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Université Savoie Mont Blanc, CNRS, LAMA, 73000 Chambéry, France.
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Abstract. This paper shows how to use Lee, Jones and Ben Amram’s size-change principle
to check correctness of arbitrary recursive definitions in an ML / Haskell like programming
language with inductive and coinductive types. Naively using the size-change principle
to check productivity and termination is straightforward but unsound when inductive
and coinductive types are nested. We can however adapt the size-change principle to
check “totality” [Hyv25], which corresponds exactly to correctness with respect to the
corresponding (co)inductive type.

1. Introduction

One of the goals of strong typing in languages like Caml or Haskell, and the heart of
Hindley-Milner type checking / type inference, is to catch a whole class of errors before
they actually happen: if a piece of code is accepted (at compile time), evaluation cannot
fail (at run time). Of course, the program can be incorrect but functions can only be
applied to arguments they are ready to accept. The dreaded results segmentation fault,
core dumped or NullPointerException are, in theory, a thing of the past. And even if, in
practice, bindings to libraries written in other languages allow such errors to creep back into
the language, this additional guarantee is a strong selling point.

In proof assistants based on type theory like Coq [The04] or Agda [Nor08], strong typing
is even more important as it implies consistency: no closed element of the empty type can
be defined. However, typing alone cannot prevent such ill-formed definitions as

val magic = magic

which is well-typed but belongs to all types. This recursive definition is for example valid in
Haskell and while languages like Caml or SML only allow recursive definitions for explicit
functions they accept the following variants
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(* Caml syntax *) (* SML syntax *)

# let rec magic x = magic x;; > val rec magic = fn x => magic x;

val magic : ’a -> ’b = <fun> val magic = fn: ’a -> ’b

Coq and Agda take different approaches to reject such definitions:

(1) Coq restricts a priori the syntax and type system so that only terminating functions can
be written,

(2) Agda forbids some definitions a posteriori by using an external termination checker.

Because the halting problem is undecidable [Tur36], the first approach cannot give a
Turing complete language. The language charity [CF92] takes a similar approach: recursion
is only available in the form of a typed combinators that enforce that some argument of the
recursive function is structurally decreasing.

In Agda however, unrestricted recursion is syntactically possible and as a programming
language, Agda is Turing complete. The termination checker warns about well-typed
definitions that may lead to non termination. The size-change principle [LJBA01, Hyv14] is
particularly well suited for this task. Note however that undecidability of the halting problem
now implies that the termination checker will reject some correct functions. One advantage
of this approach is that it is in theory easy to combine several termination checkers and that
this doesn’t impact the underlying type theory. The disadvantage is that the validity of a
recursive definition now depends on some external “oracle”.

In the presence of coinductive types like streams or infinite trees, the situation is more
complex because we need to prevent infinite computations by adding some laziness to the
evaluation. Both approaches can still be used, but the second becomes more complex.
In simple cases, checking that a definition is productive [Coq94]1 is enough to guarantee
termination and validity of the definition. Unfortunately, as shown by T. Altenkirch and N.
A. Danielsson [AD12, Section 5], checking termination and productivity independently is not
enough to guarantee that a recursive definition involving nested (co)inductive types is valid.

This paper presents a provably correct validity checker for recursive definitions in
a first order language. It relies on a characterization of mixed inductive / coinductive
types from a previous paper [Hyv25]. I have tried to make this paper as self contained as
possible but additional motivations and references to other works can be found there. The
resulting totality checker is based on the size-change principle and generalizes both standard
termination and productivity. It cannot deal with the full cornucopia of Agda’s dependent
types but possible extensions are mentioned in the conclusion.

1.1. chariot. chariot is the prototype language developed for experimenting with the
principle described in this paper.2 Simply put, chariot is a non-strict, first-order, strongly
typed, purely functional language. Like the Charity language [CF92, Coc96], chariot
has both standard inductive types and coinductive types. Implementation details for the
language chariot are irrelevant and most ideas can be found in standard references [PJ87].

1Productivity of a recursive definition means that when unfolding the definition, a coinductive constructor
is bound to be output in a finite time. Because of laziness, this implies that no computation can go on
forever. The syntactical notion of guardedness, i.e. that all recursive call appear directly below a coinductive
constructor is easily checked and implies productivity but is very restrictive.

2chariot is written in Caml and is freely available: https://github.com/phyver/chariot

https://github.com/phyver/chariot
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Unlike Charity, functions are defined by recursion with no restriction besides standard
Hindley-Milner type checking [Mil78]. Writing functions in chariot is thus closer to writing
functions in ML, Haskell or Agda than it is to writing functions in Charity or Coq.

Examples. The syntax was formally described in a previous paper [Hyv25] and won’t be
repeated. It should be readable by anyone familiar with Caml or Haskell. One thing to
remember is that inductive types are given by constructors while coinductive types are given
by destructors. Here are some examples that should give a taste of what chariot looks
like and what to expect from the totality checker. First, a simple example involving only
inductive types:

data nat where Zero : nat -- unary natural numbers
| Succ : nat -> nat

data list(’x) where Nil : list(’x) -- finite lists
| Cons : ’x -> list(’x) -> list(’x)

val length : list(x) -> nat

| length Nil = Zero

| length (Cons _ l) = Succ (length l)

The stream datatype is coinductive with destructors giving access to the head and tail of a
stream. We can define a stream using a record notation as in the nats definition below.

codata stream(’x) where Head : stream(’x) -> ’x -- infinite streams
| Tail : stream(’x) -> stream(’x)

val nats : nat -> stream(nat)

| nats x = { Head = x ; Tail = nats (Succ x) }

The definition of length is structurally decreasing and the definition of nats is syntactically
guarded. It should come as no surprise that they are accepted by the totality checker. The
next one is more interesting. The function adds the elements of each list in a stream of
lists using an accumulator that is reset for each list. This definition is a little ad hoc but
illustrates some strength3 of the totality checker.

val sums : nat -> stream(list(nat)) -> stream(nat)

| sums acc { Head = Nil ; Tail = s } =

{ Head = acc ; Tail = sums Zero s }

| sums acc { Head = Cons(n, l) ; Tail = s } =

sums (add acc n) { Head = l ; Tail = s }

where add is the usual addition of natural numbers. Even though it contains a non guarded
recursive call (the second one), the definition is still productive. Since the head of the stream
gets structurally smaller (it is a list), there can be no infinite sequence of consecutive calls
using only the second clause: the first clause must be used after a finite time, adding a
stream constructor to the result. This makes the definition productive.

As a last example, here is a non-total recursive definition that is nevertheless terminating
and productive [AD12].

data stree where Node : stream(stree) -> stree

val bad_s : stream(stree)

| bad_s = { Head = Node bad_s ; Tail = bad_s }

3For example, Agda doesn’t detect that this function terminates.
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Because the type stree is inductive without any base constructor, it is empty. The definition
of bad s is however well typed (for Hindley-Milner) and productive. It would unfold to a
stream of non well-founded infinitary trees. From there, it is easy to construct a “magic”
value having all types by recursing into bad s:

val lower_left : stree -> ’x

| lower_left (Node s) = lower_left (s.Head)

val magic : ’x

| magic = lower_left bad_s.Head

Note the important fact that the problem doesn’t come from lower left, which is trivially
total (it is structurally decreasing on an inductive type). It comes from the definition
of bad s, which will be rejected by the totality checker described in this paper.

Operational semantics. Totality is a property of the denotational semantics of a recursive
definition. Because of that, the operational semantics of chariot is not very important.
chariot uses a lazy evaluation of records, which is enough to guarantee that all computation
involving total functions and values are finite.

Restrictions. To simplify the presentation, we only consider the first order fragment of the
chariot language, with the following restrictions:4

• all functions are fully applied,
• all functions and constructors take exactly one argument,
• there are no mutually defined recursive functions,
• the empty record is forbidden in recursive definitions.

The last one is a little ad hoc but makes for a simpler theory. If we insist that all constructors
have a single argument, the empty record becomes the only atomic term. For example, the
constructor 0 must have type unit -> nat and is used as “Zero{}”. In recursive definitions
however, we can remove it:

• in the pattern-matching of a clause, it can be replaced by a fresh, dummy variable:
| f (Zero {}) = Succ ...

becomes
| f (Zero _x) = Succ ...

which has the same semantics;
• in the right hand side of a clause, it can be replaced by one of those dummy variables, and

| f (Zero {}) = Succ (Zero {})

simply becomes
| f (Zero _x) = Succ (Zero _x)

If no such dummy variable is present on the pattern matching side, we can rely on an
auxiliary ad hoc function

| g (Succ x) = Zero (empty_record x)

This function empty record, of type nat -> unit cannot be written in our fragment but
needs to be considered an outside library function that our test cannot inspect. Like all
such functions, we’ll only assume they are total.

With that in mind, the definition of length we actually deal with in this paper is

4Dealing with the full chariot language is possible at the cost of additional overhead.
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val length : list(nat) -> nat

| length (Nil _x) = Zero _x

| length (Cons{Fst=_; Snd=l}) = Succ (length l)

Because this transformation can easily be automatized, we will write some examples using
the unrestricted chariot language and rely on a preprocessor (the reader) to translate them
to the restricted syntax. This will help keep the example more familiar.

1.2. Recap of previous work. Values are built from structures and constructors but
because of coinductive types, they can be infinite [Hyv25].

Definition 1.1. The domain V (for “Values”) is defined coinductively by the grammar

v ::= ⊥ | C v | {D1 = v1; . . . ; Dk = vk}

where

• each C belongs to a finite set of constructors,
• each Di belongs to a finite set of destructors,
• the order of fields inside records is unimportant,
• k can be 0. (Empty records are legal values, they are only forbidden in recursive definitions.)

The order on V is inductively generated by

(1) ⊥ ≤ v for all values v,
(2) “≤” is contextual: if u ≤ v then C[x := u] ≤ C[x := v] for any value C with variable x,

where substitution is defined in the obvious way.

Contextuality, together with the fact that we generate an order, implies that comparing
records is done component wise: if u1 ≤ v1 and u2 ≤ v2, then

{D1 = u1; D2 = u2} ≤ {D1 = v1; D2 = u2} (contextuality, with C = {D1 = x; D2 = u2})

≤ {D1 = v1; D2 = v2} (contextuality, with C = {D1 = v1; D2 = x})

In many cases, compatible structures are simply not comparable, like {D1 = ⊥, D2 = {}}
and {D1 = {}, D2 = ⊥}.

Note that the set of values is defined coinductively but the order is defined inductively:
it is the least order subject to some conditions. Because of that, reasoning about inequalities
is usually done with standard inductive proofs.

Inductive types are interpreted by least fixed points and coinductive types are interpreted
by greatest fixed points [Hyv25], but in this case, they coincide in domains! A value in a
given type is total when it belongs to the appropriate fixed point in Set. For example, the
infinite value Succ∞ = Succ Succ Succ . . . is a valid element of V but is not total for the
type nat, whose Set-based interpretation only contains the finite natural numbers.

The main result of the previous paper [Hyv25] is an “untyped” characterization of
total values for a given type as winning strategies for a parity game constructed from the
type. This is done by tagging each type with a priority that is odd for datatypes and even
for codatatypes. Those priorities are taken from a parity game computed from the types
involved in the definition. For stream(nat) and stree, they are
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unit2

nat1

stream(nat)0

Head

Tail

Zero

Succ

stree1

stream(stree)0

Node Head

Tail

Note that the arcs for inductive constructors are reversed: the Node transition goes
from stree to stream(stree) whereas its type is stream(stree) → stree. The rea-
son is that terms are interpreted as strategies for the corresponding game, which entails
making the transitions deconstruct a term into its subterms.

The constraints are that datatypes [resp. codatatypes] have odd [resp. even] priorities
and that if type S is a sub-expression of type T , then the priority of S is greater than the
priority of T . Here, the priority of nat is indeed greater than the priority of stream(nat).
Because of that, priorities keep information about the type of fixed point (inductive or
coinductive type) and their nesting, which is important to distinguish between “inductive of
coinductive” and “coinductive of inductive” definitions. Values of type T correspond exactly
to strategies starting from T . The important result is the following.

Proposition 1.2 [Hyv25, Corollary 2.11]. A value v of type T is total iff the corresponding
strategy is winning for the associated parity game, i.e. if no branch of v contains ⊥ and
along all infinite branches of v, the maximal priority that appears infinitely often is even.

Constructors and destructors appearing in a definition can be tagged with the corre-
sponding priority during type checking.5 For example, the above definitions become:

val length : list1(x) -> nat1

| length Nil1 = Zero1{}

| length (Cons1{Fst0=_; Snd0=l}) = Succ1 (length l)

val nats : nat1 -> stream0(nat1)

| nats x = { Head0 = n ; Tail0 = nats (Succ1 x) }

val sums : nat1 -> stream0(list1(nat1)) -> stream0(nat1)

| sums acc { Head0 = Nil1 ; Tail0 = s } =

{ Head0 = acc ; Tail0 = sums (Zero3{}) s }

| sums acc { Head0 = Cons1 {Fst0 = n ; Snd0 = l} ; Tail0 = s } =

sums (add acc n) { Head0 = l ; Tail0 = s }

val bad_s : stream0(stree1)

| bad_s = { Head0 = Node1 bad_s ; Tail0 = bad_s }

For the simple case of nats, suppose n is a total natural number. The value generated
from nats n is

5Formally speaking, it is the record constructor (“curly bracket”) that is tagged with a priority. We
usually put the priority on fields for readability.
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{Head0=_; Tail0=_}

n {Head0=_; Tail0=_}

Succ1 n {Head0=_; Tail0=_}

Succ1 Succ1 n . . .

For the infinite branch {Tail0={Tail0={Tail0=...}}}, the maximal priority appearing
infinitely often is even. All other infinite branches would end with an infinite branch in n
which is supposed to be total. The value nats n is thus total in stream(nat).

Contrast this with the recursive definition using lists instead of streams:

val nats_list : nat3 -> list1(nat3)

| nats_list x = Cons1 { Fst0 = x ; Snd0 = nats_list (Succ3 x) }

Here, nats list n gives

Cons1

{Fst0=_; Snd0=_}

n Cons1

{Fst0=_; Snd0=_}

Succ3 n . . .

which contains the branch Cons1{Snd0=Cons1{Snd0=Cons1{Snd0=...}}} where the maximal
priority appearing infinitely often is odd. This value is not total, as expected.

The definition of bad s is non total because it unfolds to

{Head0=_; Tail0=_}

Node1

{Head0=_; Tail0=_}

Node1

…

{Head0=_; Tail0=_}

… …

{Head0=_; Tail0=_}

Node1

{Head0=_; Tail0=_}

… …

{Head0=_; Tail0=_}

Node1

…

{Head0=_; Tail0=_}

… …

with leftmost infinite branch

{Head0=Node1{Head0=Node1{...}}}

which is non-total.
For the rest of this paper, we assume the recursive definitions have been tagged with

priorities, i.e. that all constructor [resp. destructor] names come with an odd [resp. even]
priority. All other typing information has been removed and is irrelevant for totality.
Constructors and destructors used in values (Definition 1.1) also carry a priority.

Definition 1.3. An element v ∈ V is total if it doesn’t contain ⊥ and for all infinite branches
of v, the maximal priority appearing infinitely often in the branch is even.
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For any given list of recursive definitions, the set of priorities is finite, so that the
definition always makes sense. We usually call the “maximal priority appearing infinitely
often” the principal priority. By Proposition 1.2, those values correspond precisely to the
total values of the original type.

The usual semantics of a recursive definition is a function computed using Kleene’s
fixed point theorem. We call a function total if it sends total values to total values. This
paper describe a computable totality test taking a recursive definition as argument and
answering either “YES, the semantics of this definition is total” or “I DON’T KNOW whether
the semantics of this definition is total or not.” Since checking totality is undecidable,6

nothing more can be expected.

