

) ∆= data cons(d, d′) where d ∈ D(s, a)
d′ ∈ D∗(s[a/d], f(d)

)

w∗.n(s,exit,nil) ∆= s

w∗.n
(
s,call(a, f),cons(d0, d

′)
) ∆= w∗.n

(
s[a/d0], f(d0), d′

)

An element of A∗(s) is a data-structure that can be interpreted as a program or
strategy for the Angel, to issue commands and react to the Demon’s responses
to commands. Because the definition uses a least fixpoint, this program is well
founded in the sense that the Angel eventually reaches an exit command.

Associated with each such program p ∈ A∗(s), the set D∗(s, p) and the
function n∗(s, p, ) give the family of states in which it can exit. Elements of the
former can be seen as paths from s through p, while the latter maps a path to its
final state. An element of D∗(s, p) is sometimes called a (finite and complete)
run, log, trace, or history. Note that a trace is intrinsically finite.

Proposition 4 For any interaction structure w on S, we have w∗◦ = w◦∗.

Proof: Easy inductive proof. ¤
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To make formulas easier to read, we adopt Sambin’s “C” notation:

Definition 10 If w : S → Fam2(S), s ∈ S, and U, V ⊆ S, put:

s Cw U
∆= s ε w∗◦(U) ;

V Cw U
∆= V ⊆ w∗◦(U) .

This higher-order relation satisfies:

Lemma 4.2

1. monotonicity: s Cw U and U ⊆ V ⇒ s Cw V ;

2. reflexivity: s ε U ⇒ s Cw U ;

3. transitivity: s Cw U and U Cw V ⇒ s Cw V .

Proof: This is a just a rewriting of the definition of a closure operator using the
“C” notation. (w∗◦ is a closure operator by proposition 2, since w∗◦ = w◦∗.)
Note that this proof (that w∗◦ is a closure operator) is entirely predicative.

¤

4.4.2 Demonic iteration

We first recall the rules used in [19] to generate “state dependent” greatest
fixpoints. Translated to our setting, if (A,D, n) is an interaction structure
on S, we are allowed to form the family A∞ of sets indexed by s ∈ S using the
following rules:

• formation rule:
s ∈ S

A∞(s) : Set
;

• introduction rule: (setting up a coalgebra)

X : S → Set F : X ⊆ w◦(X) s ∈ S x ∈ X(s)

Coiter(X, F, s, x) ∈ A∞(s)
;

(recall that F : X ⊆ w◦(X) means F : (Π s) X(s) → (Σ a) (Π d) X(s[a/d]))

• elimination rule:
s ∈ S K ∈ A∞(s)

Elim(s,K) ∈ w◦(A∞)(s)
;

• reduction rule:

Elim
(
s,Coiter(X,F, s, x)

)
=

(
a, (λ d) Coiter

(
X, F, s[a/d], g(d)

))
where (a, g) = F (s, x) .

(Here “(a, k) = . . .” is how we indicate an implicit pattern matching.)

It should be noted ([19, p. 11]) that those rules (which require that a weakly
final coalgebra for w◦) are dual to the rules for inductive types. Roughly speak-
ing, they are the coinductive analogue of Petersson and Synek’s inductively
defined treeset constructions, expressed with a specific destructor Elim.7

7Implicit in these rules is a certain “weak” impredicative existential quantifier, that permits
the formation of the higher product (Σ X : Set) A : Set , but without the strong projections
of the usual Sigma type. Instead, one has an elimination rule closer to that in traditional
natural deduction. Such a “weak” quantifier is sometimes invoked in the analysis of abstract
data types ([31]).
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Definition 11 Let w : S → Fam2(S); define

w∞.A
∆= (ν X : S → Set) (λ s ∈ S)

(Σ a ∈ w.A(s)) (Π d ∈ w.D(s, a))X(s[a/d])
∆= A∞

w∞.D
∆= (µX : (Π s ∈ S) A∞(s) → Set) (λ s ∈ S, p ∈ A∞(s))

data nil
cons(d, d′) where (a, k) = Elim(p)

d ∈ D(s, a)
d′ ∈ X(s[a/d], k(d))

w∞.n(s, p,nil) ∆= s

w∞.n
(
s, p,cons(d, d′)

) ∆= w∞.n
(
s[a/d], k(d), d′

)
where (a, k) = Elim(p)

An element of A∞(s) can be interpreted as a command-response program
starting in state s and continuing for as many cycles as desired, perhaps forever.
One can picture such a program as an infinite tree, in which control flows along
a branch in the tree. An element of D∞(s, p) is a finite sequence of responses
that may be returned to the agent running the program p; and n∞(s, p, t) is the
state obtained after the finite response sequence t has been processed.

Proposition 5 For any interaction structure w on S, we have w∞◦ = w◦∞.

Proof: Let U ⊆ S:

• w∞◦(U) ⊆ w◦∞(U): since w◦∞(U) is the greatest fixpoint of U ∩ w◦( ),
it suffices to show that w∞◦(U) is a post-fixpoint for the same operator,
i.e. that w∞◦(U) ⊆ U ∩ w◦

(
w∞◦(U)

)
.

Let s ε w∞◦(U); this implies that there is some p ∈ A∞(s) s.t.
(∀t ∈ D∞(s, p)

)
s[p/t] ε U .

In particular, for t = nil, we have s[p/nil] = s ε U .

We now show that s ε w◦
(
w∞◦(U)

)
. Let Elim(p) be of the form (a0, k).

We claim that
(∀d ∈ D(s, a0)

)
s[a0/d] ε w∞◦(U): if d ∈ D(s, a0), we

have k(d) ∈ A∞(s[a0/d]) and cons(d, d′) ∈ D∞(
s, (a0, k)

)
for any d′ in

D∞(
s[a0/d], k(d)

)
. This implies (because s ε w∞◦(U)) that

s[a0/d][k(d)/d′] = s[(a0, k)/cons(d, d′)] ε U

which completes the proof.

• w◦∞(U) ⊆ w∞◦(U): let s ε w◦∞(U);
we need to find a p ∈ A∞(s) s.t.

(∀t ∈ D∞(s, p)
)

s[p/t] ε U . By the
introduction rule for A∞, it suffices to find a coalgebra (X : S → Set , F )
with F ∈ X ⊆ w◦X.
X

∆= w◦∞(U) together with the function F coming from the coinductive
rule w◦∞ ⊆ skip ∩ (w◦ # w◦∞) ⊆ w◦ # w◦∞ is such a coalgebra.
This provides us with an element Coiter

(
X, F, s, x

) ∈ A∞(s) where x is
the proof that s ε w◦∞(U).
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We will show the following: “for all states s, for all programs p generated
by this coalgebra, for all responses t to p, we have s[p/t] ε U”. More
precisely, we will prove:

(
∀s , ∀x ∈ X(s) , ∀t ∈ D∞(

s, p(s, x)
))

s[p(s, x)/t] ε U

where p(s, x) = Coiter(X,F, s, x).
We work by induction on the structure of t.

base case: if t = nil, then s[p(s, x)/nil] = s, and we have s ε U since
s ε X = w◦∞(U) ⊆ U .

induction case: if t = (d0, t
′), then s[p(s, x)/(d0, t

′)] = s[a0/d0][k(d0)/t′]
where Elim

(
p(s, x)

)
= (a0, k). By the reduction rule for coinduction,

we have; if x is of the form (a0, f):

ElimCoiter(X, F, s, x) =
(
a0, (λ d0) Coiter

(
X, F, s[a0/d0], f(d0)

))

Therefore, k(d0) = p
(
s[a0/d0], f(d0)

)
, and we obtain the result by

applying the induction hypothesis for s[a0/d0], f(d0) ∈ X(s) and
t′ ∈ D∞(

s, p(s[a0/d0], f(d0))
)
.

¤

Corollary 2 For any interaction structure w, we have w⊥
∞◦ = w•∞.

Proof: Direct from lemma 4.1 and proposition 5. ¤
Just as for w∗ and C, we introduce the following notation:

Definition 12 If w is an interaction structure on S, put:

snw U
∆= s ε w⊥

∞(U) ;
V nw U

∆= V G w⊥
∞(U) .

4.5 Clients, servers and their interaction

In the vast majority of cases, there are only two kinds of program one is called
upon to write: in programming terminology, those are called client programs
and server programs. For background, see [40]. Clients and servers are agents on
opposite sides of a service interface, sometimes also called a resource interface.
The service may be, for example, to store values in addressable memory cells,
or disk sectors. The client obtains or uses the service, the server provides it. In
general terms, the behavior of an agent following a client program is to issue
commands across the interface, and then use the responses to steer control to the
right continuation point in the program, iterating through some finite number of
command-response cycles until eventually reaching an exit point in the program.
On the other hand, the behavior of an agent following a server program is to
wait passively for a command, perform it and respond appropriately, for as
many command-response cycles as required by the client.