1.3. Plan of the Paper. We start by giving, in Section 2, an interpretation of recursive
definitions that is mathematically simpler than the ordered lists of clauses used in chariot.
Thanks to the characterization of mixed inductive / coinductive types [Hyv25] recalled in
Section 1.2, we can make this semantics untyped, which means we only have to consider a
single domain of values. The two steps necessary to define this interpretation are

• instead of only considering the first matching clause, we consider all of them and take
their non-deterministic sum,

• since a clause can now be applied to non matching value, we introduce a notion of error,
which is nothing more than the empty non-deterministic sum.

Note that errors (and general sums) are just an artifact produced by the totality checker.
They are not part of the chariot operational semantics, where Hindley-Milner type checking
is precisely meant to prevent their apparition.

Non-deterministic values are an instance the usual Smyth power domain, but interpreting
definitions and clauses requires more care and technicalities (Sections 2.3 and 2.4).

The resulting interpretation is still too complex: we thus split each clause of the recursive
definition into the sum of its recursive calls (Section 3.1). While going from the standard to
the non-deterministic sum left the semantics “mostly” unchanged, splitting a definition into
its call-graph results in a very different semantics. That’s not a problem because, as shown
in Proposition 3.8, this simplification reflects totality.

The last step before applying the size-change principle, detailed in Sections 3.2 and 3.3,
is to show how we can collapse the call-graph inside a finitary structure by introducing
approximations that forget about parts of the terms. Doing so in a consistent way introduces
subtle difficulties, like composition of terms becoming non-associative.

Everything is then in place to apply the size-change principle from C. Lee, N. Jones and
A. Ben-Amram [LJBA01]. This is done in Section 4.1.

The paper then gives detailed examples to show how the totality checker reaches its
conclusion and some remarks about the actual implementation of the totality checker.

6Recall that without coinductive types, totality is just termination.
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2. Non-Deterministic Semantics for Definitions

A chariot recursive definition is a complex object: an ordered set of clauses accepted by the
Hindley-Milner type checking algorithm. We first interpret them in a standard mathematical
structure (a domain) with a simple syntactical representation. The key ideas are to use a
non-deterministic (commutative) sum of untyped clauses to replace ordered set of clauses
and to allow runtime errors in the model.

2.1. Smyth Power Domain. A domain will be an algebraic DCPO. Basic definitions and
important results about domain theory are recalled in Appendix B. An important tool for
constructing domains is the ideal completion which transforms any partial order into an
algebraic DCPO whose compact elements are exactly the elements of the original partial
order. Refer to Appendix B for details.

The Smyth power domain construction [Smy78] adds a binary greatest lower bound
operation “+” to any domain. It is similar to adding arbitrary lower bounds for a partial
order by considering upper closed sets ordered by reverse inclusion: instead of taking all
upper closed sets, only some of them are used. Refer to Appendix C for some details and
additional references. The important point is that any element of the Smyth power domain
can be seen as a formal sum of elements of the starting domain, ordered by∑

i

ui ≤
∑
j

vj iff ∀j,∃i, ui ≤ vj .

Definition 2.1. Let S (for “Sums”, or “Smyth”) be the domain obtained from V by:

(1) taking the Smyth power domain construction over V,
(2) adding a greatest element 0, which can be identified with the empty sum.

Lemma 2.2. The greatest element 0 is neutral for “+”.

Proof. Note that adding 0 as a greatest element to a domain is always possible:

• 0 will be compact because any limit that doesn’t contain it exists in the original domain,
and is thus different from 0;

• a directed set containing 0 has 0 as a limit, and a directed set not containing 0 has a limit
in the original domain;

• any element different from 0 is the limit of the compact elements below it (because that’s
the case in the original domain) and since 0 is compact, it is the limit of the compact
elements below it.

That 0 is neutral for + is a direct consequence of + being the greatest lower bound operation.
Refer to Appendix C for details.

The domain S contains all the original values from V, which we call simple values. All
its elements are “formal” sums of elements of V . Those formal sums can be empty (0), unary
(simple values), finite (greatest lower bounds) or infinite. Only infinite sums that can be
obtained as limits of finite sums exist. For example, the sum of all maximal elements of nat,
i.e. Zero+ Succ Zero+ Succ Succ Zero+ · · · is the limit of

⊥ ≤ Zero+ Succ ⊥ ≤ Zero+ Succ Zero+ Succ Succ ⊥ ≤ . . .

However, the sum of all total elements of nat, i.e. the same sum without Succ∞ doesn’t
exist in V. Totality on S is defined in the expected way.
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Definition 2.3. An element t ∈ S is total if all its summands are total in V.

The value 0 will be used as the semantics for runtime errors. It may be surprising that
errors are total but because type checking precisely implies that those error never happen
when running actual programs, they can be seen as be artefacts introduced by the totality
checking mechanism.

As previously shown (Lemma 1.8, [Hyv25]), total elements of V are maximal. The next
lemma is a direct corollary and implies that totality is compatible with the pre-order on S:
if t1 ≈ t2, then t1 is total iff t2 is.

Lemma 2.4.

• If t1 ≤ t2 in S and if t1 is total, then so is t2.
• if f ≤ g in S → S (for the pointwise order) and f is total, then so is g.

Proof. Let t1 =
∑

T1 and t2 =
∑

T2. Writing X↑ for the upward closure of X, we have

t1 ≤ t2 iff T ↑
2 ⊆ T ↑

1 . If T1 is total, it only contains total elements and by Lemma 1.8

from [Hyv25], T ↑
1 = T1. As a result T ↑

2 only contains total elements and T2 only contains
total elements as well. The second point follows directly, as a total function is simply a
function sending total elements to total elements.

2.2. Recursion and Fixed Points.

A formula for fixed points. Whenever φ : D → D is a continuous function on a domain
and b ∈ D such that b ≤ φ(b), it has a least fixed point greater than b. This fixed point is
equal to (Kleene theorem)

fix(φ, b) =
⊔↑

n≥0

φn(b)

We are interested in fixed points of operators from [S → S] to itself and we require that all
functions satisfy f(0) = 0, i.e. that errors propagate. We write Ω for

v 7→ Ω(v) =

{
0 if v = 0

⊥ otherwise

All the fixed points we are computing are of the form

fix(φ,Ω) =
⊔↑

n≥0

φn(Ω)

with φ : [S → S] → [S → S]. They will simply be denoted by fix(φ). The following is a
direct consequence of Kleene’s formula.

Lemma 2.5. If Ω ≤ θ(Ω) and θ ≤ ϕ in [S → S] → [S → S], then fix(θ) ≤ fix(ϕ) in S → S.
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Non-deterministic semantics. We extend the standard semantics of chariot functions to
accept arbitrary values in V . Overlapping clauses introduce non-determinism and the empty
sum 0 naturally arises when no clause matches a value.

Recall that linear patterns are inductively generated by the following grammar

p ::= x | C p | {D1 = p1; . . . ; Dn = pn}

with the restriction that variables occur at most once. The standard semantics ([Hyv25,
Definition 1.10]) for a recursive definition of f is the fixed point of the following operator:

Θstd
ρ,f(f)

(
v
)
= Ju[p := v]Kρ,f:=f

where “f p = u” is the first clause from the definition of f where p matches v. When f is
of type A → B, its standard semantics is a function from the interpretation of A to the
interpretation of B.

The fact that we use the first matching clause means in particular that clauses are not
independent of each other: for example, the pattern

| f Zero = Zero

doesn’t necessarily say anything about the value of f on Zero, as it could come after

| f x = Succ Zero

One way to break this dependency on the order of clauses is to use non-determinism. Rather
than take the first matching clause, we take the sum of all clauses. Non matching clause
evaluate to 0 and do not contribute to the sum and non overlapping clauses do not interfere
with each other: at most one term is non 0. When there are overlapping clauses, some
information is lost. An extreme case would be

val f : nat -> nat

| f x = Zero

| f Zero = f Zero

The second clause is never used when evaluating f Zero because Zero matches the first
clause. With the non deterministic semantics, f Zero would evaluate to Zero + f Zero,
which would loop: the semantics of f Zero would thus be ⊥. Fortunately such example are
very rare in practice, and the advantages of this simplification more than compensate for
that. The concept of “operators” (Section 2.3) and call-graph (Section 3.1) are based on
this.

Formally, the standard semantics of some f of type A → B is extended to the whole
of S, which contains all terms: those in the interpretations of A, B and all possible types.

Definition 2.6.

(1) Given a linear pattern p and a simple value v, the unifier [p := v] is the substitution
defined inductively with
• [y := v] = [y := v] where the RHS is the usual substitution of y by v,
• [Cp := Cv] = [p := v],
• [{D1 = p1; . . . ; Dn = pn} := {D1 = v1; . . . ; Dn = vn}] = [p1 := v1] ∪ · · · ∪ [pn := vn]
(because patterns are linear, the unifiers don’t overlap),

• in all other cases, the unifier is the substitution giving 0 for all variables. Those cases
are:
– [Cp := C′v] with C ̸= C′,
– [{ . . . } := { . . . }] when the 2 records have different sets of fields,
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– [Cp := { . . . }] and [{ . . . } := Cv].
If only the first three cases are encountered when computing [p := v], we say that the
value v matches the pattern p.

(2) Given a recursive definition for f and an environment ρ for all other functions, define the
non-deterministic semantics Θndt

ρ,f : [S → S] → [S → S] as follows. Suppose f : S → S,
• Θndt

ρ,f (f)
(∑

v
)
=

∑
Θndt

ρ,f (f)(v).
• For v ∈ V a simple value, define

Θndt
ρ,f (f)(v) =

∑
f p = u

Ju[p := v]Kρ,f:=f

where the sum ranges over all clauses of the definition.
(3) The non-deterministic semantics of the function f is then fix

(
Θndt

ρ,f

)
: S → S.

Because there is no guarantee that v matches some clause of the definition, we can
have Θndt

ρ,f (f)(v) = 0. Even with matching clauses, this semantics does not necessarily
coincide with the standard one. For example, consider the following two definitions of the
halving function:

val half1 : nat -> nat

| half1 (Succ (Succ n)) = Succ (half1 n)

| half1 (Succ Zero) = Zero

| half1 Zero = Zero

and

val half2 : nat -> nat

| half2 (Succ (Succ n)) = Succ (half2 n)

| half2 n = Zero

Because patterns are disjoint in the first definition, the order of clauses is not important.
On natural numbers, the standard and non-deterministic semantics coincide. For the second
definition however, we get different semantics:

Θstd
half2(f)(Succ Succ n) = Succ(f(n))

̸=
Θndt
half2(f)(Succ Succ n) = Zero+ Succ(f(n))

The additional “Zero” comes from the interpretation of clause “half2 n = Zero” in the
definition of half2, which can be applied to the argument Succ Succ n.

To formally compare the two semantics, we extend typed functions to S.

Lemma 2.7. If f : JAK → JBK is a continuous function between the interpretations of 2

types, define f̂ : S → S by

• f̂
(∑

v) =
∑

f̂(v), where
∑

v is a sum of simple terms;

• f̂(v) =

{
f(v) if v ∈ JAK
0 if v /∈ JAK

where v is any simple term in S.

We have

• f̂ is continuous iff f is continuous,

• f̂ is total iff f is total.
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Extending functions in this way doesn’t change their standard (typed) fixed points or totality:

Lemma 2.8. For a definition of f of type A → B, an environment ρ and f : JAK → JBK,
let Θ̂std

ρ,f be the lifting of the usual semantics of f. We have

(1) Θstd
ρ,f(f) = Θ̂std

ρ̂,f(f̂) ↾ JAK (i.e. “the standard semantics is the restriction of its lifting”),

(2) fix(Θstd
ρ,f) = fix

(
Θ̂std

ρ̂,f

)
↾ JAK, (“the standard fixed point is the restriction of the lifted fixed

point”),

(3) if fix
(
Θ̂std

ρ̂,f

)
is total, then so is fix(Θstd

ρ,f).

Proof. The first point is straightforward as the lifting of a function gives the same (typed)
result as the unlifted function on typed values. The second point follows from Kleene’s

formula for computing the fixed point: each Θstd
ρ,f

n
(Ω) is equal to Θ̂std

ρ̂,f

n
(Ω) ↾ JAK, and their

limits are thus equal. The third point follows from the fact that outside their types, lifting
take the value 0, which is total.

Lemma 2.9. Given a recursive definition for f and environment ρ satisfying ρ(g) ≥ Ω for
all function names g, we have

(1) Ω ≤ Θndt
ρ,f (Ω),

(2) Θndt
ρ,f (f) ≤ Θ̂std

ρ,f(f) for any function f : S → S,

(3) If fix(Θndt
ρ,f ) : S → S is total then fix

(
Θ̂std

ρ,f

)
: S → S is total as well.

Proof. The first point is straightforward and the third point is a direct consequence of

Lemma 2.5 and Lemma 2.4. For the second point, the only places where Θ̂std
ρ,f and Θndt

ρ,f

differ are

• for values of the appropriate type, Θ̂std
ρ,f only uses the first matching clause while Θndt

ρ,f

takes the sum over all clauses,

• for values outside the appropriate type, Θ̂std
ρ,f returns 0.

In both cases, Θ̂std
ρ,f is greater than Θndt

ρ,f .

As a corollary, we can forget about the standard semantics and show totality of Θndt
ρ,f .

Corollary 2.10. For a definition of f of type A → B, if fix
(
Θndt

ρ,f

)
: S → S is total, then so

is fix
(
Θstd

ρ,f

)
: JAK → JBK.

2.3. Operators.

2.3.1. Terms. The operators Θndt
ρ,f are continuous functions from [S → S] to itself. This

section introduces an inductively generated language containing them.



14 P. HYVERNAT

Definition 2.11.

(1) O0 (for “Operators”) is the set of terms inductively generated from

t ::= Cpt | {D1 = t1; . . . ; Dn = tn}
p |

Cp-t | .Dpt |
f t | x |
Ωt |
t1 + · · ·+ tn

where n > 0, x is the only possible variable name and each f belongs to a finite set of
function names. Each C and D comes from a finite set of constructor and destructor
names and each p comes from a finite set of priorities (natural numbers). Those priorities
are odd for constructors and even for destructors.

(2) Sums can be empty, in which case they are written 0.
(3) Terms are quotiented by associativity, commutativity and idempotence of +, together

with (multi)linearity of all term constructors (C, {. . . ; D= ; . . . }, C -, .D, f, Ω).
(4) An element t ∈ O0 is called simple if it contains no sum (empty or otherwise).

Since all term constructors are linear, any term containing 0 and no other sum is
automatically equal to 0, which is not simple. The full semantics of terms will be given on
page 18, but in the meantime, it is helpful to keep the following in mind.

• Constructors Ct and {D1 = t1; . . . ; Dk = tk} construct values directly, just like in V or S.
• Destructors C-t and .D t deconstruct values (in V) respectively by:
– doing a pattern matching which fails if t doesn’t start with constructor C,
– projecting a structure on field D which fails if t is not a structure with field D.

• “ + ” is a non deterministic sum and the empty sum 0 represents an error.
• f, g, . . . are function names and are either the function being recursively defined or a
previously defined function meant to be replaced by a real function from the environment.

• Each t ∈ O0 represents a function depending on x.
• If we identify f as the recursive function being defined, each t ∈ O0 can be seen as a
function on [S → S] → [S → S], whose fixed point is what interests us.

• Ωt represents the function v 7→

{
0 if t(v) = 0

⊥ otherwise

Because of the interaction between projections, partial matches, constructors and records,
the order on O0 is more complex than on S.