The programming terminology of “clients” and “servers” is connected with
the angelic and demonic forms of iteration described above in section 4.4. The
client issues requests or commands, and the server performs them and responds
to the client with a sequence of results, one for each issued command. Each
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request, its performance, and the response to it constitutes a command-response
cycle. From the client’s perspective, we may think of the performance of the
request as an atomic event that occurs sometime between issuing the request
and receiving the response. The server changes state, as it were “in a trice”.

A server may have many clients. As when someone is operating a till in a
supermarket, we may arrange (or simulate in various ways) that a client has
the exclusive attention of a server, cycling through the purchase of several items
by a single client, until the trolley is empty, the customer pays, and an entire
transaction, consisting of many cycles is complete. Then the next customer in
the queue comes forward. The number of cycles is at the discretion of the client.
In essence what is happening here is that the server performs an entire trans-
action program (whose execution consists of several cycles) which we can view
as a single composite command. The response to this composite command is a
record or trace of responses to the individual commands: as it were, the receipt
handed to the supermarket customer when the transaction is complete. How-
ever, what is important is that the transactions appear to take place in a total
order. Outside of supermarkets, there are ways of processing transactions such
that several transactions can be in progress, and their commitment is scheduled
to optimize either throughput or response time. Essentially, starting a transac-
tion is not something visible, and one can always pretend that transactions are
started the instant before they are committed.

To describe clients and servers only in such a mechanistic way is however to
miss something important. A client or server program is written to accomplish
some purpose, or to fulfill an intention. The purpose or intention is expressed by
a specification, ideally a formal specification that can be handled by a machine
and used in verification. The crucial question is: what are the logical forms
of the specifications of client and server programs? The interest of dependent
type theory as a framework for developing programs is that one may hope, by
exploiting the expressive power of the type system, to express specifications
formally and yet with full precision. One may then harness decidable type-
checking to guide the development of programs to meet those specifications.

Let us attempt to answer this question. What follows is merely an attempt
to summarize experience of reading and writing specifications for both client
and server programs.

Suppose w describes an interface; a client program is specified by a pair:

Init ⊆ S: a predicate describing initial states in which the program is required
to work. (In other states the program need not even terminate.) The user
of the program is obliged to ensure that the initial predicate holds before
running the program.

Next ⊆ S × S: a relation defined between initial states and final states. The
value of Next for states outside Init is irrelevant: the behavior of the pro-
gram is unspecified. Very often (but not always) this relation has the
simpler “rectangular” form Init × Goal for some Goal ⊆ S; meaning that
the goal predicate does not depend on the initial state.

A client program satisfying such a specification is in essence a constructive
proof that Init ⊆ { s ∈ S | s Cw Next(s) }. When the Next relation happens to
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be of the form Init× Goal, this takes the simpler form

Init Cw Goal .

If we have such a proof, and the interface is in a state s such that initial
predicate Init holds, then we can use the proof as a guide or strategy to bring
about a state in which the goal predicate Next(s) holds, if only we are provided
with a server that responds to all our requests.

As for server programs, the situation is the following: again, let w describe
the interface. A server program is usually described by a pair of predicates:

Init ⊆ S: a non-empty set which describes the allowed initial states of the ser-
vice.

Inv ⊆ S: a predicate that holds initially and is maintained by the server.

Remark. By symmetry with specifications Init ⊆ { s ∈ S | s Cw Next(s) }, where
the relation Next is not necessarily rectangular, one may also consider server specifica-
tions of the form Init G { s ∈ S | snw Next(s) }. At first sight the general case seems
to have no counterpart in practice. However, if Next is actually a simulation relation
one can express a certain kind of recoverability with a specification of this more general
form. (This is connected with the discussion of localization at on page 45.)

A program satisfying such a specification is in essence a constructive proof
that Init overlaps with the weakest post-fixpoint (invariant) of w⊥ included in
Inv. That is to say, it yields a state together with a proof that the state belongs
to both the initial predicate and that invariant. Recall lemma 4.1 that if w is
given by an interaction structure

U ⊆ w⊥(U) ⇔ (∀s ε U)
(∀a ∈ A(s)

) (∃d ∈ D(s, a)
)

s[a/d] ε U .

In other words the Demon is never deadlocked, but can always respond to any
legal command, and moreover in such a way that the invariant continues to hold
in the new state.

Note that a direct consequence of lemma 3.1 is that any invariant can be
written in the form (w⊥)∞(V ). The predicate V need not itself be an invariant,
but can be weaker than the actual invariant (w⊥)∞(V ), and so a fortiori is
maintained by the server program.

To summarise, a server specification takes the form Init G w⊥
∞(Inv) where

Inv is a predicate guaranteed to hold before and after every step. Using the n
notation, this gives:

Initnw Inv .

Interaction between client and server programs. What happens when
we put a client and a server program together, and run the former “on” the
latter? The answer is connected with the compatibility rule in Sambin’s formal-
ization of basic topology.

Suppose that in some state s of a common interface w, we have a client
program P that can be run to bring about a goal predicate U (i.e. s C U), and
a server program K that maintains a predicate V (i.e. snV ). When all internal
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calculation has been carried out, the client program P will have been brought
into one of two forms: either (call(a, f), g) where

a ∈ A(s)
f ∈ (Π d ∈ D(s, a)) A∗(s[a/d])
g ∈ (

Π(d0, d
′) ∈ D∗(s,call(a, f)

))
s[a/d][f(d)/d′] ε U ,

or (exit, h) where h(exit) is a proof that s ε U . On the other hand, if (K, l) is
the server program, then Elim(s,K) has the form (r, k) where

r ∈ (Π a ∈ A(s)) D(s, a)
k ∈ (Π a ∈ A(s)) (A⊥)∞(s[a/r(a)])
l ∈ (

Π t ∈ (D⊥)∞(s,K)
)
s[K/t] ε V .

For any U, V ⊆ S, we define an execution function with the type

execU,V

(
(s, P, K) ε w∗(U) G w⊥

∞
(V )

) ∈ U G w⊥
∞

(V )

by means of the following clauses:

execU,V

(
s, (exit, h), (K, l)

) ∆= (s, h(exit),K)

execU,V

(
s, (call(a, f), g), (K, l)

) ∆=
let (r, k) = Elim(s,K)

d
∆= r(a)

P ′ ∆= f(d)
g′ ∆= (λ d′) g((d, d′))
K ′ ∆= k(a)
l′ ∆= (λ t) l((a, t))

in execU,V

(
s[a/d], (P ′, g′), (K ′, l′)

)

If we strip away the parameters and programs from this rule, we obtain

w∗(U) G w⊥
∞(V )

U G w⊥
∞(V )

that can immediately be recognized as Sambin’s compatibility rule ([36]). In
some sense this rule expresses the mechanics of interaction between client and
server programs.

How does this rule apply to the formulas given above for the general form of
client and server specifications? Suppose we have a client program satisfying the
specification “Init Cw Goal”, and a server program satisfying the specification
“Initnw Inv”. Then we can apply the execution function to get:

Init C Goal Initn Inv

Goaln Inv
.

The real use of a client program is turn servers in a state that satisfies the
precondition into servers in a state that satisfies the goal predicate.
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Safety and Liveness. The concepts of partial and total correctness emerged
from the investigations of Floyd, Dijkstra and Hoare into the foundations of
specification and verification for sequential programming. A program is par-
tially correct if it terminates only when it has attained the goal that it should,
while it is totally correct if in addition it terminates whenever it should. In the
late 70’s, Lamport in [26] introduced the terms safety and liveness as the appro-
priate generalizations of these concepts to the field of concurrent programming.
In concurrent programming a program interacts with its environment while it
is running, rather than only when initialized or terminated. Informally, a safety
property requires that “nothing bad” should occur during execution of a concur-
rent program. (A time can be associated with the violation of a safety property).
On the other hand a liveness property requires that “something good” should
occur (so that it is violated only at the end of time, as it were). These properties
soon received formal definitions, in the case of safety by Lamport [27], and in
the case of liveness by Alpern and Schneider [3].

These properties were defined in topological terms, with respect to the
“Baire” space of infinite sequences of states. (The set of sequences sharing
a common finite prefix is a basic neighborhood in this space). Briefly, a safety
property was analyzed as a closed set of sequences, and a liveness property as a
dense set (i.e. one intersecting with every non-empty open set). The properties
were also expressed in terms of linear-time temporal logic, the idea being that a
safety property asserts that something is (now and) forever the case, whereas a
liveness property requires that something (now or) eventually takes place. For
various reasons liveness is usually restricted to fairness properties in which the
temporal modalities are nested at most twice. An example of a fairness require-
ment is so-called “strong” fairness, which requires that an event (state-change)
of a certain kind occurs infinitely often providing that it is enabled infinitely of-
ten. A readable account of the rôle these concepts play in practical specification
can be found in Lamport’s book [28].

What can we say about these notions from the perspective of interaction
structures? One thing that can be said with some confidence is that a safety
property is an invariant. In basic topology, invariants represent closed sets. So
this agrees with Lamport’s topological analysis.

A liveness property on the other hand is merely a set of points which overlaps
with every non-empty open set. It seems difficult to say anything interesting
about liveness properties in general; but it may be easier when the properties
are simple combinations of particular modalities such as “infinitely often” and
“eventually always”.

4.6 Product operations

We describe below two product operations on interaction structures. The first
corresponds to an operation treated in the refinement calculus ([5]), while the
second does not.
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Synchronous tensor. Suppose w1 and w2 are two interaction structures on
S1 and S2. We define w1 ⊗ w2 on S1 × S2:

(w1 ⊗ w2).A((s1, s2))
∆= w1.A(s1)× w2.A(s2)

(w1 ⊗ w2).D((s1, s2), (a1, a2))
∆= w1.D(s1, a1)× w2.D(s2, a2)

(w1 ⊗ w2).n((s1, s2), (a1, a2), (d1, d2))
∆= (s1[a1/d1], s2[a2/d2])

The computational meaning of this operation is clear: one issues commands in
each of a pair of interfaces, receives responses from them both, and they each
move to their new state, simultaneously and atomically. Sometimes this kind of
arrangement is called “ganging”, or “lock-step synchronization”.

The synchronous tensor corresponds to the following operation on predicate
transformers (addition to propositions 3, 4 and 5):

(F1 ⊗ F2)(R) =
⋃

U×V⊆R

F1(U)× F2(V )

which was used in [5] to model parallel execution of program components.
In combination with duality (definition 6), the synchronous tensor enjoys

strong algebraic properties (see [23]).

Angelic product. Similarly, suppose w1 and w2 are two interaction struc-
tures on S1 and S2. We define w1 ¯ w2 on S1 × S2:

(w1 ¯ w2).A((s1, s2))
∆= w1.A(s1) + w2.A(s2)

(w1 ¯ w2).D((s1, s2), in0(a1))
∆= w1.D(s1, a1)

(w1 ¯ w2).D((s1, s2), in1(a2))
∆= w2.D(s2, a2)

(w1 ¯ w2).n((s1, s2), in0(a1), d1)
∆= (s1[a1/d1], s2)

(w1 ¯ w2).n((s1, s2), in1(a2), d2)
∆= (s1, s2[a2/d2]) .

The computational meaning is again quite clear: a pair of interfaces is available
to the Angel, who choose the one to use. This kind of arrangement is frequently
found at the low-level interface of a program component, where instances of var-
ious resources are exploited, one at a time, to implement a higher-level interface.
We call this kind of combination the “angelic product”.

In terms of predicate transformers, the angelic product corresponds to

(F1 ¯ F2)(R) =
⋃

{s1}×V⊆R

{s1} × F2(V ) ∪
⋃

U×{s2}⊆R

F1(U)× {s2} .

5 Morphisms

5.1 Linear simulations

We now consider what to take for morphisms between predicate transformers or
their representation by interaction structures. The definition we adopt coincides
with what is known as a “forward” simulation in the refinement calculus. As
we will see in section 6, it is also connected with the definition of continuous
relation in formal topology.
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Let us therefore consider the case of (homogeneous) interaction structures,
subscripted with “h” and “l” to distinguish the high and low level interfaces.

wh : Sh → Fam2(Sh)
↓
wl : Sl → Fam2(Sl)

As explained earlier, we view wh and wl as command-response interfaces over
the state spaces Sh and Sl, where the command and response “dialects” are
given by (Ah, Dh) and (Al, Dl) respectively. Our intuition here is to think of a
morphism as a systematic translation between the dialect for wh and the dialect
for wl, which enables us to use a device supporting the interface (Sl, wl) as if it
were a device supporting the interface (Sh, wh). That is, we should be able to
translate high level Ah-commands into low level Al-commands, and responses
to the latter (low level Dl responses) back into high level Dh responses in such
a way that the simulation of (Sh, wh) by (Sl, wl) can be indefinitely sustained.

It is often the case that several different low-level states can represent the
same high-level state, so that the link between high-level states and low-level
states can be represented by a function from the latter to the former (sometimes
called an abstraction function, or refinement mapping). It is also sometimes the
case that several different high-level states can be represented by the same low-
level state. For such reasons, many people take the link between high and low
level states to be a general relation, rather than a map one one direction or the
other.

The question then is: how can we make this intuition of translation precise?
The answer we propose is the following.

Definition 13 Let wh : Sh → Fam2(Sh), and wl : Sl → Fam2(Sl). A linear
simulation of (Sh, wh) by (Sl, wl) is a relation R ⊆ Sh × Sl which satisfies the
following “sustainability” condition:

If (sh, sl) ε R, then
∀ah ∈ Ah(sh) – for all high-level commands ah . . .

∃al ∈ Al(sl) – there is a low-level command al s.t.

∀dl ∈ Dl(sl, al) – for all responses dl to the low-level command . . .

∃dh ∈ Dh(sh, ah) – there is a response dh to the command ah s.t.(
sh[ah/dh], sl[al/dl]

)
ε R – the simulation can be sustained.

We write R : wh −◦ wl to mean R is a linear simulation from wh to wl.

In explanation of the qualification “linear”, we have required a one-for-one
intertranslation between the high and low-level interfaces. (We shall shortly
introduce a notion of general simulation, allowing zero or non-zero low-level
interactions for each high-level interaction.)

The formula above with its four nested quantifiers is perhaps a little daunting
at first sight. Let’s re-express it in a more compact form.

Lemma 5.1 R ⊆ Sh×Sl is a linear simulation of (Sh, wh) by (Sl, wl) iff for all
sh ∈ Sh, and ah ∈ Ah(sh), we have R(sh) ⊆ wl

(⋃
dh∈Dh(sh,ah) R(sh[ah/dh])

)
.

Proof: Simple formal manipulation. ¤
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Remark. A linear simulation from wh to wl is itself an invariant for a certain
relation transformer “wh −◦ wl”.

Definition 14 If wh and wl are interaction structures on Sh and Sl, define a new
interaction structure on Sh × Sl with:

A((sh, sl))
∆
= (Σ f ∈ Ah(sh) → Al(sl))

(Π ah ∈ Ah(sh)) Dl(sl, f(ah)) → Dh(sh, ah)

D((sh, sl), (f, g))
∆
= (Σ ah ∈ Ah(sh)) Dl(sl, f(ah))

n((sh, sl), (f, g), (ah, dl))
∆
= (sh[ah/g(ah, dl)], sl[f(ah)/dl]) .

This concrete representation is merely the result of applying the axiom of choice to pull
the quantifier alternation (Π ) (Σ ) (Π ) (Σ ) into (Σ ) (Π ) form. Notice that every-
thing has a computational meaning: the commands are intertranslation functions, the
responses are data outside the control of the simulation, and data is communicated
between the high and low poles of a state-pair.

Classically, this interaction structure is (isomorphic to) the representation of the linear-
logic implication from [23]. The corresponding tensor is the synchronous tensor ⊗
defined on page 31. (One can check that “⊗” is left-adjoint to “−◦”.) It is interesting
to remark that neither composition nor iteration of predicate transformers/interaction
structures are used in the models of linear logic from [23, 24].

The following proposition gives a characterization of linear simulations as a
subcommutativity property (point 2).

Proposition 6 The following are equivalent:

1. R is a linear simulation of (Sh, wh) by (Sl, wl);

2. 〈R∼〉 # wh ⊆ wl # 〈R∼〉;
3. for all U ⊆ Sh, sh ∈ Sh we have sh Cwh

U ⇒ R(sh) Cwl
R(U).

Proof: (the implication 2⇒1 requires the use of equality)

1⇒2 : we have to show that sl ε (R # wh)(U) implies sl ε (wl #R)(U).
sl ε R # wh(U)

⇔ { definition of # }
(∃sh ∈ Sh) (sh, sl) ε R and sh ε wh(U)

⇒ { definition of the predicate transformer wh }
(∃sh) (sh, sl) ε R and(∃ah ∈ Ah(sh)

) (∀dh ∈ Dh(sh, ah)
)

sh[ah/dh] ε U
⇒ { by lemma 5.1 }

(∃sh) (sh, sl) ε R and
sl ε wl

( ⋃
dh

R(sh[ah/dh])
)

and
⋃

dh
sh[ah/dh] ⊆ U

⇒ { R = 〈R∼〉 commutes with unions }
(∃sh) (sh, sl) ε R and

sl ε wlR
( ⋃

dh
sh[ah/dh]

)
and

⋃
dh

sh[ah/dh] ⊆ U

⇒ { by monotonicity }
sl ε wl #R(U)

2⇒1 : suppose that R # wh ⊆ wl # R, and let sh ∈ Sh and ah ∈ Ah(sh);
we will show that R(sh) ⊆ wl

( ⋃
dh∈Dh(sh,ah) R(sh[ah/dh])

)
and conclude using

lemma 5.1.
Define U

∆=
⋃

dh∈Dh(sh,ah) {sh[ah/dh]}. (This where equality is needed.)
We certainly have that sh ε wh(U) so that R(sh) ⊆ R # wh(U). By hypothesis,
this implies that R(sh) ⊆ wl # R(U) which we had set out to prove. (Since R
commutes with unions.)
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The proof that 2⇔3 is straightforward.
¤

The following is easy:

Proposition 7 If w1 and w2 are interaction structures, the linear simulations
of w1 by w2 are closed under arbitrary unions (including the empty union, so
that there is always an empty simulation).