Definition 2.12. The order ≤ on O0 is inductively generated from

• 0 is the greatest element: ∀t ∈ O0, t ≤ 0,
• contextuality: if C ∈ O0 is a context, then t1 ≤ t2 =⇒ C[t1] ≤ C[t2],

7

• Ωx ≤ x, and Ωx ≤ fx for each function name f,
• s+ t ≤ t,

together with the following inequalities (“u ≈ v” means “u ≤ v and v ≤ u”):

7Contexts are terms possibly containing a special variable □ and C[t] is the result of substituting □ by t.
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(∗)



(1) C-Ct ≈ t
(1) .Di0{ . . . ; Di = ti; . . . } ≥ ti0
(2) C-{ . . . } ≈ 0
(2) .DCt ≈ 0
(2) .D{ . . . } ≈ 0 if the record has no field D
(2) C-C′t ≈ 0 if C ̸= C′

(3) C-Ωt ≈ Ωt
(3) .DΩt ≈ Ωt
(3) ΩCt ≈ Ωt
(3) Ω{D1 = t1; . . . ; Dn = tn} ≥ Ωt1 + · · ·+Ωtn if n > 0
(3) ΩΩt ≈ Ωt

Groups (1) and (2) correspond to the intended operational semantics of the language.
Group (3) contains (in)equalities that hold semantically and will be justified a posteriori by
Definition 2.18 and Lemma 2.19.

Note in particular that projecting a structure on one of its fields (second inequality)
yields a smaller term. This accounts for the fact that projecting may “hide” errors that
could have occurred in other fields, as in

0 ≈ .D1{D1 = x; D2 = 0} (linearity)

≈ .D1{D1 = x; D2 = C
-C′...} (fourth rule (2))

≥ x (second rule (1))

Lemma 2.21 shows this is indeed the only possibility.
That the pre-order is “generated” from the above (in)equalities means that proving

properties of the order can be done by induction. Any s ≤ t either comes from an
(in)equality from the definition, or from reflexivity or transitivity. It is not obvious at first
but corollary 2.20 will show that ≤ doesn’t collapse to a trivial pre-order. Here are some
simple consequences of the definition.

Lemma 2.13. We have:

(1) If for all j, there is an i s.t. si ≤ tj, then
∑

i si ≤
∑

j tj,

(2) Ωs ≤ t iff Ωs ≤ Ωt,
(3) Ωt ≤ ΩC-t,
(4) Ωt ≤ Ω.Dt,
(5) for all t, Ωx ≤ t.

Proof.

(1) It is a direct consequence of contextuality and the fact that s+ t ≤ t. The special case
where

∑
j tj is the empty sum follows from the fact that 0 is the greatest element.

(2) Suppose Ωs ≤ t, we have ΩΩs ≤ Ωt by contextuality, and since ΩΩs ≈ Ωs, we
have Ωs ≤ Ωt. The converse is a consequence of transitivity and the fact that Ωt ≤ t.

(3) Because t ≥ Ωt, we have ΩC-t ≥ ΩC-Ωt by contextuality; and since C-Ωt ≈ Ωt, we
have ΩC-t ≥ ΩΩt ≈ Ωt.

(4) The third point is proved similarly.
(5) The last point is proved by induction on t:

• This is obvious if t = x.
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• If t = Ωt′, we have Ωx ≤ t′ by induction and the result follows from the first point.
• Similarly, if t is a sum, the result follows directly from the induction hypothesis.
• If t = Ct′, we have Ωx ≤ Ωt′ ≤ ΩCt′ by induction hypothesis and by definition. Using
the first point, this implies that Ωx ≤ Ct′.

• The same argument works when t = ft′.
• When t = C-t′ [resp. t = .Dt′], we can use the same argument, except that Ωt′ ≤ C-t′
[resp. Ωt′ ≤ .Dt′] comes from the second [resp. third] point.

• If t = { . . . ; Di = ti; . . . }, we have Ωx ≤ Ωti by induction hypothesis. This shows
that Ωx ≤

∑
iΩti ≤ Ω{ . . . ; Di = ti; . . . }, from which we conclude that Ωx ≤ t.

Because of inequality
∑

iΩti ≤ Ω{ . . . ; Di = ti; . . . }, the converse of point (1) doesn’t hold in
general and the resulting domain (Definition 2.22) is not a Smyth power domain. The next
lemma, a kind of dual to contextuality, might look obvious but isn’t completely immediate.

Lemma 2.14. If s1 ≤ s2, then s1[x := t] ≤ s2[x := t].

Proof. By induction on the proof of s1 ≤ s2. Most cases are trivial:

• If s1 ≤ s2 comes from reflexivity [resp. transitivity], we have s1[x := t] ≤ s2[x := t] by
reflexivity [resp. transitivity] using the induction hypothesis.

• If s2 = 0, then s2[x := t] = 0 as well so that s1[x := t] ≤ s2[x := t] by definition.
• If s1 = Ωx and s2 = x, we have Ω(s1[x := t]) ≤ s2[x := t] by contextuality. The
case s1 = Ωx and s2 = fx is similar.

• If s1 = u+ v and s2 = u, the result holds because u[x := t] + v[x := t] ≤ u[x := t].
• This is trivial for all (in)equalities from (*). For example, if s1 = .Di0{ . . . ; Di = ui; . . . }
and s2 = ui0 . By definition, we have s1[x := t] = .Di0{ . . . ; Di = ui[x := t]; . . . } and
similarly, s2[x := t] = ui0 [x := t]. Thus, s1[x := t] ≤ s2[x := t] by definition of ≤.

• The only interesting case is contextuality: suppose that s1 = C[s′1] and s2 = C[s′2]
with s′1 ≤ s′2. By induction hypothesis, we know that s′1[x := t] ≤ s′2[x := t]. A
straightforward induction on C shows that s′1[x := t] ≤ s′2[x := t] implies C[s′1][x := t] ≤
C[s′2][x := t] for all C, s′1, s

′
2, t.

Definition 2.15. The reduction relation → on terms is the contextual closure of the
left-to-right inequalities (∗) from Definition 2.12.

Lemma 2.16.

(1) If t → s then s ≤ t.
(2) The reduction → is strongly normalizing.
(3) Simple normal forms are given by the grammar

t ::= Cpt | {D1 = t1; . . . ; Dn = tn}
p | Ωδ | δ

δ ::= Cp-δ | .Dpδ | x | f t
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A typical normal form thus looks like, where t1, t2, are themselves in normal form

x f t1

Ω

x

Ω

f t2

constructors: { . . . ;D = _; . . . } or C

destructors: .D or C -

Proof of Lemma 2.16. The first point follows from the definition. Reduction is strongly
normalizing because the depth of the term decreases. For the third point, all terms generated
by the grammar are obviously in normal form. It is also straightforward to check that all
simple normal forms are generated by the grammar because:

• there cannot be a destructor (C - or .D) directly above a constructor (C or {. . . }),
• there cannot be a destructor (C - or .D) directly above Ω, nor a constructor (C or {. . . })
directly below Ω.

This reduction isn’t confluent because terms of the form “.D1{D1 = t1; D2 = t2}” can reduce
to t1 or to 0 if t2 reduces to 0.8

Lemma 2.17. Write nf(t) for the normal form of a term according to the “rightmost first”
reduction strategy. For any context and term, nf(C[t] = nf(C[nf(t)]).

Proof. This is a straightforward induction on the context C.

• If C starts with a constructor C, i.e. C is of the form CC ′, the result follows from
the induction hypothesis: since no reduction involves a constructor on the left, we
have nf(CC ′[t]) = C nf(C ′[t]) = C nf(C ′[nf(t)]) = nf(CC ′[nf(t)]).

• Reasoning is similar if C starts with a function name or a structure.
• The result is obvious if C is the placeholder variable, or x.
• If C starts with a destructor .D, i.e. C is of the form .DC ′, computing nf(C[u]) is done
by first computing v = nf(C ′[u]) and then reducing .D v. By induction hypothesis, we
have nf(C ′[t]) = nf(C ′[nf(t)]), so that reducing nf(C[t]) and nf(C[nf(t)]) give same results.

• Reasoning is similar if C starts with a destructor C- or a Ω.

2.3.2. Semantics. Both “.D” and “C-” have natural interpretations as continuous functions:

v : S 7→ .D(v) =


⊥ if v = ⊥
u if v is of the form { . . . ; D = u; . . . }

0 otherwise

and

v : S 7→ C-(v) =


⊥ if v = ⊥
u if v is of the form Cu

0 otherwise

This allows to define the semantics of any element of O0 as a function depending on x.

8It is however “almost” confluent in that a term can have at most one non-0 normal form. Lemma 2.21 is
a weaker version of that fact that is sufficient for our needs.



18 P. HYVERNAT

Definition 2.18. Let ρ be an environment giving, for each functions names, a continuous
function on S; let t be a simple term in O0. We define {|t|}ρ : S → S with

(0) {|t|}ρ (
∑

i vi) =
∑

i {|t|}ρ (vi), and in particular {|t|}ρ (0) = 0,

(1) {|Ct|}ρ (v) = C
(
{|t|}ρ (v)

)
,

(2) {|{D1 = t1; . . . }|}ρ (v) = {D1 = {|t1|}ρ (v); . . . },

(3) {|Ωt|}ρ (v) = Ω
(
{|t|}ρ (v)

)
=

{
0 if {|t|}ρ (v) = 0

⊥ otherwise,

(4) {|C-t|}ρ (v) = C-
(
{|t|}ρ (v)

)
,

(5) {|.Dt|}ρ (v) = .D
(
{|t|}ρ (v)

)
,

(6) {|x|}ρ (v) = v,

(7) {|g t|}ρ (v) = ρ(g)
(
{|t|}ρ (v)

)
.

{|_|} is extended to all terms in O0 by linearity.

Because Ω is the semantics of Ωx we sometimes write Ω for Ωx.

Lemma 2.19.

(1) If t1 ≤ t2, then {|t1|}ρ ≤ {|t2|}ρ; {| |}ρ is thus compatible with ≈.

(2) If ρ(g) is continuous for any g, then {|t|}ρ is also continuous.

(3) {|T |}ρ ≥ Ω. provided ρ(f) ≥ Ω for all function names,

(4) For all terms t1, t2 ∈ O0 and environment ρ, we have
{∣∣t1[x := t2]

∣∣}
ρ
= {|t1|}ρ ◦ {|t2|}ρ.

Proof. Checking the first points amounts to checking that all inequations from Definition 2.11
hold semantically in [S → S]. This is straightforward. The functions C -, .D and Ω are easily
shown continuous, {|t|}ρ is continuous as a composition of continuous functions. Points (3)

follows from linearity of {|t|}ρ, and point (4) is proved by immediate induction.

Corollary 2.20. The order ≤ on O0 is non trivial.

Proof. Any equivalence in O0 gives rise to an equality in S → S, which is non trivial.

Lemma 2.21. Suppose t1 → t2 and let v ∈ S, we have {|t1|}ρ (v) = {|t2|}ρ (v) or {|t1|}ρ (v) = 0.

Proof. This is straightforward:

• For C-Ct → t: if {|t|}ρ (v) = 0, then {|C-Ct|}ρ (v) = 0, and if {|t|}ρ (v) ̸= 0, then by

definition, {|C-Ct|}ρ (v) = {|t|}ρ (v).
• For .Di{ . . . ; Di = ti; . . . }→ ti: if some {|tj |}ρ (v) = 0 then {|.Di{ . . . ; Di = ti; . . . }|}ρ (v) = 0

as well and we have nothing to prove. Otherwise, {|.Di{ . . . ; Di = ti; . . . }|}ρ (v) = {|ti|}ρ (v).
• For Ω{ . . . ; Di = ti; . . . }→

∑
iΩti, both {|Ω{ . . . ; Di = ti; . . . }|}ρ (v) and {|

∑
iΩti|}ρ (v) can

only be equal to ⊥ or 0. The only way to make the lemma false would be by hav-
ing {|

∑
iΩti|}ρ (v) = 0 and {|Ω{ . . . ; Di = ti; . . . }|}ρ (v) = ⊥. This is impossible by point (1)

of the previous lemma.
• The other reduction rules are all treated similarly.

Definition 2.22. The domain O is the ideal completion of O0 quotiented by ≈.

This introduces infinite elements like C∞ = CCC · · · =
⊔↑{Ω, CΩ, CCΩ, . . . }. However,

since Ω ≈ .DΩ ≈ .D.DΩ ≈ . . . , we have .D∞ = .D.D.D · · · =
⊔↑{Ω, .DΩ, .D.DΩ, . . . } ≈ Ω.

Some infinite sums also appears but O is not a Smyth power domain because of inequalities



THE SIZE-CHANGE PRINCIPLE FOR MIXED INDUCTIVE AND COINDUCTIVE TYPES 19

of the form { . . . ; Di = ti; . . . } ≥ Ω{ . . . ; Di = ti; . . . } ≥
∑

iΩti. We can extend the semantics
of O0 to the whole O.

Definition 2.23. The semantics {|_|} is extended to O by continuity.

From now on, we single out a function name f as the recursive function whose definition
we are investigating.

Definition 2.24. Each T ∈ O gives rise to an operator JT K from [S → S] to itself:

JT Kρ : f : S → S 7→ JT Kρ (f) = {|T |}ρ,f:=f

The typical environment ρ is constructed inductively from previous recursive definitions and
will be omitted in the rest of the paper. In standard logical terminology, f is a variable,
but all other g are parameters. Note that dealing with mutually recursive definitions would
require the introduction of several function variables f1, f2, etc.

2.4. Interpreting Recursive Definitions.

2.4.1. Composition. Elements of O0 will be used to interpret individual clauses from a
recursive definition using Definition 2.24. To use Kleene’s formula, we need a notion of
composition. Given t1 and t2 in O0, we want to represent the composition Jt1K ◦ Jt2K. Using
standard λ-calculus notation, {|t|} is the semantics of λx.t, of type S → S and JtK the
semantics of λfλx.t, of type [S → S] → [S → S]. The composition of Jt1K and Jt2K should
thus be

Jt1K ◦ Jt2K = λf. Jt1K
(
Jt2K (f)

)
(definition of composition)

= λf.(λfλx.t1)
(
Jt2K (f)

)
(definition of Jt1K)

= λf.λx.t1
[
f := Jt2K (f)

]
(β reduction)

= λfλx.t1[f := λx.t2] (definition of Jt2K and η reduction)

= λfλx.t1[fu := (λx.t2)u] (because f is always fully applied)

= λfλx.t1
[
fu := t2[x := u]

]
=

q
t1
[
fu := t2[x := u]

]y
The composition of t1 and t2, as operators, is thus obtained by replacing each fu in t1
by t2[x := u]. The next definition implements that directly.

Definition 2.25. If t1, t2 ∈ O0, we define t1 ◦ t2 by induction on t1:

•
(∑

ti
)
◦ t2 =

∑
(ti ◦ t2),

• (Ct1) ◦ t2 = C(t1 ◦ t2),
• {D1 = t1; . . . ; Dk = tk} ◦ t2 = {D1 = t1 ◦ t2; . . . ; Dk = tk ◦ t2},
• (C-t1) ◦ t2 = C-(t1 ◦ t2),
• (.D t1) ◦ t2 = .D(t1 ◦ t2),
• (Ωt1) ◦ t2 = Ω(t1 ◦ t2),
• x ◦ t2 = x,
• (g t1) ◦ t2 = g(t1 ◦ t2) if g ̸= f,
• (f t1) ◦ t2 = t2[x := t1 ◦ t2].
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The only interesting case is the last one, where we replace f by t2 and continue recursively.
Because of that, we sometimes abuse the notation and write t1[f := t2].

Recall that to avoid introducing binders, we explicitly assume the argument of an
operator is the function with name f. In other words, the only free symbols in the syntax
are f and x. Any other function name g, h etc. is considered a parameter and is bound to
some function taken from an implicit environment.