Finally, the following shows that we have a poset enriched category.

Proposition 8

1. The relational composition (R1 # R2) of two linear simulations is a linear
simulation.

2. If w is an interaction structure on S, then eqS : w −◦ w.

3. Composition of linear simulations is monotone in both its arguments.

We call this category LinSim.

Proof: Straightforward. ¤
The same proposition holds if we replace interaction structures with predicate
transformers, and use point 2 from proposition 6 as the definition of simulation.
We call this category PT.

Remark. Of course to define a category, we need equality relations for the identity
morphisms of this category. Without equality, we have a weaker structure, having
merely an associative and monotone composition of morphisms.

A morphism is supposed to “preserve structure”. What is the structure
preserved by a simulation? The following observation suggests one answer.

Lemma 5.2 If R is a simulation as above, the image of an invariant for wh

is an invariant for wl, i.e. the image of a high-level invariant is a low-level
invariant.

Proof: simple application of proposition 6. ¤
Remark. The notion of a linear simulation is already well-known in the literature
of the refinement calculus (see for example [6]). There it is known as forward (or
“downward”) data refinement. In fact, in that setting one considers a more general
notion, in which the relation (which may be identified with a disjunctive predicate
transformer) is generalized to a “right-moving” predicate transformer:
Definition 15 If Fh and Fl are transformers, and if P : Pow(Sl) → Pow(Sh), then
Fh is said to be data-refined through P by Fl if

P # Fh ⊆ Fl # P .

If P commutes with arbitrary unions, then the refinement is said to be “forward”,
whereas if P commutes with arbitrary intersections, the refinement is said to be “back-
ward”.

In the setting of impredicative higher-order logic one can prove that the predicate
transformers that commute with arbitrary unions are precisely those of the form 〈Q〉
for some relation Q, and those that commute with arbitrary intersections are precisely
those of the form [Q]. It follows that a linear simulation is a forward data-refinement.
It is natural to wonder whether one can give a predicative analysis of backward data
refinement, akin to that we have given of forward data refinement.
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5.2 Monads and general simulations

When a high-level interface is implemented on top of a low-level, less abstract
interface, it is rare that a single high-level command (for example: record this
data as a file in such and such a directory) can be translated to a single low-level
command. Instead, several interactions across the low-level interface (reading
and writing disk sectors) are usually required before the high-level operation
can be completed. In essence, what we are going to do is make the notion of
simulation more flexible and applicable by moving to the Kleisli category for a
certain monad.

There are at least three monads of interest: the reflexive closure, the tran-
sitive closure and the reflexive/transitive closure.

RC The functor RC (F ) = skip ∪ F is monadic. A morphism in the Kleisli
category from (S1, F1) to (S2, F2) is a linear simulation of (S1, F1) by(
S2,RC (F2)

)
, which we call an affine simulation of (S1, F1) by (S2, F2).

A step in (S1, F1) need not make use of a step in (S2, F2).

RTC ∗ is monadic. A morphism in the Kleisli category from (Sh, Fh) to (Sl, Fl)
is a linear simulation of (Sh, Fh) by (Sl, F

∗
l ), which we call a general sim-

ulation of (Sh, Fh) by (Sl, Fl). A step in (Sh, Fh) may make use of any
number of steps in (Sl, Fl).

TC The functor F+ = F # F ∗ is monadic. A morphism in its Kleisli category
is a linear simulation of (Sh, Fh) by

(
Sl, Fl

+
)
. It translates high-level

commands to low level programs that run for at least one step.

Proposition 9 RC ( ), + and ∗ are monads in LinSim and PT. We call
the Kleisli category of ∗ the category of general simulations and interaction
structures: GenSim. We write R : wh → wl for morphisms in this category
(i.e. wh → wl is a synonym for wh −◦ w∗l ).

Proof: We will work with interaction structures; the case of predicate trans-
former is very similar. Moreover, we only treat the case of the ∗ functor; the
other cases being similar.

Recall that an endofunctor M on a category C is a monad (in triple form) if
we have the following:

• an operation ] taking any f : C[A, M(B)
]

to an f ] : C[M(A), M(B)
]
;

• for any object A of C, a morphism ηA : C[A,M(A)
]

such that:

1. η # f ] = f ;

2. ηA
] = idM(A);

3. (f # g])] = f ] # g].

It is trivial to check that eq : w −◦ w∗; and the next proposition will show that
if R is a linear simulation of wh by w∗l then R is a linear simulation of w∗h by
w∗l . Thus we can put: R] ∆= R and η(S,w)

∆= eqS .
¤
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Lemma 5.3 Let wh and wl be two interaction structures on the sets Sh and Sl;
let R be a relation on Sh × Sl. The following are equivalent:

1. R is a linear simulation wh −◦ w∗l ;

2. for any sh ∈ Sh and ah ∈ Ah(sh):

R(sh) Cwl

⋃

dh∈Dh(sh,ah)

R
(
sh[ah/dh]

)
;

3. for any sh ∈ Sh and a′h ∈ A∗h(sh):

R(sh) Cwl

⋃

d′h∈D∗
h(sh,a′h)

R
(
sh[a′h/d′h]

)
.

Proof: In turn:
1⇔2 : simple consequence of proposition 6.
3⇒2 : follows from the observation that eqSh

is a linear simulation wh−◦w∗h.
2⇒3 : let sh ∈ Sh and a′h ∈ A∗h(sh); we do the proof by induction on a′h:

base case if a′h = exit, then we only need to show that R(sh) Cwl
R(sh),

which is trivially true since skip ⊆ w∗l .

induction case if a′h is of the form call(ah, fh), then we have:

• R(sh) C
⋃

dh
R

(
sh[ah/dh]

)
; (by point 1⇔2 of this lemma)

• for any dh ∈ Dh(sh, ah), by induction hypothesis, we have:

R
(
sh[ah/dh]

)
Cwl

⋃

d′h

R
(
sh[ah/dh][fh(dh)/d′h]

)

where d′h ∈ D∗
h(sh[ah/dh], fh(dh))

• since the RHS is a subset of
⋃

dh,d′h
R

(
sh[call(ah, fh)/(dh, d′h)]

)
we

can conclude (by monotonicity) that

R
(
sh[ah/dh]

)
Cwl

⋃

d′h

R
(
sh[a′h/d′h]

)

which, by transitivity, implies

R(sh) Cwl

⋃

d′h

R
(
sh[a′h/d′h]

)

¤

Corollary 3 We have: R is a linear simulation wh −◦ w∗l iff R is a linear
simulation w∗h −◦ w∗l .
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5.3 Saturation, equality of morphisms

We have argued that the category GenSim serves as a model for component
based programming. However, the notion of equality on morphisms is still too
strong. It may be that two general simulations differ extensionally though they
still have the same potential, or “simulative power”.

Definition 16 If R is a general simulation from wh to wl, we define the fol-
lowing relation R (the saturation of R) on Sh × Sl:

(sh, sl) ε R
∆= sl ε w∗l ·R(sh) .

This amounts to considering instead of functions R : Sh → Pow(Sl), functions
R : Sh → Sat(wl), where Sat(wl) is the collection of wl-saturated predicates.
(See lemma 3.1.)

The intuition behind saturation is the following. Suppose R is a relation
between low level states Sl and high level states Sh. The saturation of R is a
relation which allows “internal” or “hidden” low level interaction. To simulate
a high level state sh by a low level state sl, it is permissible that the Angel has
a program that constrains interactions starting in sl to terminate in states that
simulate sh.

We have:

Proposition 10 Let R be a general simulation of wh by wl, then R is also a
general simulation of wh by wl.

Proof: According to lemma 5.3, we need to show R(sh) C
⋃

dh
R

(
sh[ah/dh]

)
.

By lemma 5.3, we have R(sh) C
⋃

dh
R

(
sh[ah/dh]

)
and since w∗2 is a closure

operator, we have

w∗2
(
R(sh)

) ≡ R(sh) C
⋃

dh

R
(
sh[ah/dh]

)
.