Lemma 2.26. For any t1, t2, t3 ∈ O0, t1 ◦ (t2 ◦ t3) = (t1 ◦ t2) ◦ t3.
Proof. We first prove that t[x := t1] ◦ t2 = (t ◦ t2)[x := t1 ◦ t2] by induction on t:

• if t = x, this is immediate,
• if t starts with a constructor, record, destructor, non-recursive function g, or Ω, the result
follows by induction,

• if t = f t′, we have

(f t′)[x := t1] ◦ t2 = (f t′[x := t1]) ◦ t2
= t2[x := t′[x := t1] ◦ t2] definition of ◦
= t2[x := (t′ ◦ t2)[x := t1 ◦ t2]] induction

= t2[x := t′ ◦ t2][x := t1 ◦ t2]
= (f t′ ◦ t2)[x := t1 ◦ t2] definition of ◦

We can now prove that t1 ◦ (t2 ◦ t3) = (t1 ◦ t2) ◦ t3 by induction on any simple t1:

• if t = x, this is immediate,
• if t1 starts with Ω, a constructor, record or destructor, it follows by induction,
• if t1 = f t′1, we need to show that t2[x := t′1 ◦ t2] ◦ t3 = (t2 ◦ t3)[x := t′1 ◦ (t2 ◦ t3)]. By
induction, it is enough to show that t2[x := t′1 ◦ t2] ◦ t3 = (t2 ◦ t3)[x := (t′1 ◦ t2) ◦ t3)]. This
follows from the previous remark, with t = t2, t1 = t′1 ◦ t2, and t2 = t3.

Lemma 2.27. For any t1, t2 ∈ O0, Jt1 ◦ t2K = Jt1K ◦ Jt2K. If moreover, t2 doesn’t contain f,
we have {|t1 ◦ t2|} = Jt1K

(
{|t2|}

)
. In particular,{∣∣t ◦ · · · ◦ t︸ ︷︷ ︸

n

◦ Ωx
∣∣} = JtKn (Ω)

Proof. This is proved by induction. The only non trivial case is (f t1) ◦ t2 = t2[x := t1 ◦ t2]:
q
(f t1) ◦ t2

y
ρ
(f) =

{∣∣(f t1) ◦ t2∣∣}ρ,f=f
definition of J_K

=
{∣∣t2[x := t1 ◦ t2]

∣∣}
ρ,f=f

definition of ◦
= {|t2|}ρ,f=f ◦ {|t1 ◦ t2|}ρ,f=f point (4) of Lemma 2.19

= {|t2|}ρ,f=f ◦
(
Jt1 ◦ t2Kρ (f)

)
definition of J_K

= {|t2|}ρ,f=f ◦
(
Jt1Kρ ◦ Jt2Kρ (f)

)
induction

= {|t2|}ρ,f=f ◦
(
Jt1Kρ ({|t2|}ρ,f=f )

)
definition of J_K

= {|t2|}ρ,f=f ◦ ({|t1|}ρ,f={|t2|}ρ,f=f
) definition of J_K

= {|f t1|}ρ,f={|t2|}ρ,f=f
definition of {|_|}

= {|f t1|}ρ,f=Jt2Kρ(f)
definition of J_K

= Jf t1Kρ ◦ Jt2Kρ (f) definition of J_K

The second point is a direct consequence of the first point.
We also have
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Lemma 2.28. If t1 ≤ t2, then s ◦ t1 ≤ s ◦ t2 and t1 ◦ s ≤ t2 ◦ s.

Proof. The first inequality is proved by induction on s. The only interesting case is when s
starts with f.

(f s) ◦ t1 = t1[x := s ◦ t1] (definition)

≤ t2[x := s ◦ t1] (because t1 ≤ t2, by Lemma 2.14)

≤ t2[x := s ◦ t2] (by contextuality, because s ◦ t1 ≤ s ◦ t2 by induction)

The second inequality is proved by induction on s1 ≤ s2. The proof is very similar to the
proof of Lemma 2.14 and is omitted.

2.4.2. Interpreting Recursive Definitions. We can interpret the operator Θndt
f (defined on

page 11) by an element of O0. Consider a single clause “f p = u” of the recursive definition
of f. The pattern p allows to “extract” some parts of the argument of f to be used in the
right-hand side u. For example, the clause

| length (Cons { Fst = e ; Snd = l }) = ...

introduces 2 variables: e and l. If we call the parameter of length “x”, the variable e
can be obtained as e = .Fst Cons- x: we remove the leading Cons constructor and project
on field Fst. The variable l is obtained similarly with l = .Snd Cons- x. The following
definition formalizes that by defining, for any pattern p, a substitution [p := x] giving for
each variable of p, an element of O0.

Definition 2.29. Given a linear pattern p, define the substitution [p := x] as follows:

• [y := x] = [y := x] where the substitution on the right is the usual substitution of variable y
by variable x,

• [Cp := x] = [p := x] ◦ C-,
• [{ . . . ; Di = pi; . . . } := x] =

⋃
i([pi := x]◦.Di) (because patterns are linear, the substitutions

don’t overlap).

where ◦ represents composition. For example, σp ◦ C- = [. . . , y := σp(C
-y), . . . ].

As another example, consider the last rule from the sum function from page 6

| sums _ { Head = Cons {Fst = n ; Snd = l} ; Tail = s } = ...

If we call the second argument of sums “x”, the corresponding substitution is

[ n := .Fst Cons- .Head x; l := .Snd Cons- .Head x; s := .Tail x; ]

Lemma 2.30. If v ∈ V matches p (Definition 2.6), then [p := x] ◦ [x := v] = [p := v], the
unifier of p and v.

Proof. The proof is a simple induction on the pattern.

• When p = y is a variable, [p := x] is the substitution [y := x], and the unifier [p := v] is
the substitution [y := v]. The result is obvious.



22 P. HYVERNAT

• When p = Cp′ starts with a constructor, [Cp := x] = [p := x] ◦ C-. Because v must match p,
it is necessarily of the form Cv′, and the unifier [p := v] is equal to [p′ := v′]. We thus have

[p := x] ◦ [x := v] = [p′ := x] ◦ C- ◦ [x := Cv′]
= [p′ := x] ◦ [x := C-Cv′]
= [p′ := x] ◦ [x := v′]
= [p′ := v′] (induction hypothesis)

= [p := v]

• Reasoning is similar when p is a structure.

Any recursive definition can be interpreted by an element of O0 in the following way:

Definition 2.31. Given a recursive definition of f, define Tf with

Tf =
∑
f p = u

u[p := x]

where the sum ranges over all clauses from the definition of f.

For the length function, we get

Tlength = Succ length .Snd Cons
- x + Zero Nil- x

where the first summand corresponds to the first clause

| length (Cons Fst = _ ; Snd = l) = Succ (length l)

and the second summand corresponds to the second clause

| length (Nil _x) = Zero _x

Lemma 2.32. For any environment ρ, we have JTfKρ ≤ Θndt
ρ,f .

Proof. Given a value v and a clause f p = u, we have

• if p matches v, then

Ju[p := x]K (v) = Ju[p := x][x := v]K (Lemma 2.27)

= Ju[p := v]K

• if p doesn’t matches v, then

Ju[p := x]K (v) ≤ 0 (Definition 2.6)

= Ju[p := v]K (p doesn’t match v)

So that each summand of JTfK (v) is less than a summand of Θndt
f (v), proving the claim.

The inequality is strict in general because non-matching clause may introduce non-0
terms: for example, the clause

f ( Cons{Fst=Foo ; Snd = l}︸ ︷︷ ︸
p

) = Foo

doesn’t match the value v = Cons{Fst = Bar; Snd = ...}. The non deterministic Θndt
f (f)(v)

is thus 0. But because [p := x] = [l := .Snd Cons- x], we have Tf(v) = Foo. The reason is
that nothing about the closed pattern “Foo” is recorded in [p := x].

By Lemma 2.9, totality of fix(JTfK) implies totality of fix(Θndt
f ). Because of Lemma 2.4,

Lemma 2.5 and Lemma 2.27, we have
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Corollary 2.33. To check that fix(Θndt
f ) is total, is is enough to check that

fix(JTfK) =
⊔↑

n

JTfKn (Ω) : S → S

is total.

Together with Corollary 2.31, we finally get

Corollary 2.34. Given a recursive definition for f, we have that
⊔↑

n JTfKn (Ω) is total
implies that the usual semantics of f is total.

Recall that even though we haven’t written them, all constructors C/ {. . . ;D= ;. . . } and
destructors C -/ .D come with a priority and that totality is defined using those priorities
(Definition 1.3).

3. Call-Graphs and the Size-Change Principle

Except for a few minor differences, Tf is a faithful representation of the original recursive
definition. We now simplify each Tf into a disjoint sum of independent calls and show that
doing so reflects totality.

3.1. Call-Graphs.

3.1.1. Call Paths. By definition, composition of operators (Definition 2.25) is linear on the
left. When computing s ◦ (t1 + t2), each occurrence of f inside s is replaced by t1 + t2. By
linearity, this is a sum of terms where each occurrence of f inside s is replaced either by t1
or t2. For example, with s = ffx and t1 = gx, t2 = hx, we get9

ffx ◦ (gx+ hx) = (gx+ hx)[x := fx ◦ (gx+ hx)]
= (gx+ hx)

[
x := (gx+ hx)[x := x ◦ (gx+ hx)]

]
= (gx+ hx)

[
x := (gx+ hx)[x := x]

]
= (gx+ hx)[x := (gx+ hx)]

= g(gx+ hx) + h(gx+ hx)

= ggx+ ghx+ hgx+ hhx

To formalize that, we annotate each occurrences of f with its index and write f1f2x for ffx.

Lemma 3.1. We have

s[f := t1 + · · ·+ tn] =
∑

σ : occ(f,s)→{t1,...,tn}
s[σ]

where occ(f, s) represents the set of occurrences of f in s, and the substitution occurs at
the given occurrences. More precisely, s[σ] = s

[
fi := σ(fi)]

]
, which substitutes any fi t

appearing in s by σ(fi)[x := t].

9recall that f is the only free function name. Other names like g and h , written here in italics, are bound
parameters.
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Proof. This is a straightforward induction. The most interesting case is when s is the
structure { . . . ; Di = si; . . . }.

s[x := t1 + t2]

= { . . . ; Di = si; . . . }[x := t1 + t2]

= { . . . ; Di = si[x := t1 + t2]; . . . }

= { . . . ; Di =
∑

σi:occ(f,si)→{1,2} si[σi]; . . . } (induction hypothesis)

=
∑

i

∑
σi:occ(f,si)→{1,2} { . . . ; Di = si[σi]; . . . } (multilinearity)

=
∑

σ:occ(f,s)→{1,2} { . . . ; Di = si[σ]; . . . }

where the last equality comes from the fact that occ(f, s) is the disjoint sum of all
the occ(f, si).

In particular, if t =
∑

i ti is a sum of simple terms, then tn = t◦ · · · ◦ t has a very specific
shape. Each summand of tn is obtained by taking a summand of tn−1 and replacing each
occurrence of f by some ti. More formally:

Definition 3.2. Given t = t1 + · · · + tn a sum of simple terms, a path for t is a se-
quence (sk, σk)k≥0 such that:

• s0 = f x,
• sk+1 = sk[σk] where σk replaces each occurrence of f inside sk by some t1, . . . , tn.

If some sk doesn’t contain any occurrence of f, then all later sk+i are equal to sk. We call
such a path finite.

We usually omit the substitution and talk about the path “(sk)”.

Lemma 3.3. For any term t and natural number k > 0, we have

tk = t ◦ · · · ◦ t =
∑

(s) path of t

sk

Proof. Note that because, for any given k, there are only finitely many possible sk, this sum
is actually finite. Suppose that t = t1 + · · ·+ tn; the proof is by induction on k:

• if k = 1, t1 = t1+ · · ·+ tn, and each s1 in a path is of the form s0 = f x where f is replaced
by one ti, i.e. each s1 is of the form f x ◦ ti = ti. Conversely, each ti appears as some s1
for some path s.

• By definition, tk+1 = tk ◦ t, and tk is the sum of the sk for all path (s). The term tk+1

is thus equal to the sum over all path (s) of the sk[f := t]. By Lemma 3.1, those are
precisely the sk+1 of all path (s) of t.

We can use paths to compute fixed points.

Lemma 3.4. Suppose T = t1 + · · ·+ tn is a sum of simple terms, then⊔↑

n

T ◦ · · · ◦ T ◦ Ωx =
∑

(s) path of T

⊔↑

i≥0

si(Ω)

Note that the infinite sum makes sense because it is a limit of finite sums: for each i,
there are only finitely many possible si(Ω).

Proof. We start by showing that the left-hand side is greater than the right-hand side, i.e.
by showing that any simple term in the LHS is greater than some simple term on the RHS.10

10That’s the order on the Smyth power domain. Refer to Appendix C.
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Let s be a simple term in
⊔↑ Tn(Ω). We want to show that s is greater than some

⊔↑
i≥0 si(Ω).

For each n, T ◦ · · · ◦ T ◦ Ωx is a finite sum of elements of O0. Define the following tree:

• nodes of depth i are those summands t in T i satisfying t(Ω) ≤ s,
• a node t′ at depth i+ 1 is a child of node t at depth i if t′ is the result of substituting all
occurrences of f in t by one of t1, . . . , tn.

As there are only finitely many possible substitutions from a given node, this tree is finitely
branching. Because Tn(Ω) ≤

⊔↑
i T

i(Ω) = fix(T ) ≤ s, each Tn contains some simple term t
such that t(Ω) ≤ s. This tree is thus infinite. By König’s lemma, it contains an infinite
branch s0, s1, . . . . This sequence is a path of T and because all si(Ω) are less than s by
construction, its limit is less than s. We thus have⊔↑ Tn(Ω) ≥

∑
(s) path of T

⊔↑

i≥0

si(Ω)

For the converse, it is enough to show that for each path (s) and natural number n, the
limit of sk(Ω) is greater than Tn(Ω). This is immediate because each sk(Ω) is a summand
of T k(Ω).

Corollary 3.5. If ρ is a total environment and fix(JT K) is non-total, then there is a path (sk)
for T such that

⊔↑
i JsiK (Ω) is non total.

Proof. Suppose that fix(JT K) =
⊔↑

n JT Kn (Ω) is non total, then by Lemma 2.27 and the
previous lemma, there is a path of T that is non total.

3.1.2. Call-Graph. Part of the complexity of checking totality of recursive definitions comes
from the fact that clauses can contain nested recursive calls. The Ackerman function is a
well known (but useless) example. The call-graph turns a clause into the sum of its recursive
calls, making recursive calls “independent” from each other. As an illustration, consider the
following ad hoc clause

| f { D1 = y; D2 = z } = C (f (f y)

As described in the previous section, it is interpreted by

C
(
f
(
f .D1 x)

))
and contains 2 recursive calls (underlined).

It is clear that whenever this clause is used, it adds a C constructor just above the
leftmost recursive call, making it guarded. It is also clear that the rightmost recursive call is
structurally decreasing as it uses part of the initial argument x. We keep this information
and split this clause in two independent calls:

• the leftmost call gives “Cf(Ω .D1 x)”, which we write as f x ⇝ C f (Ω .D1 x):
– this call is guarded by C,
– we have no information about the arguments of f, except that it is 0 when .D1x is.

• the rightmost call gives “CΩf(.D1 x)”, which we write f x ⇝ C Ωf (.D1 x):
– besides a topmost C, we have no information about constructors directly above the call,
– the argument of f is built from part of the initial argument.
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In general, for each recursive call, we replace all other function calls (recursive or not) by Ω
(this is point (2) in the definition below) and we split structures into independent fields (this
is point (6) in the definition below). Visually:

G

 f

f
f

 =
f

+ f

Ω

+ Ω

f

Definition 3.6. Let t ∈ O0, the call-graph of t, G(t), is defined inductively as follows:

(1) G
(∑

t
)
=

∑
G(t),

(2) G(f t) = f
(
tΩ
)
+ΩG(t) where tΩ is t where all function calls have been replaced by Ω,

(3) G(g t) = ΩG(t) if g ̸= f,
(4) G(x) = 0,
(5) G(Cp t) = CpG(t),
(6) G

(
{ . . . ; Di

p = ti; . . . }
)
=

∑
i {Di = G(ti)}

p,
(7) G(C-t) = C-G(t),
(8) G(.D t) = .DG(t).