For any dh, R
(
sh[ah/dh]

)
C R

(
sh[ah/dh]

)
which implies (still because w∗2 is a

closure operator)

R
(
sh[ah/dh]

)
C w∗2

(
R

(
sh[ah/dh]

)) ≡ R(sh[ah/dh]) .

Since the above is true for any dh, it implies that
⋃

dh

R
(
sh[ah/dh]

)
C

⋃

dh

R
(
sh[ah/dh]

)
.

We get the result by transitivity.
¤

Thus, saturation provides us with an appropriate “normalization” operation
when comparing general simulations: to compare two simulations, compare their
normal forms. So we put:

Definition 17 Let R1, R2 be two general simulations of wh by wl; we say that

• R2 is stronger than R1 (written R1 v R2) if R1 ⊆ R2;
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• R1 is equivalent to R2 (R1 ≈ R2) if R1 v R2 and R2 v R1.

The following is trivial: (point 3 follows from proposition 10).

Lemma 5.4 We have:

1. v is a preorder on the collection of general simulations from wh to wl;

2. ≈ is an equivalence relation;

3. R is (extensionally) the largest relation in the equivalence class of R;

4. the operation R 7→ R is a closure operation.

We can now conclude this section:

Proposition 11 (GenSim,v) is a poset enriched category.

Proof: The only thing we need to check is that composition is monotonic in
both its arguments.8

Let R1, R2 be two simulations of wh by wm and Q1, Q2 two simulations of
wm by wl such that R1 v R2 and Q1 v Q2. Suppose moreover that sh ∈ Sh;
we need to show that R1 #Q1(sh) ⊆ R2 #Q2(sh):

• we have R1(sh) ⊆ R2(sh) because R1 v R2;

• we also have
(
Q1 #R1

)
(sh) Cl

(
Q2 #R2

)
(sh):

let sl ε
(
Q1 #R1

)
(sh), i.e. (sm, sl) ε Q1 for some sm s.t. (sh, sm) ε R1. We

will show that sl Cl

(
Q2 #R2

)
(sh):

– Q2(sm) ⊆ (
Q2 #R2

)
(sh) since sm ε R1(sh) ⊆ R2(sh);

– sl ε Q2(sm) because Q1 v Q2 and sl ε Q1(sm); (since sl ε Q1(sm))

– so by monotonicity, sl ε
(
w∗l #Q2 #R2

)
(sh).

• From the last point, we get
(
w∗l #Q1 #R1

)
(sh) ⊆ (

w∗l #Q2 #R2

)
(sh);

• for any simulation R : w−◦w′∗, we have
(
w′∗ #R #w∗)(U) =

(
w′∗ #R)

(U):

⊆: because
(
R # w∗)(U) ⊆ (

w′∗ #R)
(U) and w′∗ is a closure operator;

⊇: skip ⊆ w∗ ⇒ w′∗ #R ⊆ w′∗ #R # w∗.
• So we can conclude:

R1 #Q1(sh) ≡ (
w∗l #Q1 #R1

)
(sh) ⊆ (

w∗l #Q2 #R2

)
(sh) ≡ R2 #Q2(sh) .

¤

6 The link with formal topology

Our title mentions both programming and formal topology. We now (at last)
turn to the topological meaning of our constructions. We start by recalling the
most basic notions of formal topology.

8This result, together with all the required lemmas has been formally checked using the
Agda system.
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6.1 Formal and basic topology

The aim of formal topology was to develop pointfree topology in a fully con-
structive (i.e. predicative) setting. Motivations for pointfree topology can be
found in [25]. Briefly, pointfree topology studies the properties of the lattice
of open sets of a topology, without ever mentioning points (hence the name).
Many traditional topological theorems are classically equivalent to a pointfree
version that can be proved constructively without the axiom of choice. Example
of such theorems include Hahn-Banach theorem, Heine-Borel theorem, or vari-
ous representation theorems (such as Stone’s). The idea is thus to factor out all
non-constructive methods into the proof that the pointfree version is equivalent
to the traditional theorem.

Basic topology amounts to removing the condition of distributivity of the
lattice of open sets. The result is a very concise and elegant structure which,
surprisingly enough, still contains the basic notions of topology (closed sets,
open sets and continuity). It is the basis of a modular approach to formal
topology in that one can add exactly what is needed in order to understand a
particular property.

Introductions to the subject can be found in [25, 43, 34, 38, 37, 15].

6.1.1 Basic topologies

See [14] for details.

Definition 18 A basic topology is a set S together with two predicate trans-
formers A and J on S such that:

• A is a closure operator;

• J is an interior operator;

• A and J are compatible:
A(U) G J (V )

U G J (V )
for all U, V ⊆ S.

The set S is intended to represent a base of the topology; and so, an element
s ∈ S will be called a formal basic open. A subset U of S is called open when
U = A(U); and a subset V of S is called closed when V = J (V ).9

A minimal requirement is that open sets [resp. closed sets] form a sup lattice
[resp. inf lattice]. This is indeed the case:

Lemma 6.1 If (Ui)i∈I is family of open sets, define
∨

i Ui = A( ⋃
i∈I Ui

)
; the

type of open sets with
∨

and ∩ is a lattice with all set-indexed sups.
If (Vi)i∈I is family of closed sets, define

∧
i Vi = J (⋂

i∈I Vi

)
; the type of closed

sets with
∧

and ∪ is a lattice with all set-indexed infs.

However, these lattices are generally speaking not distributive. (We will see a
way to add distributivity in section 6.1.3.) As a consequence there is no notion
of point in basic topology.10

9No mistakes: a formal open is closed in the sense of A; and a formal closed is open in the
sense of J ! See [35] for the justification.

10More precisely, without distributivity the notion of a point cannot be distinguished from
that of a closed subset!
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6.1.2 Formal continuity

See [15] for details.
Since a continuous function from (S1,A1,J1) to (S2,A2,J2) should map open
sets in (S2,A2,J2) to open sets in (S1,A1,J1), it cannot be represented directly
by a function from S2 to S1. A continuous function has to be represented by
a relation between S1 and S2. If f ⊆ S1 × S2 represents such a continuous
function, the intuitive, concrete meaning of (s1, s2) ε f is thus “s1 ⊆ f−1(s2)”,
where s1 and s2 are basic opens.

Definition 19 If (S1,A1,J1) and (S2,A2,J2) are basic topologies, and R a
relation between S1 and S2; R is continuous if the two conditions hold:

1. R∼
(A2(V )

) ⊆ A1

(
R∼(V )

)
;

2. R
(J1(U)

) ⊆ J2

(
R(U)

)
.

Equivalent characterizations are listed in [15]. It is worth noting that the two
conditions are in general independent.

By definition, two continuous relations R and T from S1 to S2 are (topo-
logically) equal if A(R∼s2) = A(T∼s2) for all s2 ∈ S2. The main purpose of
this definition is to remove dependency on the specific “base” of the topology
considered.

Basic topologies and continuous relations with topological equality form a
category which is called BFTop.

6.1.3 Convergent basic topologies

See [36] for details.
The above structure still lacks many properties found in “real” topologies; in
particular, the binary infimum need not distribute over arbitrary suprema. One
way to get distributivity is to add the following condition on the operator A:

Definition 20 Let A be a closure operator on a set S; write U ↓ V for the
subset

{
s | (∃s′ ε U) s ε A{s′} and (∃s′′ ε V ) s ε A{s′′}}. We say that A is

convergent if the following holds:

s ε A(U) s ε A(V )

s ε A(U ↓ V )
.

This condition is sometimes called summability of approximations: it gives a
way to compute the intersection of two open sets from their representatives. If
U and V represent the two open sets A(U) and A(V ),11 then U ↓ V represents
the intersection A(U) ∩ A(V ).

Lemma 6.2 If (S,A,J ) is a convergent basic topology, then its lattice of open
sets is distributive.

Proof: For any U ⊆ S, define U↓ =
{
s ∈ S | (∃s′ ε U) s ε A{s′}}. We have

U ↓ V = U↓ ∩ V ↓.
11It is a trivial observation that a subset is open iff it is of the form A(U).
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Let U be an open set and (Vi)i∈I a set-indexed family of open sets; i.e. we
have U = A(U) and Vi = A(Vi) for all i ∈ I.∨

i∈I U ∩ Vi

= { U and the Vi’s are open }∨
i∈I A(U) ∩ A(Vi)

= { convergence }∨
i∈I A(U ↓ Vi)

= { definition of
W

and easy lemma: ASA = AS }
A

( ⋃
i∈I U ↓ Vi

)

= { distributivity of ∩ and
S }

A
(
U↓ ∩⋃

i∈I

(
V ↓

i

))

=
A

(
U ↓ (⋃

i∈I Vi

))

= { convergence }
A(U) ∩ A

( ⋃
i∈I Vi

)

= { a union of open sets is an open set }
U ∩∨

i∈I Vi

which completes the proof that open sets do indeed form a frame.
¤

Traditionally, formal topologies are also equipped with a positivity predicate
called Pos. Its intuitive meaning is “s ε Pos iff s is non-empty”. This predicate
was required to satisfy the positivity axiom: (where U+ = U ∩Pos)

s ε A(U+)

s ε A(U)

which means that only positive opens really contribute to the topology.
The positivity predicate is now defined from J : Pos ∆= J (S), and the

positivity axiom is not required anymore. (Though it will hold in all examples
with a real topological flavor.)

In a convergent basic topology, we can define the notion of point: (see [15])

Definition 21 Let (S,A,J ) be a convergent basic topology; a subset α ⊆ S is
said to be a point if:

1. α is closed: α = J (α);

2. α is non-empty: α G α;

3. α is convergent: s1 ε α , s2 ε α ⇒ {s1} ↓ {s2} G α.

6.2 The topology of an interaction structure

Interaction structures can be viewed as an “interactive” reading of the notion
of inductively generated topology.
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6.2.1 Basic topology

Recall that if w = (A,D, n) is an interaction structure on S, propositions 4, 5
and 2 guarantee that:

• w∗ is a closure operator on the subsets of S;

• w⊥
∞ is an interior operator on the subsets of S.

We also have the execution formula (page 29):
w∗(U) G w⊥

∞(V )

U G w⊥
∞(V )

.

As a result, we put:

Definition 22 If w is an interaction structure on S, define:

Aw(U) ∆= w∗(U) ;
Jw(U) ∆= w⊥

∞(U) .

We have:

Lemma 6.3 If w : S → Fam2(S), then (S,Aw,Jw) is a basic topology.

In [9], the authors use the notion of axiom set to inductively generate a
formal cover. The difference between axiom sets and interaction structures is
merely that an axiom set is an element of the type S → Fam

(
Pow(S)

)
that

was mentioned on page 20.
If we look at the rules used to generate Cw, i.e. for w∗, we obtain:

• s ε U

s ε A(U)
exit;

• a ∈ A(s)
(∀d ∈ D(s, a)

) (
n(s, a, d) ε A(U)

)

s ε A(U)
call.

Those correspond exactly to the reflexivity and infinity rules used in [9] to
generate the cover “C”.

6.2.2 Continuous relations revisited

We argued above that (generated) basic topologies and interaction structures
are the same notions with different intuitions. We will now lift the notion of
continuity to the realm of interaction structures. The result is that in basic
topology, continuous relations are exactly general simulations (proposition 12
and lemma 6.5).
Before anything else, let’s prove a little lemma about the J operator:

Lemma 6.4 Suppose wh and wl are interaction structures, and R is a general
simulation of wh → wl. Then R∼ · Jl(V ) ⊆ Jh ·R∼(V ) for all V ⊆ Sl.

Proof: Suppose that V ⊆ Sl, (sh, sl) ε R and sl ε Jl(V ); we need to show
that sh ε Jh

(
R∼(V )

)
. Since Jh

(
R∼(V )

)
is the greatest fixpoint of the operator(

R∼(V )
) ∩ w⊥( ), it suffices to show that sh is in a pre-fixpoint of the same

operator. We claim that R∼(V ) is such a pre-fixpoint:
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• sh ε R∼(V ) because (sh, sl) ε R and sl ε Jl(V ) ⊆ V ;

• R∼(V ) ⊆ R∼(V );

• R∼(V ) ⊆ w⊥
(
R∼(V )

)
:

let sh ∈ R∼(V ) and ah ∈ Ah(sh); we need to find a dh ∈ Dh(sh, ah)
s.t. sh[ah/dh] ε R∼(V ).
By lemma 5.3, we know that sl ε Al

( ⋃
dh

R(sh[ah/dh])
)
, and because

sl ε Jl(V ), we can apply the execution formula to obtain a final state
s′l ε

⋃
dh

R(sh[ah/dh]) ∩ Jl(V ). In particular, there is a dh ∈ Dh(sh, ah)
such that s′l ε R(sh[ah/dh]).
Since s′l ε Jl(V ) ⊆ V , it implies that sh[ah/dh] ε R∼(V ).

¤
With this new lemma, it is easy to prove the following:

Proposition 12 Let wh and wl be two interaction structures, let R be a relation
between Sh and Sl; R is a general simulation wh → wl iff R∼ is a continuous
relation from (Sl,Al,Jl) to (Sh,Ah,Jh).

Proof: Suppose first that R∼ is continuous; the definition implies in particular
that R

(Ah(U)
) ⊆ Al

(
R(U)

)
for all U ⊆ Sh. By lemma 5.3, this implies that R

is a general simulation from wh to wl.
The converse is a direct application of lemma 5.3 and lemma 6.4. ¤

The category of basic topologies and continuous relation BFTop has a no-
tion of equality which is more subtle (though coarser) than plain extensional
equality of relations. Transposing it in our context we get: R ≈ Q if and only
if A(

R(sh)
)

= A(
Q(sh)

)
for all sh ∈ Sh.

Lemma 6.5 If R and Q are simulations, then R and Q are topologically equal
iff their saturations are extensionally equal. (R and Q have the same potential,
see page 37.)

6.2.3 Topological product

In section 4.6, we introduced a notion of binary “angelic tensor”, morally cor-
responding to the union of several interaction structures. This operation was
already defined in [9] (and probably in other places) as the product topology.
In particular, we have the two continuous projection relations.

Lemma 6.6 If w1 and w2 are two interaction structures, then the two following
relations

• π1 = {(s1, (s1, s2)) ∈ S1 × (S1 × S2)};
• π2 = {(s2, (s1, s2)) ∈ S2 × (S1 × S2)}

are (linear) simulations from wi to w1 ¯ w2 (for i = 1, 2); and a fortiori are
morphisms in all the categories considered.

If one interprets the sets S1 and S2 as (pre)bases, and C are the covering rela-
tion; it is clear that this corresponds indeed to the usual product of topologies.
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To make this statement precise would require a deeper analysis of continuous
relations in the context of convergent topologies.12

6.2.4 Extending the execution formula

The definition of basic topology places few constraints on theA and J operators.
Compatibility is a very weak requirement. On the other hand, the Aw and Jw

generated from an interaction structure w have a lot in common. In particular,
classically, Aw and Jw are dual: { # Aw = Jw # {; and the positivity axiom is
classically always true! It is thus natural to ask whether we can extend our
interpretation to take into account more basic topologies. It is possible if we
use different interaction structures to generate the A and the J :

Proposition 13 Suppose that R is a simulation of (Sh, wh) by (Sl, wl). Then

1. 〈R〉 · Jl · [R∼] is an interior operators on Pow(Sh);

2. Ah is compatible with 〈R〉 · Jl · [R∼].

i.e.
(
Sh , Ah , 〈R〉 · Jl · [R∼]

)
is a basic topology.

Proof: First point: 〈R〉 · Jl · [R∼] is an interior operator:

• 〈R〉 · Jl · [R∼](U) ⊆ 〈R〉 · [R∼](U) ⊆ U

• we have:
〈R〉 · Jl · [R∼](U) ⊆ V

⇒
[R∼] · 〈R〉 · Jl · [R∼](U) ⊆ [R∼](V )

⇒ { since U ⊆ [R∼] · 〈R〉(U) }
Jl · [R∼](U) ⊆ [R∼](V )

⇒ { Jl is an interior operator }
Jl · [R∼](U) ⊆ Jl · [R∼](V )

⇒
〈R〉 · Jl · [R∼](U) ⊆ 〈R〉 · Jl · [R∼](V )

This completes the proof that R∼ · Jl · [R∼] is an interior operator.

Second point: 〈R〉 · Jl · [R∼] is compatible with Ah.
Let sh ε Ah(U) and sh ε 〈R〉 · Jl · [R∼](V ), i.e. we have an s′l s.t. (sh, s′l) ε R
and s′l ε Jl · [R∼](V ). In particular, s′l ε R

(Ah(U)
)

and so s′l ε Al

(
R(U)

)
by

lemma 5.3.
We can apply the execution formula in wl to obtain a final state s′′l ε 〈R〉(U)
s.t. s′′l ε Jl · [R∼](V ), i.e. there is an s′h ε U s.t. (s′h, s′′l ) ε R, which implies that
s′h ε 〈R〉 · Jl · [R∼](V ).

¤
An interactive reading is that for interaction to take place, the Angel and

Demon do not need to use exactly same dialect. If the Angel uses wh and the
Demon uses wl, the Demon needs to interpret actions in wh in terms of actions
in wl, and the Angel needs to interpret reactions in wl in terms of reactions in

12i.e. one wants to prove that ¯ is a cartesian product in the category of “localized interac-
tion structures” (see definition 24 on page 46) with “convergent and total” general (see [15])
simulations.
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wh, i.e. we need to have a simulation from wh to wl. Note that because of the
respective roles of the Angel and Demon, one never needs to translate actions
from the Demon or reaction from the Angel.