We write “f x ⇝ u” whenever u is a simple term in G(Tf).

For example, for t = C{Fst=f1 (C
- x); Snd = f2 (C (f3 x))}, we obtain

G(t) = C {Fst = f1(C
- x)}︸ ︷︷ ︸

first call

+ C {Snd = f2(CΩ x)}︸ ︷︷ ︸
second call

+ C {Snd = Ω C f3 x)}︸ ︷︷ ︸
third call

The following is a direct consequence of the definition.

Lemma 3.7. For each call f x ⇝ u, there is exactly one occurrence of f inside u.

For mutual recursive definitions (not treated here), this defines an actual graph:

• vertices are the function names,
• arcs from f to g are the calls f x ⇝ u where u’s only function name is g.

In general, the call-graph of T is not comparable to T . However, the construction reflects
totality.

Proposition 3.8. If fix(G(T )) is total then so is fix(T ).

Proof. Let T =
∑

ti is a sum of simple terms, and suppose fix(T ) is non-total. By
Corollary 3.5, it implies there is a path (sk) of T and a total element u ∈ V such
that

⊔↑ si(Ω)(u) ∈ V is non-total, i.e. contains a non total branch β. In particular, it
implies that no si(Ω)(u) reduces to 0. This branch β is either an infinite branch with odd
principal priority or a finite branch ending with ⊥.

The path (si) is infinite. Otherwise it becomes constant after a finite number of steps
and the limit can be obtained by a finite number of applications of total operations (including
the non recursive g, ...) on total values (including u).

At each step, we go from sk to sk+1 by replacing all occurrences of f by some ti. Suppose
the occurrences of f in T are indexed by natural numbers 1, . . . , n; we extend that indexing
to occurrences of f in all the (sk) using lists of natural numbers in {1, . . . , n}. For example,
let T = Cf1f2x+ .Df3f4x and consider the path that starts with:

f x, Cf1f2 x, CCf1f2.Df3f4 x, . . .
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The new indexing is

f[] x, Cf[1]f[2] x, CCf[1,1]f[1,2].Df[2,3]f[2,4] x, . . .

When we replace f[2] (in Cf[1]f[2]x) by .Df3f4x, we keep the “[2]” prefix in front of each new
occurrence of f, obtaining .Df[2,3]f[2,4]x. Formally,

(0) the only occurrence of f in s0 = f x is indexed by the empty list
(1) given k ≥ 0, the substitution σk replaces each occurrence fL in sk by some ti. Each

occurrence of f in sk+1 comes from a single occurrence fj in some summand of T . We
index such an occurrence by the list L, j.

An occurrence fL ∈ sk is called infinitary if the sk′ , for k′ ≥ k, contain infinitely many
occurrences of fL′ with L′ extending L. Otherwise, an occurrence is called finitary.

By the above remark, the occurrence f[] in s0 is infinitary. We construct, by induction,
an infinite sequence of infinitary occurrences f[], f[n1], f[n1,n2], . . . in the following way: at
each step k, choose nk ∈ {1, . . . , n} s.t.

(1) f[n1,...,nk] is infinitary (this is always possible because f[n1,...,nk−1] is infinitary),
(2) the branch leading to f[n1,...,nk] in nf(sk) starts with a prefix of β of maximal length.

At each step f[n1,...,nk] corresponds to the occurrence fnk
in T and is thus associated to a

single call αk in the sense of Definition 3.6. The limit
⊔↑

k α1 ◦ . . . ◦ αk(Ω)(u) is non-total:

• if for some k0, the occurrence f[n1,...,nk0
] in sk0 appears below a function call (recursive or

otherwise), all the compositions α1◦· · ·◦αk0 ◦· · · after step k will be of the form βk0δΩ(. . . )
where βk0 is a prefix of β and δ a sequence of destructors C -/.D, so that their semantics
on Ω and u will be equal to βk0⊥. (It cannot be equal to 0 as it would imply that sk is
also equal to 0.) The limits is thus equal to βk0⊥, which is non total.

• if for all k, the occurrence f[n1,...,nk] is only below a sequence of constructors C/{D �=_}
and destructors C -/.D, this sequence is of the form βkδk where each βk is a prefix of β,
and δk a sequence of destructors.
– If the βks are bounded by some βk0 , the limit of the compositions α1 ◦ · · · ◦ αk will be,

like above, equal to βk0⊥, which is non total.
– If the βks are unbounded, the limit of the compositions α1 ◦ · · · ◦ αk will be equal to β,
which is non total by hypothesis.

None of the compositions nf(α1 ◦ · · · ◦ αk)(Ω)(u) can be equal to 0, as it would imply
the corresponding sk(Ω)(u) is equal to 0 as well. By Lemma 2.21, we have constructed a
non-total branch in

⊔↑
k α1 ◦ · · · ◦ αk(Ω)(u): this shows that G(T ) is non-total.

3.2. Weights and Approximations. To use the size-change principle, compositions of
calls need to be bounded. In the definition of the length function, the only recursive call is

length x ⇝ Succ1 length (.Snd0 Cons1- x)

Composing it with itself n times gives

length x ⇝ Succ1 ... Succ1︸ ︷︷ ︸
n repetitions

length (.Snd0 Cons1- ... .Snd0 Cons1-︸ ︷︷ ︸
n repetitions of .Snd0 Cons1-

x)

which grows arbitrarily large! We introduce approximations to deal with that. When a term
grows too large, constructors are only counted; and if this counter becomes too big, we stop
counting. Everything is parameterized by two natural numbers defining what “too large”
and “too big” really mean.
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3.2.1. Weights. Simply counting constructors isn’t enough because we need to keep track of
their priorities.

Definition 3.9 (Weights). Define the following

(1) Z∞ = Z ∪ {∞} where addition is extended with w +∞ = ∞+ w = ∞ and the order is
extended with w ≤ ∞.

(2) Weights are tuples of elements of Z∞: W = ZP
∞ where P is the finite non-empty set of

priorities. This set is ordered pointwise with the reverse order of Z∞. Addition on W is
defined pointwise.

We define the following abbreviations:

• ⟨0⟩ = (0, . . . , 0),
• ⟨w⟩p for the weight (wq)q∈P with wp = w and wq = 0 if q ̸= p,

We surround weights with the symbols “⟨” and “⟩”, as in “⟨W ⟩” or “⟨W1 +W2⟩”.

Weights can count constructors and destructors (with negative elements of Z∞). The special
value ∞ is a way to stop counting when those numbers become too big. It does not mean
that there are infinitely many constructors. The next lemma is straightforward.

Lemma 3.10.

(1) Addition of weights is commutative, associative and monotonic,
(2) ⟨0⟩ is neutral for addition,
(3) any weight can be written (uniquely) as

∑
p∈P ⟨wp⟩p where P ⊆ P and each wp ∈ Z∞,

(4) whenever w1 ≤ w2 in Z∞, then ⟨w2⟩p ≤ ⟨w1⟩p in W (note the reversal).

3.2.2. Approximations. An approximation is defined as the sum of all simple terms it is
supposed to approximates. Defining that requires the following notions.

Definition 3.11. A “shape” ∆ ∈ O0 is a simple normal form (Lemma 2.16) which contains
neither functions names nor Ω.

(1) The set of branches of ∆ is defined inductively

branches(x) = {x}

branches
(
Cp∆

)
=

{
Cpβ | β ∈ branches(∆)

}
branches

(
.Dp∆

)
=

{
.Dpβ | β ∈ branches(∆)

}
branches

(
C-p∆

)
=

{
C-pβ | β ∈ branches(∆)

}
branches

(
{ . . . ; Di

p = ∆i; . . . }
)

=
⋃
i

{
{Di

p = β} | β ∈ branches(∆i)
}

(2) If β is a branch of ∆, the weight of β, written |β| ∈ W is defined with:
• |x| = ⟨0⟩,
• |Cpβ| = ⟨1⟩p + |β|,
• |.Dpβ| = ⟨−1⟩p + |β|,
• |C-pβ| = ⟨−1⟩p + |β|,
• |{D = β}p| = ⟨1⟩p + |β|.
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Definition 3.12 (Approximations).

(1) Given some W ∈ W, we put

⟨W ⟩x =
∑{

∆

∣∣∣∣ all branches β of ∆
satisfy |β| ≤ ⟨W ⟩

}
(2) Given t in O, we write ⟨W ⟩t for the corresponding sum of all ∆[x := t], for ∆ ∈ ⟨W ⟩x.

The typical summand of ⟨W ⟩t looks like:

t
t

β

|β| ≤ 〈W 〉, etc.

t

For example, the approximation ⟨⟨1⟩p⟩t contains, among others, the following summands:
{Foop = t}, {Foop = {Foop = t}} and {Fstp = t; Sndp = Cq-t}.

Lemma 3.13. Approximations are well defined elements of O.

Proof. This relies on the fact that there are only finitely many constructor and destructor
names.

Let W ∈ W, we want to show that ⟨W ⟩x can be obtained as the limit of a chain
of finite sums of simple elements of O. Given d ∈ N, define ⟨W ⟩x ↾ d ⊂ O0 as the set
obtained by truncating summands of ⟨W ⟩x at depth d. Truncating an element ∆ is done
by replacing subterms of ∆ at depth d by Ωx. For example, “A B C- x” truncated at
depth 2 gives “A B Ωx”. Because there are only finitely many constructors and destructors,
each ⟨W ⟩x ↾ d is finite. Moreover, ⟨W ⟩x is the limit of the chain

⟨W ⟩x ↾ 1 ≤ ⟨W ⟩x ↾ 2 ≤ · · ·
Indeed, each element of ⟨W ⟩x ↾ d+ 1 is either in ⟨W ⟩x ↾ d (when its depth is less than d),
or greater than an element of ⟨W ⟩x (when its depth is strictly greater than d). This shows
that ⟨W ⟩x is a limit of elements of O0.

This argument works unchanged when x is replaced by any term t.

Lemma 3.14. We have

(1) if W ≤ W ′ in W, then ⟨W ⟩t ≤ ⟨W ′⟩t,
(2) ⟨0⟩(t) ≤ t,
(3) ⟨W ⟩0 = 0
(4) ⟨W ⟩Cpt = ⟨W + ⟨1⟩p⟩t,
(5) ⟨W ⟩{D1 = t1; . . . ; Dk = tk}

p ≥ Ωt1 + · · ·+Ωtk,
(6) Cp-⟨W ⟩t = ⟨W + ⟨−1⟩p⟩t,
(7) .Dp⟨W ⟩t ≥ ⟨W + ⟨−1⟩p⟩t,
(8) Ω⟨W ⟩t ≥ Ωt,
(9) ⟨W ⟩Ωt ≥ Ωt,
(10) ⟨V ⟩⟨W ⟩t) ≥ ⟨V +W ⟩t.

Proof.
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(1) The first point is immediate once you recall the order on W is the reverse order on ZP
∞.

(2) The second point follows from the fact that t = x[t] is a summand of ⟨0⟩t.
(3) Because a summand ∆ of ⟨W ⟩x cannot contain empty structures by definition, it must

contain the variable x. Because of that, all summands ∆[0] contain 0 and are thus equal
to 0 by linearity.

(4) Suppose ∆[Cpt] is a summand in ⟨W ⟩Cpt. By defining ∆′ = ∆[Cpx], we have that ∆′[t] =
∆[Cpt] is a summand of ⟨W + ⟨1⟩p⟩t. This shows that ⟨W ⟩Cpt ≥ ⟨W + ⟨1⟩p⟩t. For
the converse, suppose ∆[t] is a summand in ⟨W + ⟨1⟩p⟩t. We put ∆′ = ∆[Cp-x] so
that ∆′[Cpt] ≥ ∆[t] is a summand in ⟨W ⟩Cpt. This shows that ⟨W ⟩Cpt ≤ ⟨W + ⟨1⟩p⟩t.

(5) This follows from points (8) below:

⟨W ⟩{D1 = t1; . . . ; Dk = tk}
p

≥ Ω⟨W ⟩{D1 = t1; . . . ; Dk = tk}
p (by definition of ≤)

≥ Ω{D1 = t1; . . . ; Dk = tk}
p (by points (9) below)

≥ Ωt1 + · · ·+Ωtk (by definition of ≤)

(6) By definition, any summand of Cp-⟨W ⟩t is also a summand of ⟨W + ⟨−1⟩p⟩t. This
implies that Cp-⟨W ⟩t ≥ ⟨W + ⟨−1⟩p⟩t. For the converse, let s = ∆[t] be a summand
in ⟨W + ⟨−1⟩p⟩t. Take C-pCp∆[t]: this is a summand of Cp-⟨W ⟩t which is equal to s. We
can conclude that s is greater than a summand of t, which implies that s ≥ ⟨W + ⟨−1⟩p⟩t.

(7) This is treated similarly, except the second inequality cannot be proved because re-
ducing .D{D = δt} yields δt, a smaller term (second inequality in group (1) in (∗) in
Definition 2.12).11

(8) Let s be a summand in Ω⟨W ⟩t; it is of the form Ω∆[t]. By contextuality, we have
that Ω∆[t] ≥ Ω∆[Ωt], and because Ω absorbs constructors on its right and destructors
on its left, we have that Ω∆[Ωt] →∗ Ωt. Because terms decrease during reduction, we
have that s ≥ Ωt, which implies that Ω⟨W ⟩t ≥ Ωt.

(9) We have that ⟨W ⟩Ωt ≥ Ω⟨W ⟩Ωt by definition of the order, and Ω⟨W ⟩Ωt ≥ Ωt by the
previous point (and contextuality). The result follows from transitivity.

(10) This is immediate.

3.2.3. Dual approximations. Inductive and coinductive types are dual to each other. Formally,
approximations should come in 2 dual flavors:

• one that guarantees that at least some number of constructors have been removed, used
to detect that the inductive argument to a recursive function gets smaller,

• one that guarantees that at least some some number of structures have been added, used
to detect that a recursive function is productive.

Approximations defined above corresponds to the first kind. Rather than having two

definitions ⟨W ⟩↑ and ⟨W ⟩↓, we simply use negative weights to deal with the second kind.
In each call f x ⇝ B f u, the branch B used for checking productivity uses “negated”
weights, while the term u uses the standard weights as defined in this section. Because calls
contain a single occurrence of f, there is no ambiguity as to which weights must be negated.

11We could add this equality for records with a single field, but it would add yet another case to all the
proofs involving the order, without any clear gain.
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3.3. Collapsing. To avoid unbounded compositions like the one shown on page 27 we need
to cut off compositions when they get too big. This is parameterized by 2 natural numbers:

• D ≥ 0 bounding the depth of terms,
• B > 0 bounding the finite weights of approximations.

Both bounds can be chosen independently for each recursive definition.

3.3.1. Calls. Approximations are already elements of O0, but they correspond to infinite
sums, which cannot be implemented directly. The following extends the syntax for O0 with
“built-in” approximations.

Definition 3.15. The set A0 (for “Approximated terms”) is defined inductively by

t ::= Cp t | {D1 = t1; . . . ; Dn = tn}
p |

Cp-t | .Dpt |
f t | x |
Ωt | ⟨W ⟩t |
t1 + · · ·+ tn

where n > 0, x is a fixed variable name and each ⟨W ⟩ is a weight. As previously, C and D
come from a finite set of constructor and destructor names, and their priorities come from a
finite set of natural numbers. They are respectively odd and even.