In [42], Silvio Valentini investigates the problem of “completeness” of induc-
tively generated topologies. It might be interesting to investigate the operation
described above in this context.

6.3 Localization and distributivity

The basic topology obtained from an interaction structure is not in general dis-
tributive. One way to obtain distributivity is to add a condition of convergence
(page 40). In [9], the authors introduce the notion of “localized” axiom set
which gives rise to convergent basic topologies, i.e. formal topologies.

If w = (A, D, n) is an interaction structure, a preorder ≤ on S is said to be
localized if the following holds:

s′ ≤ s , a ∈ A(s) ⇒ s′ ε w

( ⋃

d∈D(s,a)

{s[a/d]} ↓ {s′}
)

This implies in particular that ≥ is a linear simulation.

Suppose that ≤ is localized; if we extend the generating rules with

s′ ε U s ≤ s′

s ε A(U)
≤-compat.

then the resulting lattice is distributive: this is one of the results of [9]. (The
rules were slightly more complex because they had to consider the positivity
predicate and the positivity axiom). Note that since ≤ is a preorder —and as
such, reflexive— this rule is a generalization of the reflexivity rule.

The preorder is intended to represent a priori the notion of inclusion between
basic opens. The smallest interesting preorder to consider is the following:
“s ≤ s′ iff s ε A{s′}”. This preorder is the saturation of the identity and it
appears implicitly in the definition of convergence.

The rest of this section is devoted to an analysis of the notion of localization
in the context of interaction structures, together with a tentative computational
interpretation. It culminates with an interpretation of the notion of formal
points in terms of server programs.

6.3.1 Interaction structure with self-simulation

The first step is to add a preorder on states, and to require it to be well-behaved
with respect to its parent interaction structure.

Definition 23 An interaction structure with self-simulation on S is a pair
(w, R) where

• w is an interaction structure on S;

• R is a general simulation from w to itself.
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Lemma 6.7 If R is a simulation from w to itself, then so is the reflexive tran-
sitive closure of R.

Proof: This is a direct consequence of the following facts: identities are sim-
ulations, simulations compose (proposition 8) and simulations are closed under
unions (proposition 7).

¤
As a result, without loss of generality we can assume the self-simulation to be a
preorder, and we call it “≥”, with converse ≤. The meaning of “s ≤ s′” is thus
“s simulates s′ in w”. We write {s}↓ for the segment (s ≥) (or (≤ s)) below
s ∈ S, and U↓ for the downclosure 〈≤〉(U) of U : Pow(S).
We have:

Lemma 6.8 s C V implies {s}↓ C V ↓.

Proof: This is just an application of proposition 6. ¤
Two extreme examples of such self simulations are:

• the empty relation, or the identity (its reflexive/transitive closure). This
is isomorphic to the case of normal interaction structures.

• R
∆= (Jw(S)× S)∪ (S ×Aw(∅)). The intuition is that (sD, sA) ε R iff the

Demon can avoid deadlocks from sD or the Angel can deadlock the Demon
from sA.13 Classically, this can be shown to be the biggest simulation
(i.e. it is the union of all simulations) on an interaction structure and
a fortiori, we have R = R∗ = R∗.

Remark. The second example can be seen as a constructive contrapositive of the
following fact:
Lemma 6.9 Let ≥ be a self-simulation on an interaction structure (A, D, n) on S;
suppose that s ≤ s′ (s simulates s′); we have:

• if the Demon can avoid deadlocks from s′ then he can also avoid deadlocks
from s (i.e. s′ n S ⇒ sn S);

• if the Angel can drive the Demon into a deadlock from s′, then she can do it
from s (i.e. s′ C ∅ ⇒ s C ∅).

Classically, the two points are equivalent.
The second simulation is (classically) equivalent to the one defined from those prop-
erties (i.e. (s, s′) ε R iff s′ C ∅ ⇒ s C ∅ iff s′ n S ⇒ sn S).

6.3.2 Interaction structures and localization

We now investigate the result of strengthening the condition to get full local-
ization.

Definition 24 Let (w,≥) be an interaction structure with self simulation on S;
we say that (w,≥) is localized if the following holds:

s1 ≤ s2 , a2 ∈ A(s2) ⇒ s1 Cw

⋃

d2∈D(s2,a2)

{s2[a2/d2]} ↓ {s1} .

13A Demon deadlock is a pair (s, a) such that D(s, a) = ∅.
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This condition is slightly more general than the one from [9] in the sense that it
considers general simulations rather than linear ones. Note also that in contrast
to the notion of convergence from definition 20, this definition doesn’t require
equality: {s}↓ is defined in terms of ≤.

First, we need a lemma.

Lemma 6.10 Suppose (w,≥) is localized on w; then we have:

s1 ≤ s2 , a′2 ∈ A∗(s2) ⇒ s1 Cw

⋃

d′2∈D∗(s2,a′2)

{s2[a′2/d′2]} ↓ {s1} .

This means that the additional condition is well behaved with respect to the
RTC operation. (This is analogous to point 3 of lemma 5.3; and indeed, the
proof is very similar.)
Proof: Suppose that s1 ≤ s2 and let a′2 ∈ A∗(s2). We work by induction on
the structure of a′2.

• if a′2 = exit, this is trivial.

• if a′2 = call(a2, k2): by localization, we know that

s1 C
⋃

d2

{s2[a2/d2]} ↓ {s1} .

Let s′1 ε
⋃

d2
{s2[a2/d2]} ↓ {s1}, in particular s′1 ≤ s2[a2/d2] for some

d2 ∈ D2(s2, a2). We can apply the induction hypothesis for s′1 ≤ s2[a2/d2]
and k2(d2) to obtain:

s′1 C
⋃

d′2∈D∗(s2[a2/d2],k2(d2))

{
s2[a2/d2]

[
k2(d2)/d′2

]} ↓ {s′1} .

We have
⋃

d′2∈D∗(s2[a2/d2],k2(d2))
⊆ ⋃

d′2∈D∗(s2,a′2)
and {s′1}↓ ⊆ {s1}↓ (be-

cause s′1 ≤ s1), which implies that the right hand side is thus included in⋃
d′2∈D∗(s2,a′2)

{s2[a′2/d′2]} ↓ {s1}. By monotonicity, we get

⋃

d2

{s2[a2/d2]} ↓ {s1} C
⋃

d′2∈D∗(s2,a′2)

{s2[a′2/d′2]} ↓ {s1} .

We get the result by transitivity.
¤

Lemma 6.11 If (w,≥) is a localized interaction structure, then s C U implies
s C U ↓ {s}.

Proof: Let s C U , i.e. there is a a′ in A∗(s) s.t.
⋃

d′∈D∗(s,a′) {s[a′/d′]} ⊆ U .
Since ≤ is reflexive, and by the previous lemma, we know that

s C
⋃

d′
{s[a′/d′]} ↓ {s} .

The RHS is obviously included in U ↓ {s}, so we get the result by monotonicity.
¤
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Corollary 4 If (w,≥) is a localized interaction structure, then U C V implies
U C U ↓ V .

We will now check that convergence is satisfied for such a (S,Aw,≤).

Proposition 14 If (w,≥) is a localized interaction structure, then s C U and
s C V jointly imply s C U ↓ V .

Proof: By lemma 6.11, we know that s C U ↓ {s}. By lemma 6.8 we know
that {s}↓ C V ↓, which implies U ↓ {s} C V ↓; which (by corollary 4) implies
(U ↓ {s})↓ C V ↓ (U ↓ {s}).

Since we have (U ↓ V )↓ = U ↓ V , we can deduce that

s C U ↓ {s} C U ↓ V ↓ {s} ⊆ U ↓ V .

¤
However, strictly speaking, the proof of lemma 6.2 doesn’t apply to the

preorder context. Instead, we have to match the operator generated by adding
the ≤-compat rule ( on page 45), and define:

Definition 25 if (w,≤) is an interaction structure with self simulation, we
write Aw,≤ for the predicate transformer U 7→ Aw(U↓), where U↓ is the down-
closure of U , i.e. U↓ ∆= {s | (∃s′ ε U) s ≤ s′}.
The intuition is quite straightforward: if s′ can simulate a state s (s′ ≤ s)
in U , then s′ is “virtually” in U as well. This is way to say that our notion of
simulation is semantically a real simulation.

Corollary 5 If w is an interaction structure and ≤ a localized preorder on S;
then the collection of open sets (i.e. the collection of U s.t. U = Aw,≤(U)) is
distributive.

6.3.3 Computational interpretation

In the last section we merely transposed the definitions from [9] to the context
of interaction structures. It is not however obvious how to make computational
sense of these definitions. We now present an analysis of the localization in
computational terms. The key idea is that to interpret localization, one needs
to adopt the perspective of the Demon (server, n operator), rather than that
of the Angel (client, C operator).