The order is defined as before, adding inequalities from Lemma 3.14:

Definition 3.16. The order on A0 is defined inductively using the same rules as the order
on O0 (Definition 2.12) together with some additional rules:

• if W ≤ W ′ in W, then ⟨W ⟩t ≤ ⟨W ′⟩t,
• ⟨0⟩t ≤ t.

and

(∗)



(4) ⟨W ⟩0 ≈ 0
(4) ⟨W ⟩Cpt ≈ ⟨W + ⟨1⟩p⟩t
(4) ⟨W ⟩{D1 = t1; . . . ; Dk = tk}

p ≥ Ωt1 + · · ·+Ωtk
(4) Cp-⟨W ⟩t ≈ ⟨W + ⟨−1⟩p⟩t
(4) .Dp⟨W ⟩t ≥ ⟨W + ⟨−1⟩p⟩t
(4) Ω⟨W ⟩t ≥ Ωt
(4) ⟨W ⟩Ωt ≥ Ω⟨W ⟩t
(4) ⟨V ⟩⟨W ⟩t ≥ ⟨V +W ⟩t

By Lemma 3.14, the order on approximations implies the order on their semantics in O.
We extend the reduction relation → to approximations.

Definition 3.17. Reduction on A0 extends reduction on O0 by adding rules, oriented from
left to right, for all inequalities in group (4).

Just like before (Lemma 2.16), we have

Lemma 3.18.

(1) If t → t′ then t ≥ t′.
(2) Reduction on A0 is strongly normalizing.
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(3) Normal forms are generated by the following grammar

t ::= Cpt | {D1 = t1; . . . ; Dn = tn}
p |

Ωδ | ⟨W ⟩δ | δ

δ ::= Cp-δ | .Dpδ | x | f t
The proof is just a slight extension of the proof of Lemma 2.16.

Recall that f x ⇝ u is a notation for u ∈ G(Tf). We extend this to approximations u.

Definition 3.19. A call from f to g is a 3-tuple consisting of

• a calling function name f,
• a called function name g,
• an approximation in normal form with the following shape:

g

_

_

x

_

x

_

x

b

t

destructors: .D or C -

nothing, or Ω, or 〈W 〉

destructors: .D or C -

constructors: { . . . ;D = _; . . . } or C

nothing, or Ω, or 〈W 〉

destructors: .D or C -

In particular, the approximated term contains exactly one occurrence of a recursive function
name, and no other function name. Such a call is written “f x ⇝ b g t”.12

Lemma 3.20. For any finite term T , G(T ) is a finite sum of calls.

3.3.2. Collapsing.

Definition 3.21. Given B > 0 ∈ N, the weight collapsing function ⌈ ⌉
B
replaces each

weight
∑

p ⟨wp⟩p (as in point (3) of Lemma 3.10) by
∑

p ⟨⌈wp⌉B⟩
p where

⌈w⌉
B
=


−B if w < −B

w if −B ≤ w < B

∞ if B ≤ w

To bound the depth, we add “⟨0⟩” below D constructors and above D destructors in the
calls. When reducing, those weights will absorb the constructors below D and the destructors
above D. For example, collapsing C1C2C3⟨W ⟩C-4C-5C-6C-7x (where all the constructors have the
same priority) at depth 2 gives

C1 C2︸ ︷︷ ︸
D=2

⟨0⟩ C3 ⟨W ⟩ C-4 C-5 ⟨0⟩ C-6 C-7︸ ︷︷ ︸
D=2

x →∗ C1 C2︸ ︷︷ ︸
D=2

⟨1 +W − 2⟩ C-6 C-7︸ ︷︷ ︸
D=2

x

12Since we don’t deal with mutually recursive definitions, f and g are equal in our case.
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The actual definition is a little tedious.

Definition 3.22. Let t be in normal form, given a positive bound D ∈ N, the depth
collapsing function _↾D absorbs constructors below D and destructors above D into weights:(

C t
)
↾i

def
= C

(
t↾i−1

)
if i > 0

{ . . . ; Dk = tk; . . . }↾i
def
= { . . . ; Dk = tk↾i−1

; . . . } if i > 0

δ↾i
def
= δ⇂D(

⟨W ⟩δ
)
↾i

def
= nf

(
⟨W ⟩

(
δ⇂D

))
t↾0

def
= nf

(
nf
(
⟨0⟩t

)
⇂D

)
(∗)

and the following are applied to normal forms(
⟨W ⟩δf t

)
⇂i

def
= ⟨W ⟩δ⇂if t↾D (†)(∗∗)(

⟨W ⟩δx
)
⇂i

def
= ⟨W ⟩δ⇂ix (∗∗)(

δCp
)
⇂i

def
= δ⇂i−1C

p(
δ.Dp

)
⇂i

def
= δ⇂i−1.D

p

δ⇂0
def
= δ⟨0⟩

Note the following.

• The clauses are not disjoint and only the first applicable one is used.
• The innermost normal form in clause (∗) ensures that the clauses (∗∗) cover all cases
(since weights absorb constructors on their right, ⟨0⟩t cannot start with constructors).
The outermost normal form in clause (∗) ensures the result is in normal form.

• Clause (†) allows to collapse both the branch above the call to f and the argument of f.
Because calls contain exactly one function name, this clause is used exactly once.

The following is obvious but depends on the fact that there are only finitely many
constructors / destructors.

Lemma 3.23. Given B > 0 and D ≥ 0, the image of
⌈
(_)↾D

⌉
B

is finite.

3.3.3. Composing calls.

Definition 3.24. Collapsed composition is defined by

β ⋄B,D α :=
⌈(
β ◦ α

)
↾D

⌉
B

Since the bounds are fixed, we usually omit them and write β ⋄ α.

Lemma 3.25. For any call α, β, we have

• ⌈α⌉
B
≤ α,

• α↾D ≤ α,
• β ⋄ α ≤ β ◦ α.

Proof.

• for ⌈α⌉
B
, replacing ⟨W ⟩ by ⟨⌈W ⌉

B
⟩ results in a smaller term by contextuality and the fact

that ⌈W ⌉
B
≤ W in W.
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• for α↾D , inserting some ⟨0⟩ results in a smaller term by contextuality and the fact
that ⟨0⟩t ≤ t. Normalizing can only make this smaller.

Unfortunately, unless B = 1 and D = 0, collapsed composition is not associative. For
example, using B = 2, the calls α = f x ⇝ ⟨1⟩ f x and β = f x ⇝ ⟨−1⟩ f x give
• β ⋄ (α ⋄ α) = f x ⇝ ⟨∞⟩ f x because ⌈⌈1 + 1⌉

1
+ (−1)⌉

1
= ⌈∞+ (−1)⌉

1
= ∞,

• (β ⋄ α) ⋄ α = f x ⇝ ⟨1⟩ f x. because ⌈1 + ⌈1 + (−1)⌉
1
⌉
1
= ⌈1 + 0⌉

1
= 1.

Fortunately, just like in previous work on termination [Hyv14] the next property will be
sufficient.

Lemma 3.26. If σn ◦ · · · ◦ σ1 ̸= 0, and if τ1 and τ2 are the results of computing σn ⋄ · · · ⋄ σ1
in two different ways, then τ1 and τ2 are compatible, written τ1 ¨ τ2. This means that there
is some τ ̸= 0 such that τ1 ≤ τ and τ2 ≤ τ .

Proof. Taking τ = σn ◦ · · · ◦ σ1 works, by repeated use of Lemma 3.25.

4. The Size-Change Principle

4.1. The Size-Change Principle. Putting Proposition 3.8, Corollary 3.5 and Lemma 2.33
together, we get

Corollary 4.1. If all infinite paths in G(Tf) have a total semantics, then the usual semantics
of f is total in every total environment.

Everything is now in place to apply the size-change principle from C. Lee, N. Jones and
A. Ben-Amram [LJBA01], whose goal is precisely to deduce some property of all infinite
paths of a graph from some property on its transitive closure. However, because collapsed
composition isn’t associative, we need a variant of the combinatorial lemma at the heart of
the size-change principle. The following lemma is a slight generalization of Lemma 2.1 from
previous work on termination [Hyv14].

Lemma 4.2. Suppose (O,≤) is a partial order, and F ⊆ O is a finite subset. Suppose
moreover that ◦ is a partial, binary, associative and monotonic operation on O and that ⋄ is
a partial, binary, monotonic operation on F satisfying

∀o1, o2 ∈ F, (o1 ⋄ o2) ≤ (o1 ◦ o2)
whenever o1 ◦ o2 is defined.13 Then every infinite sequence o1, o2, . . . of elements of F where
each finite o1 ◦ · · · ◦ on is defined can be decomposed into

o1, . . . , on0−1,︸ ︷︷ ︸
initial prefix

on0 , . . . , on1−1,︸ ︷︷ ︸ on1 , . . . , on2−1,︸ ︷︷ ︸ . . .

where:

• all the (. . . (onk
⋄ onk+1) ⋄ · · · ) ⋄ onk+1−1 are equal to the same r ∈ F ,

• r is coherent: there is some o ∈ O such that r, (r ⋄ r) ≤ o.

In particular,(
on0 ◦ · · · ◦ on1−1 ◦ on1 ◦ · · · ◦ on2−1 ◦ · · · ◦ onk−1

◦ · · · ◦ onk−1

)
≥ r ◦ r ◦ · · · ◦ r︸ ︷︷ ︸

k times

13In particular, o1 ⋄ o2 is defined whenever o1 ◦ o2 is.
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Proof. This is a consequence of the infinite Ramsey theorem. Let (on)n≥0 be an infinite
sequence of elements of F . We associate a “color” c(m,n) to each pair (m,n) of natural
numbers where m < n:

c(m,n)
def
= (...(om ⋄ om+1) ⋄ · · · ) ⋄ on−1

Since F is finite, the number of possible colors is finite. By the infinite Ramsey theorem,
there is an infinite set I ⊆ N such all the (i, j) for i < j ∈ I have the same color r ∈ F .
Write I = {n0 < n1 < · · · < nk < · · · }. If i < j < k ∈ I, we have:

r = (...(oi ⋄ oi+1) ⋄ · · · ) ⋄ oj−1

= (...(oj ⋄ oj+1) ⋄ · · · ) ⋄ ok−1

= (...((...(oi ⋄ oi+1) ⋄ · · · ) ⋄ oj) ⋄ · · · ) ⋄ ok−1

The first two equalities imply that

r ⋄ r =
(
(...(oi ⋄ oi+1) ⋄ · · · ) ⋄ oj−1

)
⋄
(
(...(oj ⋄ oj+1) ⋄ · · · ) ⋄ ok−1

)
If ⋄ is associative, this implies that r ⋄ r = r. If not, we only get that both r and r ⋄ r are
smaller than oi ◦ · · · ◦ oj−1 ◦ oj ◦ · · · ◦ ok−1.

Definition 4.3. Let G be a call-graph. Start with G1 = G and define the edges of Gn+1 to
be those of Gn, together with:

if σ and ρ are edges from f to g and from g to h in Gn, then ρ ⋄ σ is a new
edge from f to h in Gn+1.

Finiteness of the set of bounded terms guarantees that this sequence stabilizes on some
graph, written G∗, called the transitive closure of G.

We can now state and prove correctness of the size-change principle. We extend the
notions of branch and weight (Definition 3.11) with a new clause to deal with approximations:

• |⟨W ⟩δ| = ⟨W ⟩+ |δ|.

Theorem 4.4 (size-change principle). Suppose every loop σ = f x ⇝ b f u in G∗ that
satisfies σ ¨ σ ⋄ σ (“σ is coherent”) also satisfies one of the following two conditions:

(1) either there is an even priority p such that:
- the p component of weight |b| is strictly negative,
- for all q > p, the q component of |b| is positive;

(2) or there is a branch β of u and an odd priority p such that:
- the p component of weight |β| is strictly negative,
- for all q > p, the q component of |β| is positive;

then fix(G) is total.

Proof. By Lemma 3.4, we only need to check that infinite paths are total. Let (sk) be an
infinite path of G. If any prefix composes to 0, the corresponding path is total. If no prefix
composes to 0, we can use Lemma 4.2: such a path can be decomposed into

t0, t1 . . . tn0 . . . tn1 . . . tn2 . . .

where:

• all the tnk+1−1 ⋄ · · · ⋄ tnk
are equal to the same t = f ⇝ b f u,

• t is coherent : t ⋄ t ¨ t.

In particular, we have tnk+1−1 ◦ · · · ◦ tnk
≥ t.
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Suppose that t satisfies the first condition. If we write T0 for t0 ◦ · · · ◦ tn0−1, we have⊔↑

k

sk(Ω) =
⊔↑

k

t0 ◦ t1 ◦ · · · ◦ tk(Ω)

≥
⊔↑

j

T0 ◦ t ◦ · · · ◦ t︸ ︷︷ ︸
j times

(Ω)

=
⊔↑

j

T0 ◦ (bf u)j(Ω)

≥
⊔↑

j

T0 ◦ (bfΩ)j(Ω)

=
⊔↑

j

T0 ◦ bjΩ

≥ T0 ◦
⊔↑

j

bjΩ

where bj is simply b b . . . b.
Now, for any simple value v, bkΩ(v) is either 0 or has at least k constructors of

priority p = 2q coming from bk above any constructor coming from v. At the limit, there
will be infinitely many constructors of priority p = 2q, all coming from b. Because b doesn’t
add constructors of priority greater than p = 2q, the limit will be total.

Dually, if t satisfies the second condition. We have⊔↑

k

sk(Ω) =
⊔↑

k

t0 ◦ t1 ◦ · · · ◦ tk(Ω)

≥
⊔↑

j

T0 ◦ tj(Ω)

=
⊔↑

j

T0 ◦ (b f u)j(Ω)

≥
⊔↑

j

T0 ◦ (Ω f u)j(Ω)

=
⊔↑

j

T0 ◦ (Ω f uj)(Ω)

≥ T0 ◦
⊔↑

j

Ωuj

where uj is obtained by replacing all x in uj−1 by u: uj = u[x := uj−1]. By hypothesis, u
contains a branch β and there is an odd p s.t. |β|p < 0, so that uj contains a branch ββ . . . β.
Such a branch globally removes at least j constructors of priority p = 2q + 1 and doesn’t
remove constructors of greater priority. If v is a total value, then each uk(v) can only be
non-0 if v contains at least k constructors of priority p = 2q + 1 and no constructors of
greater priority. At the limit, the only values such that

⊔↑
k u

k(v) are non-0 are values that
contain a branch with an infinite number of constructors of priority p = 2q + 1 and no
constructor of priority greater than p. This is impossible for total values!

Note that in both the first and second case, the branch usually contains approximations,
so that while we may not know exactly which constructors are added (in the first case) or
removed (in the second case), nor have an exact count, we have a bound of how many are
added / removed, which is enough for the argument.
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4.2. Examples. Let’s apply Theorem 4.4 to the examples from the introduction. With
explicit priorities, the definition of nats is

val nats : nat -> stream(nat)

| nats x = { Head0 = x ; Tail0 = nats (Succ1 x) }

The call-graph contains a single call σ = nats ⇝ Tail0 nats Succ1 x. If we use the
bound D = B = 1, a single step is necessary to build the transitive closure:

• the first composition σ ◦ σ = nats ⇝ Tail0 Tail0 nats (Succ1 Succ1 x) collapses14

to ρ = σ ⋄ σ = nats ⇝ Tail0 ⟨−1⟩0 nats (Succ1 ⟨∞⟩1 x),
• after that, all compositions are equal to ρ.

The term ρ satisfies the first property of Theorem 4.4. By Lemma 4.2, all infinite compositions
of σ eventually reduce to an infinite composition of ρ. But the only infinite branch resulting
from an infinite composition of ρ is “Tail0Tail0. . . ”, which has even principal priority. The
recursive definition is total. Note that taking D = 0, B = 1 would have worked just as well.

In general, the infinite composition of ρ could also contain infinite branches coming
from the argument x but since totality of a function only depends on its values on total
arguments, we can suppose all infinite branches coming from x have even principal priority.

The length function has a call-graph with a single call:

σ = length x ⇝ Succ1 length (.Snd0 Cons1- x)

With B = 1 and D = 0, the transitive closure is reached after one step. Besides σ, it contains

ρ = σ ⋄ σ = length x ⇝ ⟨−1⟩1 length (⟨⟨−1⟩0 + ⟨−1⟩1⟩ x)

The call ρ is coherent. It doesn’t satisfy the first property of Theorem 4.4 but the second. By
Lemma 4.2, infinite compositions of ρ remove an infinite number of constructors/destructors
of priorities 0 and 1 from the argument, as seen in the weight ⟨⟨−1⟩0 + ⟨−1⟩1⟩. (Those
correspond to Succ1 and .Snd0.) As a result, any argument leading to infinite compositions
cannot be total. The recursive definition is total.

The definition of bad s has two recursive calls:

val bad_s : stream(stree)

| bad_s = { Head0 = Node1 bad_s ; Tail0 = bad_s }

Its call-graph contains σ1 = bad s ⇝ Head0 Node1 bad s and σ2 = bad s ⇝ Tail0 bad s.
For B = D = 1, the transitive closure stabilizes after one step, and it contains 3 calls
besides σ1 and σ2:

• ρ1,1 = σ1 ⋄ σ1 = σ1 ⋄ σ2 = bad s ⇝ Head0 ⟨⟨−1⟩0 + ⟨−1⟩1⟩ bad s
• ρ2,2 = σ2 ⋄ σ2 = bad s ⇝ Tail0 ⟨−1⟩0 bad s
• ρ2,1 = σ2 ⋄ σ1 = bad s ⇝ Tail0 ⟨⟨−1⟩0 + ⟨−1⟩1⟩ bad s
Those 3 calls are coherent, but while ρ2,2 satisfies the first property of Theorem 4.4 neither ρ1,1
nor ρ2,1 do because the maximal priority comes from ⟨−1⟩1. Because there is no argument
to bad s, they don’t satisfy the second property either. It means an infinite composition of
recursive calls will necessarily generate an infinite branch with infinitely many constructors
of priority 1 and 0, which is a non-total branch. The recursive definition is thus rejected by
the totality checker, as it should. Changing B and D doesn’t make a difference.

14recall that the branch above the recursive call uses negated weights (Section 3.2.3)
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Theorem 4.4 is strong enough to deal with mixed inductive and coinductive types. Recall
the definition of sums from page 6

val sums : nat1 -> stream0(list1(nat1)) -> stream0(nat1)

| sums acc { Head0 = Nil1 ; Tail0 = s } =

{ Head0 = acc ; Tail0 = sums (Zero3{}4) s }

| sums acc { Head0 = Cons1 {Fst0 = n ; Snd0 = l} ; Tail0 = s } =

sums (add acc n) { Head0 = l ; Tail0 = s }

Because of the second clause, this definition isn’t guarded. It is productive because this
second clause cannot occur infinitely many times consecutively. Agda doesn’t detect this
definition as total. Provided D > 0, this will be detected by the totality checker and this
definition will thus be accepted as total. With B = D = 1, the transitive closure of the
call-graph will contains the following coherent loops:

• ρ1, coming from compositions of the first call with itself:

sums x1 x2 ⇝ Tail0⟨−10⟩ sums (Zero1) (⟨−1⟩0.Tail0 x2)

where the ⟨−1⟩0 corresponds to the collapse of Tail0,
• ρ2, coming from compositions of the second call with itself:

sums x1 x2 ⇝ sums (Ω...) { Head0=⟨−1⟩1.Head0 x2 ; Tail0=.Tail0 x2 }

where ⟨−1⟩1 corresponds to the collapse of Cons1-Cons1-,15

• ρ3, coming from compositions of the first and second call:

sum x1 x2 7→ Tail0⟨−1⟩0 sums (Ω...) { Head0 = ⟨⟨−1⟩0+⟨−1⟩1⟩.Tail0 x2 ;
Tail0 = ⟨−1⟩0.Tail0 x2 }

where ⟨⟨−1⟩0+⟨−1⟩1⟩ comes from the collapse of Cons1
-
.Head0 and ⟨−1⟩0 from the collapse

of .Tail0.

Both ρ1 and ρ3 satisfy the first property of Theorem 4.4, while ρ2 satisfies the second
property. This definition is total.

4.3. Implementing the Totality Checker. Implementing the totality checker based on
Theorem 4.4 for a first-order functional programming language like chariot is relatively
straightforward.

(1) During type checking / type inference, annotate all constructors appearing in the
recursive definition with their type.

(2) Construct the parity game containing all these types [Hyv25].
(3) Annotate all constructors and destructors appearing in the recursive definition with

their priorities. The types themselves can be forgotten at this point.
(4) The type of calls in normal forms is a simple first-order inductive type. Define relevant

functions on calls, namely composition, and collapsing. Note that composition is
implicitly followed by reduction to normal form, which must be done during composition.

(5) Compute the call-graph of the definition. This is easy for a language like chariot
because each clause can be treated independently and each call will be in normal form
by construction.

(6) Compute the transitive closure of the call graph using the previously defined functions
(composition and collapsing).

15The “Ω...” comes from the application add acc n and doesn’t play any role in this example.
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(7) Loop over all loops of the transitive closure of the call-graph. If a loop is coherent, check
that it satisfies one of the properties of Theorem 4.4. If all of them do, the definition is
total.

Parallel arcs in the call-graph correspond to non-deterministic sums and because u+ v = u
whenever u ≤ v, not all calls need to be added to the call-graph: if a call is greater than
some existing call, it can be ignored. Doing so requires implementing the order as well.
Because calls are kept in normal form for collapsing, we can use the syntax directed inductive
relation ⊑ from Appendix A.1 and A.2 instead of ≤.

The last part requires checking coherence for loops in the transitive closure of the call-
graph. In practice, it looks like checking loops for which σ = σ ⋄ σ is enough but I haven’t
tried very hard to prove this fact. Devising an inductive characterization of coherence is
difficult but we can simplify things by using a weaker inductive relation that is only implied
by coherence. That means we may end up checking more loop than strictly necessary but
the result is provably correct.16 This is described in Appendix A.3.

Concluding Remarks

Complexity. Since this totality test extends the termination test described in [Hyv14] and
thus the usual size-change termination principle, it is at least P-space hard. Hardness comes
from computing the transitive closure of the call-graph. It seems to work well in all the
examples we tried, but there are ad hoc examples of very short definitions that lead to
exponential totality checking. We think (hope) that such examples do not arise naturally.
Letting the user choose the bounds B and D (with sane default values) limits the extra
complexity cost to the definitions that really need it. It is nevertheless difficult to know how
this will scale for very big definitions. The situation is thus not too different from Agda,
where the termination checker can become very slow on big definitions. This should be
contrasted to Coq, where the design choice has always been to have a simple totality checker
with low complexity.

Choosing the bounds. The totality test is parameterized by the bounds B > 0 and D ≥ 0.
In many simple cases, setting B = 1 and D = 0 is enough but increasing the bounds locally
is interesting in the following cases.

• Increasing D helps detecting “incompatible” calls. For example, the following ad hoc
example is accepted with D = 1 but rejected with D = 0:

val f (C1 x) = 0

| f (C2 x) = f (C1 x)

The call-graph has a single vertex with a single call α = f ⇝ f (C1 C2- x). With D = 0,
this call is collapsed to f ⇝ f (⟨0⟩x) which doesn’t pass the totality test because this
loop is idempotent but doesn’t decrease. With D = 1, this call is unchanged but is not
idempotent: α ⋄ α = 0, and it passes the totality test.

Similarly, if some parts of the argument increase while other parts decrease, too small
a D can hide totality:

val f {Fst0=0 ; Snd0=x} = x

| f {Fst0=Succ1 x1 ; Snd0=x2} = f {Fst0=x1 ; Snd0=Succ1 x2}

16And I haven’t found any definition where this stricter check changes the result of the totality checker.
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requires D > 0 to pass the totality test. With B = D = 0, we get the coherent loop

f ⇝ f
(
Ω( ⟨⟨∞⟩0 + ⟨−1⟩1⟩ x + ⟨⟨∞⟩0 + ⟨∞⟩1⟩ x )

)
which doesn’t satisfy the hypothesis of Theorem 4.4.

• Increasing B isn’t as useful. It helps detect totality when some calls increase the size of
their argument (or dually, remove some output constructor). For example, the following
ad hoc example of mutually inductive definitions is accepted with B = 2 and D = 0 but
rejected with B = 1 and D = 0:

val s1 = s2.Tail0

and s2 = { hd0 = Zero1; Tail0 = { hd0=11; Tail0=s1 }}

The call-graph has 2 vertices and 2 arcs: s1 ⇝ ⟨1⟩0 s2 and s2 ⇝ ⟨−2⟩0 s1. When
projecting with B = 2, the composition gives s1 ⇝ ⟨−1⟩0s1 (and similarly for s2), which
passes the totality test. When projecting with B = 1, the first arc gives s1 ⇝ ⟨∞⟩0s2
which gives compositions of s1 ⇝ ⟨∞⟩0s1 (and similarly for s2), which doesn’t pass the
totality test.

In practice, we’ve found that B = 2 and D = 2 is enough for most cases. In the few situations
where increasing B or D is helpful, the programmer can change those bounds locally.

Note that none of those examples are detected as correct by the current termination
checker in Agda.

Strength of the totality checker. This paper only proves correctness of the totality checker. It
doesn’t prove anything about its strength. Another provably correct totality checker is the
one that always returns “I DON’T KNOW”. The only argument in favor of the totality checker
is of a practical nature: experimenting with chariot shows that it is enough for many
recursive functions. General results like “all structurally recursive definitions are total”, “all
syntactically guarded definitions are total”, etc. are certainly true but not investigated here.

Higher order types. The implementation of chariot deals with some higher order datatypes.
With b-branching trees (coinductive) defined as

codata tree(’b, ’n) where

child : tree(’b, ’n) -> (’b -> tree(’b, ’n))

or (inductive)

data tree(’b, ’n) where

root : unit -> tree(’b, ’n)

| fork : (’b -> tree(’b, ’n)) -> tree(’b, ’n)

the corresponding map functions passes the totality test. The theory should extend straight-
forwardly to account for this kind of datatypes.
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Dependent Types. This totality checker could deal with dependent types by simply tagging
any definition involving dependent types with “I DON’T KNOW”. Of course, extending it to
do something interesting on dependent types would be preferable. Many useful dependent
types like “lists of size n” can be embedded in bigger non dependent datatypes like (“lists”
in this case). Because the totality checker is essentially untyped, those types, together with
dependent sums could be dealt with by using the totality checker unchanged. That, and
the extension to some higher order as described above would go a long way to provide a
theoretically sound totality checker for a dependent languages like Agda.17
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Appendix A. Inductive order

This section describes some simple inductive relations that are much easier to implement than
the order ≤ on O0 and A0, and the coherence ¨. This is possible because the implementation
only needs to deal with terms in normal form.

A.1. Inductive order on normal forms in O.

Definition A.1. The relation ⊑ on normal forms of O0 is inductively generated by the
following rules:

∀j,∃i, si ⊑ tj∑
i si ⊑

∑
j tj

⊑+

x ⊑ x
⊑x

s ⊑ t

f s ⊑ f t
⊑f

s ⊑ t

C s ⊑ C t
⊑C

s1 ⊑ t1 . . . sn ⊑ tn

{D1 = s1; . . . ; Dn = sn} ⊑ {D1 = t1; . . . ; Dn = tn}
⊑{D1;...;Dn}

s ⊑ t

C-s ⊑ C-t
⊑C-

s ⊑ t

.D s ⊑ .D t
⊑.D

s ⊑ t

Ωs ⊑ Ωδt
⊑Ω1

Ωs ⊑ nf(Ωt)

Ωs ⊑ t
⊑Ω2(provided t doesn’t start with Ω)

where in rule ⊑Ω1, δ is any sequence of destructors C -/.D and function names f, g, etc.

The last two clauses are the most interesting. The rule ⊑Ω2 requires normalizing Ωt
before the inductive step, and ⊑Ω1 requires finding the appropriate prefix δ. This is decidable
as there are only finitely many prefixes to check. The first rule is computationally the most
complex one, as it potentially requires checking si ⊑ tj for all i, j. Here again, there are only
finitely many possibilities. Note for any given s and t, there is at most one rule that can be
used to derive s ⊑ t, which makes the ⊑ relation straightforward to implement.

Lemma A.2. s ⊑ t implies s ≤ t.

Proof. This is a straightforward induction on s ⊑ t. For example, suppose the last rule
was ⊑C, with conclusion Cs ⊑ Ct and premise s ⊑ t. By induction, we have s ≤ t, which
implies that Cs ≤ Ct by contextuality of ≤. All other cases are treated similarly, with an
extra bit of reasoning for rules ⊑+, ⊑Ω1 and ⊑Ω2:

• For ⊑+, we use point (1) of Lemma 2.13.
• for ⊑Ω1, we have s ≤ t by induction. From there, we have

Ωs ≤ Ωt (definition of ≤: contextuality)

≈ ΩΩt (definition of ≤)

≤ ΩδΩt (Lemma 2.13)

≤ Ωδt (definition of ≤: contextuality)

• For ⊑Ω2, we have that Ωs ≤ nf(Ωt) by induction. Since nf(Ωt) ≤ Ωt ≤ t, we get that Ωs ≤ t
by transitivity.

The rest of this section will show that ⊑ is in fact equivalent to ≤ restricted to normal forms



THE SIZE-CHANGE PRINCIPLE FOR MIXED INDUCTIVE AND COINDUCTIVE TYPES 43

Proposition A.3. For all terms s and t, s ≤ t implies nf(s) ⊑ nf(t).

The proof is a little tedious. We decompose it into several auxiliary lemmas with
straightforward proofs.

Lemma A.4.

(1) If s ⊑ t are simple normal forms, then nf(.Ds) ⊑ nf(.Dt).
(2) The same holds when .D is replaced by C- or f.
(3) The same holds when .D is replaced by Ω.

Proof.

(1) We prove the first point by induction on s ⊑ t, looking at the last rule.
• Rule ⊑+: by induction hypothesis, we have that ∀j,∃i, nf(.Dsi) ≤ nf(.Dtj). This
implies that nf(.Ds) =

∑
i nf(.Dsi) ⊑

∑
j nf(.Dtj) = nf(.Dt).

• Rule ⊑x: the result holds by definition.
• Rule ⊑f: because fs and ft are in normal form, nf(.Dfs) = .Dfs and nf(.Dft) = .Dft.
The result holds by definition of ⊑. (No induction necessary.)

• Rule ⊑C, or ⊑{...} when the record doesn’t contain the D field: nf(.Ds) = nf(.Dt) = 0.
The result follows from rule ⊑+.

• Rule ⊑{...;D;...}: because nf(.D{ . . . ; D = u; . . . } = nf(u), the result holds by definition.
• Rule ⊑.D′ : because .D′s is in normal form by hypothesis, we have nf(.D.D′s) = .D.D′s.
Similarly, nf(.D.D′t) = .D.D′t, and the result holds by definition.

• The same reasoning works for rule ⊑C- .
• Rule ⊑Ω1: we have nf(.DΩs) = Ωs and nf(.DΩδt) = Ωδt. The result hold trivially.
• Rule ⊑Ω2 is the most complex case. Suppose we have Ωs ≤ t because Ωs ⊑ nf(Ωt).
Because Ωs is already in normal form by hypothesis, we have nf(.DΩs) = Ωs. We thus
need to check that Ωs ⊑ nf(.Dt). Using ⊑Ω2, we need to show that Ωs ⊑ nf(Ωnf(.Dt)).
By Lemma 2.17, nf(Ωnf(.Dt)) = nf(Ω.Dt). We do a case analysis on t:
– if t = x, t = ft′, t = C-t′ or t = .D′t′: because t in already in normal form, we

have nf(Ω.Dt) = Ω.Dt. By hypothesis, Ωs ⊑ nf(Ωt), which an only be proved using
rules ⊑+ (if nf(Ωt) involves sums) followed by ⊑Ω1. So all summands of nf(Ωt) are
of the form Ωδt′ with s ⊑ t′.
But when t has one of the above shapes, nf(Ωt) = Ωt, so that t itself is of the
form δt′ with s ⊑ t′. This implies that .Dt is also of the form δt′ with s′ ⊑ t′. From
that, we get that Ωs ⊑ Ω.Dt using rule ⊑Ω1 and thus that Ωs ⊑ .Dt using rule ⊑Ω2.