For example, the computational content of lemma 6.11 is that it is possible
for the Angel to conduct interaction in such a way that the behavior of the start-
ing state can always be recovered by simulation. The Angel takes care that she
can at any point change her mind, and abandon the current computation. An
example of a command which one would not have in such a system is “Reset”,
a command to brings the whole system back to factory settings. This would lose
all information about previous interactions, which is not possible in a localized
structure.

Thus, localization is a strong condition on interaction structures, requiring
them to be exceptionally well behaved.
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Remark. Note that the notion of “localization” for a game has little to do with
the notion of backtracking present in [7], where a game-theoretical interpretation of
classical logic is presented.

That the Angel is allowed to backtrack means that the Angel can “go back in the
past”. If the game is localized, then the Angel does not return to a previous state, but
plays in the current state “as if it were” the previous state. In particular, the Angel
retains the right to make moves in the current state.

There is a problem with interpreting the proof of proposition 14: a non-canonical
choice was made. In the proof, we decided to first execute the client correspond-
ing to s C U , and then the client corresponding to s C V on top of it. The
opposite works just as well:

s C V ↓ {s} C V ↓ U ↓ {s} ⊆ V ↓ U .

The two different witnesses for s C U ↓ V may be quite different in terms of
execution! Here is what happens in graphical terms:

s

U

V

ss

U

V

s

U↓ ∩ V ↓U↓ ∩ V ↓U↓ ∩ V ↓U↓ ∩ V ↓

On the left are the two client programs witnessing s C U and s C V ; and on
the right, the two different programs witnessing s C U ↓ V .

Even worse, when the programs corresponding to s C U and s C V are
non-trivial, we could interleave the programs before reaching U ↓ V !

To give computational sense to the notion of localization, consider a server
interacting with clients. We allow ourselves a degree of anthropomorphism, by
referring to what these parties “believe”.

Think of the self-simulation ≥ as a relation between “visible” or “virtual”
states for the client(s) and “internal” server states. Because this is a (general)
simulation, it is guaranteed that we can conduct interaction in the following
way:

1. if s′ ≤ s, i.e. the Angel believes the Demon is in a state s, but internally,
the Demon is really in a state s′ that simulates s;

2. the Angel sends a request a ∈ A(s);

3. the Demon does the following:

(a) translates the a ∈ A(s) into a a′ ∈ A∗(s′) (by simulation),

(b) responds to a′ with a d′ ∈ D∗(s′, a′) (because it is a server program),

(c) and translate this answer d′ into a d ∈ D(s, a) (by simulation);

4. The Angel receives the answer d ∈ D(s, a);
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5. the Angel now believes the new state is n(s, a, d) while internally, the
Demon is really in state n∗(s′, a′, d′) ≤ n(s, a, d) that simulates n(s, a, d);

In particular, after the last point, the Angel can continue interaction.
Localization can then be seen as the following requirement: suppose the

server is internally in a state s and that there are two clients who respectively
believe it is in state s1 and s2. The two clients can send their requests and the
server respond to them (as above) in any order. Suppose the server first responds
the first client. Then at point (a) in the analysis of client-server interaction
above, the server can chose some a′ which is constrained to bring about a state
s′[a′/d′] ≤ s1[a1/d1] (like above) and s′[a′/d′] ≤ s (by localization). The first
condition allows the first client to continue interaction, while the second point
(localization) guarantees that the server can also answer requests to the second
client (because s′[a′/d′] ≤ s ≤ s2)...

In other words, that an interaction structure is equipped with a localized
self-simulation means that we can construct “concurrent virtual servers” with
which several clients can interact independently.

One way to localize any interaction structure on S is the following: define
L(w) on Fin(S)14 as

L(w).A({ si | i ∈ I }) ∆= (Σ i ∈ I) w.A(si)
L(w).D({ si | i ∈ I } , (i, a)) ∆= w.D(si, a)
L(w).n({ si | i ∈ I } , (i, a), d) ∆= { si | i ∈ I } ∪ {s[a/d]}

with reverse inclusion as simulation order. (To define the inclusion order be-
tween families of states of course requires there to be an equality relation be-
tween states.) This interaction structure (L(w),≥) is automatically localized.

The idea is simply that the Demon keeps a log of all the previous states
visited during interaction, so that he can use any “past” state as the current
one.

Remark. To get a situation which is even closer to “real life”, one can define a
simulation R : w → L(w) with (s, l) ε R iff “s ε l” and use the extension from
section 6.2.4 to interpret interaction.

The idea is that the Demon advertizes a service specified by the interaction struc-
ture w; but internally implements L(w) in order to deal with concurent requests. The
clients are only supposed to use interface w.

Points. Now that the notion of localized interaction structure (aka formal
topology) has a computational interpretation, we can look at the notion of
formal point. Recall that a formal point in a formal topology on S is a subset
α ⊆ S such that (see [15])

• α is closed;

• α is non-empty (α G α);

• α is convergent, i.e. s ε α and s′ ε α imply that s ↓ s′ G α.

14where Fin(S) is the collection of finite subsets of S. Finite subsets are represented by
families indexed by a finite set (i.e. an integer).
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We have already described the computational interpretation of a closed sub-
set in section 4.5: the closed subset J (V ) is a specification for a server program
that can maintain V .15 That it is non-empty means that we actually have a
proof that sn α for some s, i.e. that we have a server program maintaining V
(from some specific state s).
Thus, a point is nothing more than a specification for a server program that
satisfies

• if s1 ε α (a client may connect in state s1)

• and if s2 ε α (a client may connect in state s2)

• then there is a(n internal) state s that simulates both s1 and s2 (since
s ε s1 ↓ s2) such that s ε α. In other words, the server can find an internal
state which will allow it to respond to both s1 and s2.

Formal points are thus “coherent” server program specifications in the sense
that they can satisfy any finite number of “unrelated” concurrent clients.

Continuous maps. A relation R between two localized interaction structures
wh and wl is called a continuous map if we have (see [15]):

• R is a general simulation from wh to wl;

• R is total: Sl Cwl,≤ R(Sh);

• R(s1) ↓R(s2) Cwl,≤ R(s1 ↓ s2).

Similar interpretation can be devised for continuous maps as for formal points,
but the relevance of this interpretation in terms of actual client/server program-
ming is still unclear. We prefer to leave the matter open for the time being.

7 Conclusion, and questions raised

We hope to have shown that much of basic topology has a natural interpretation
in programming terms. On reflection this is not surprising: programming is
essentially about “how to get there from here”, and this is a notion with a
topological flavor.

Our study of interaction structures began with the intention of clarifying
monotone predicate transformers such as those which model specifications in
imperative programming. We have defined a category in which the objects
represent command-response interfaces, and the morphisms represent program
components that implement one (higher-level) interface “on top of” other (lower-
level) interfaces. The category coincides with the category of basic spaces and
continuous relations. Closure and interior operators are related to server pro-
grams and client programs, and continuous maps to simulations of one server
“on top of” another. We have tentatively proposed a computational interpre-
tation of those notions of formal topology connected with convergence, and
particularly the notion of point.

15It is straightforward to extend the J operator to the case of interaction structures with
self simulations: Jw,≤(V ) = Jw(V ↑).
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We would also like to find topological counterparts of fundamental com-
putational notions. For example, safety properties are essentially the same as
closed sets; but what about fairness properties? For another example we have
seen that the notion of forward data refinement in programming is connected
with the notion of continuity (at least at the level of basic topology). From the
computer science literature, it is known that both forward data refinement and
backward data refinement are required for refinement of abstract data types
(see for example [13]). Similar completeness properties hold in approaches to
refinement based on functions and auxiliary variables rather than relations (see
for example the use of history and prophecy variables as in [1]). It seems in-
teresting therefore to ask whether backward simulation or the use of prophecy
variables has a topological interpretation.

Another line of work concerns the model of classical linear logic presented
in [23].

Finally, one hopes that the use of dependent theory type permits the expres-
sion of interface specifications with full precision —that is, going beyond mere
interface signatures. This might serve as a foundation for designing compo-
nents in real programming languages. Tools to aid design might be built on this
foundation. However examples of interfaces and simulations are needed both to
ensure that our model properly captures important properties of interfaces, and
also to find ergonomically smooth ways of working with simulations.
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Martin-Löf’s type theory. In Proceedings of the 1989 Conference on Cate-
gory Theory and Computer Science, Manchester, UK, volume 389 of LNCS.
Springer Verlag, 1989.

54



[34] Giovanni Sambin. Intuitionistic formal spaces—a first communication. In
Mathematical logic and its applications (Druzhba, 1986), pages 187–204.
Plenum, New York, 1987.

[35] Giovanni Sambin. The Basic Picture, a structure for topology (the Basic
Picture, I), 2001. Preprint n. 26, Dipartimiento di matematica, Università
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