– If t = Ct′, or if t is a record without the D field, then nf(.Dt) = 0 and the result
holds trivially.

– If t = { . . . ; D = t′; . . . }, and because t is in normal form, we have that nf(.Dt) = t′.
By hypothesis, we now that Ωs ⊑ nf(Ωt), which can only be proved using rules ⊑+

and ⊑Ω1. This implies that all summands of nf(Ωt) =
∑

j nf(Ωtj) are of the form δt′′

with s ⊑ t′′. Since all summands of nf(Ωt′) are summands of nf(Ωt), we can conclude
that Ωs ⊑ nf(.Dt).

– If t = Ωt′, then nf(Ω.Dt) = t. The result holds trivially.
(2) The same reasoning applies to the case where we replace .D by C- or f.
(3) The third point is proved similarly:

• rule ⊑+: follows directly from the induction hypothesis and linearity of Ω.
• rule ⊑x: the result holds by definition.
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• rule ⊑f: because fs and ft are in normal form, we have nf(Ωfs) = Ωfs and nf(Ωft) =
Ωft. The result holds by definition of ⊑ (rule ⊑Ω1).

• rule ⊑C: because nf(ΩCs) = nf(Ωs) and nf(ΩCt) = nf(Ωt), the result holds by induction.
• rule ⊑{...;D;...}: because nf(Ω{ . . . ; Di = ui; . . . } =

∑
i nf(Ωui), the result follows from

the induction hypotheses and rule ⊑+.
• rule ⊑C- : because both C-s and C-t are in normal form, we have nf(ΩC-s) = ΩC-s and
similarly for t. The result hold by definition (rule ⊑Ω1).

• The same reasoning works for rule ⊑.D.
• rule ⊑Ω1: both Ωs and Ωt are in normal form, so that we have nf(ΩΩs) = Ωs and
similarly for t. The result hold by hypothesis.

• rule ⊑Ω2: Ωs is in normal, so that nf(ΩΩs) = Ωs. We need to prove that Ωs ⊑ nf(Ωt),
which is precisely the premise of rule ⊑Ω2.

Note that the fact that the terms are in normal form is crucial in the proof.

Lemma A.5. The relation ⊑ is contextual: if s ⊑ t for some s, t simple normal forms, and
if C is a context, then nf(C[y := s]) ⊑ nf(C[y := t]).

Proof. This is done by induction of the context C, where the difficult inductive steps are
taken care of by the preceding lemma.

• If C = x or C = y, the result holds trivially.
• If C = { . . . ; Di = Ci; . . . }, then we know that each nf(Ci[y := s]) ⊑ nf(Ci[y := t]) by
induction. Since nf(C[y := s]) = { . . . ; Di = nf(Ci[y := s]); . . . } and similarly for C[y := t],
the results holds by definition of ⊑.

• The same reasoning works for the cases C = fC ′ or C = CC ′.
• If C = .DC ′, then we know that nf(C ′[y := s]) ⊑ nf(C ′[y := t]) by induction. Lemma A.4
implies that nf(C[y := s]) ⊑ nf(C[y := t]).

• The cases C = C-C ′ is treated similarly, with the help of Lemma A.4.
• If C = ΩC ′ then we know that nf(C ′[y := s]) ⊑ nf(C ′[y := t]) by induction. The previous
lemma implies that nf(ΩC ′[y := s]) ⊑ nf(ΩC ′[y := t]).

Lemma A.6. The relation ⊑ is reflexive and transitive.

Proof. Reflexivity is an obvious induction. For transitivity, suppose s ⊑ t and t ⊑ u. We
proceed by induction on t ⊑ u and case inspection on s ⊑ t.

• if both t ⊑ u and s ⊑ t come from ⊑+, each uj is greater than some ti which is greater than
some sk. By induction, each uj is thus greater than some sk, implying than

∑
k sk ⊑

∑
i ui

by rule ⊑+.
• if only t ⊑ u comes from ⊑+, then t is not a sum. Each uj is thus greater than t, and
induction implies that each uj is greater than s. Rule ⊑+ implies that s ⊑

∑
i ui.

• rule ⊑f: we have t = ft′ and u = fu′, together with t′ ⊑ u′. Because s ⊑ t, we also
have s = fs′ with s′ ⊑ t′. By induction hypothesis, we get that s′ ⊑ u′, and thus that s ⊑ u
by rule ⊑f.

• The rules ⊑x, ⊑C, ⊑{...;D;...}, ⊑C- and ⊑.D are all treated similarly.
• If t ⊑ u comes from rule ⊑Ω1, reasoning is similar, as s ⊑ t also comes from ⊑Ω1.
• The last case is when t ⊑ u comes from ⊑Ω2, i.e. when t = Ωt′ and u doesn’t start with Ω.
The premise of this rule is Ωt′ ⊑ nf(Ωu′). Because s ⊑ Ωt′, s is necessarily of the form Ωs′,
and we get that Ωs′ ⊑ nf(Ωu) by induction. We conclude that Ωs′ ⊑ u by rule ⊑Ω2.

We can now put everything together to prove the main proposition of this section.
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Proof of Proposition A.3. The order ≤ is generated inductively by reflexivity, transitivity,
commutativity, associativity, idempotence of +, (multi) linearity, contextuality, t ≤ Ωt,
t ≤ 0, s+ t ≤ t and the(in)equalities from Definition 2.12. The proof of Proposition A.3 is
an induction on s ≤ t.

• If s ≤ t by reflexivity, i.e. t syntactically equal to s, then we have s ⊑ t.
• If s ≤ t holds by transitivity s ≤ u and u ≤ t. By induction hypothesis, we get
that nf(s) ⊑ nf(u) and nf(u) ⊑ nf(t). We thus get nf(s) ⊑ nf(t) by transitivity of ⊑
(Lemma A.6).

• If s ≤ t holds by commutativity, associativity, idempotence of + or (multi)-linearity, the
result follows from rule ⊑+.

• Similarly, if s ≤ t holds by contextuality, we get that s ⊑ t by induction and contextuality
of ⊑ (Lemma A.5).

• If s is equal to Ωt, we need to check that nf(Ωt) ⊑ nf(t). This is obvious if t starts with
a Ω. Otherwise, we need to use rule ⊑Ω2: it is enough to show that nf(Ωt) ⊑ nf(Ωnf(t)).
Since nf(Ωnf(t)) = nf(Ωt), the result holds by reflexivity of ⊑.

• If t = 0, we have nf(s) ⊑ 0 using rule ⊑+.
• If s = s′ + t, we have nf(s) = nf(s′) + nf(t) ⊑ nf(t) using rule ⊑+.
• If s ≤ t using one (in)equality from Definition 2.12, we have that s reduces to t or that t
reduces to s. In either case, nf(s) = nf(t) so that nf(s) ⊑ nf(t).

A.2. Inductive order on normal forms in A. We can extend ⊑ to approximations:

Definition A.7. We extend Definition A.1 to normal forms of A by adding the following
rules:

s ⊑ t nf
(
⟨W ⟩δ⟨0⟩t

)
= ⟨W ′⟩t ⟨V ⟩ ≤ ⟨W ′⟩

⟨V ⟩s ⊑ ⟨W ⟩δt
⊑⟨⟩1

⟨W ⟩s ⊑ nf
(
⟨0⟩t

)
⟨W ⟩s ⊑ t

⊑⟨⟩2*

where, in rule ⊑⟨⟩2, t doesn’t start with an approximation; and in rule ⊑⟨⟩1, δ is any sequence
of destructors C-/.D.

Note that approximations behave very similarly to Ω. Checking ⊑ is still decidable, as
the rules are syntax directed, and we still have

Lemma A.8. For all approximated terms s and t in normal form, if s ⊑ t, then s ≤ t.

Proof. All the rules remain valid, and we only have to check that the two new rules are
correct.

• For ⊑⟨⟩1, suppose that s ≤ t, nf(⟨W ⟩δ⟨0⟩t) = ⟨W ′⟩t and ⟨V ⟩ ≤ ⟨W ′⟩ in W. We need to
show that ⟨V ⟩s ≤ ⟨W ⟩δt. We have

⟨W ⟩δt ≥ ⟨W ⟩δ⟨0⟩t (contextuality, because ⟨0⟩t ≤ t)

≥ nf(⟨W ⟩δ⟨0⟩t) (terms decrease along reduction)

= ⟨W ′⟩t (hypothesis)

≥ ⟨W ′⟩s (contextuality, because s ≤ t)

≥ ⟨V ⟩s (because ⟨V ⟩ ≤ ⟨W ⟩)

• For ⊑⟨⟩2, we have that ⟨W ⟩s ≤ nf(⟨0⟩t) by hypothesis. We also know that nf(⟨0⟩t) ≤
⟨0⟩t ≤ t, so that we have ⟨W ⟩ ≤ t by transitivity.
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A.3. Weak coherence on normal forms in A.

Lemma A.9.

(1) Define an inductive binary relation with:
(a) x x,
(b) Cu Cv iff C-u C-v iff .Du .Dv iff fu fv iff u v,
(c) {D1 = u1; . . . ; Dk = uk} {D1 = v1; . . . ; Dk = vk} iff ∀i, ui vi,
(d) Ωu Ωv iff

• there is a sequence of destructors δ s.t. u = δu′ with u′ v,
• or there is a sequence of destructors δ s.t. v = δv′ with u v′,

(e) u ⟨W ⟩v iff ⟨W ⟩u v iff u Ωv iff Ωu v iff nf(Ωu) nf(Ωv).
(f) In all other cases, u ̸ v.

(2) For all terms in normal form u and v, if u ¨ v, then u v.

Proof. We prove that u ⊑ t and v ⊑ t implies u v by induction on u ⊑ t and v ⊑ t. Using
Proposition A.3, this implies point (2) above.

(a) If u = v = x, then we obviously have t = x and thus u v.
(b) If u = Cu′ and v = Cv′, then we necessarily have t = Ct′, with u′ ⊑ t′ and v′ ⊑ t′, which

implies by Lemma A.2 that u′ ¨ v′. By induction, we have u′ v′, and thus Cu′ Cv′.
The other cases with C-, .D and f are treated similarly.

(c) The case u = { . . . ; Di = ui; . . . } and v = { . . . ; Di = vi; . . . } is treated similarly.
(d) If u = Ωu′ and v = Ωv′, we have Ωu′ ⊑ nf(Ωt) and Ωv′ ⊑ nf(Ωt). It implies that nf(Ωt)

is of the form δ1δ2t
′ with u′ ⊑ δ2t

′ and v′ ⊑ t′ (or vice versa).
This implies that Ωu′ ⊑ Ωδ2t

′ and Ωv′ ⊑ Ωδ2t
′, and thus that Ωu′ Ωv′ by induction.

(e) If v = Ωv′, and u not of the form Ω, we have Ωv′ ≤ t and u ≤ t. This implies (with no
need of the induction hypothesis) that

(f) No other cases are possible.

Appendix B. Basic domain theory

Here are the definitions and basic results on domain theory that are used in this paper.
Individual references are given for readers who want additional details / proofs.

Definition B.1.

• If (O,≤) is a partial order, a subset X ⊂ O is directed if it is non-empty and if every
pair of elements of X has an upper bound in X. Important examples of directed sets are
increasing chains x0 ≤ x1 ≤ . . . .

• A directed-complete partial order (DCPO) is a partial order (D,≤) for which every directed
set X has a least upper-bound

⊔↑ X in D.
• An element k of a DCPO is compact if whenever k ≤

⊔↑ X, then k ≤ x for some x ∈ X.
Compact elements are usually associated with a notion of “finite approximation”.

• A DCPO (D,≤,
⊔↑) is algebraic if for all x ∈ D, we have

x =
⊔↑{k | k is compact and k ≤ x}

i.e. if every element is the limit of its finite approximations.
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• A function between DCPOs is continuous if it is monotonic and if it commutes with
directed least upper bounds.

An important tool in domain theory is the notion of ideal completion.

Definition B.2. An ideal for the partial order (O,≤) is a non empty directed set I ⊂ O
that is downward closed: if y ∈ I and x ≤ y then x ∈ I.

The ideal completion of (O,≤) is the set of ideals of (O,≤) ordered by inclusion.

Proposition B.3.

(1) The ideal completion of a partial order is an algebraic DCPO. [AJ94, Proposition 2.2.22]
(2) The ideal completion of the compact elements of an algebraic DCPO (D,≤,

⊔↑) is
isomorphic to (D,≤,

⊔↑). [AJ94, Proposition 2.2.25]
(3) The ideal completion has the following universal property: if D1 and D2 are two DCPOs,

then any monotonic function from the compact elements of D1 to D2 can be uniquely
extended to a continuous function from D1 to D2. [AJ94, Corollary 2.2.26]

The next lemma is straightforward.

Lemma B.4. If D1 and D2 are DCPOs, then the set of continuous functions from D1 to D2

ordered pointwise is also a DCPO. We write [D1 → D2].

Appendix C. Smyth power domain

Here are the important facts about the Smyth power domain. More details and proofs of
the results given below can be found in [AJ94, Section 6.2.2 and 6.2.3]. If D is an algebraic
DCPO, the Smyth power domain can be described in several equivalent ways:

(1) the free algebraic DCPO for the binary operation “+” with

x+ y = y + x (x+ y) + z = x+ (y + z) x+ x = x x+ y ≤ x

[AJ94, Definition 6.2.7]
(2) the ideal completion of the following order on finite sets of compact elements of D:

X ≤ Y iff ∀y ∈ Y, ∃x ∈ X,x ≤D y

[AJ94, Proposition 6.2.12]
(3) the algebraic DCPO of all compact saturated for the Scott topology on D, ordered by

reverse inclusion. [AJ94, Theorem 6.2.14]

The fact that x+ y turns out to be the greatest lower bound of x and y ([AJ94, Proposi-
tion 6.2.8]) is interesting to note but not important in this paper.

From that, we get the following.

• From point (3): the Smyth power domain of (D,≤,
⊔↑) is a set of formal sums of elements

of D.
• From point (1): it contains all the finite sums of elements of D.
• From point (2): it is generated from finite sums of compact elements of D.

In order to show that some infinite sum belongs the Smyth power domain, rather than
unfolding the definition of “compact-saturated set for the Scott topology”, we can simply
show how this infinite sum is a limit of finite sums of compact elements of D.



48 P. HYVERNAT

In practice, most sets from point (3) are infinite, which is difficult to work with. In the
Scott topology, a set is saturated precisely when it is upward closed for the order. We thus
allow using non saturated sets and instead of reverse inclusion, use the order

X ≤Smyth Y iff X↑ ⊇ Y ↑

where X↑ is the upward closure, i.e. {z | ∃x ∈ Xx ≤ z}. Unfolding the definition, we get

X ≤Smyth Y iff ∀y ∈ Y, ∃x ∈ X,x ≤ y

which will serve as our definition of the order on the Smyth power domain.
To summarize, we have

Corollary C.1. Given a domain D, the corresponding Smyth power domain is obtained
with:

• elements are sets of elements of D, seen as formal sums,
• two such sets are ordered by S ≤ T iff ∀t ∈ T, ∃s ∈ S, s ≤D t (note that is only defines a
pre-order),

• compact elements are precisely the finite sums of compact elements of D,
• all finite sums are in the Smyth power domain,
• infinite sums are in the Smyth power domain if they can be obtained as directed limits of
finites sums.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany
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