
Predicate transformers and Linear Logic

yet another Denotational Model

Pierre Hyvernat1,2

1 Institut mathématique de Luminy, Marseille, France
2 Chalmers Institute of Technology, Göteborg, Sweden

hyvernat@iml.univ-mrs.fr

Abstract. In the refinement calculus, monotonic predicate transformers
are used to model specifications for (imperative) programs. Together
with a natural notion of simulation, they form a category enjoying many
algebraic properties.

We build on this structure to make predicate transformers into a de-
notational model of full linear logic: all the logical constructions have a
natural interpretation in terms of predicate transformers (i.e. in terms of
specifications). We then interpret proofs of a formula by a safety property
for the corresponding specification.

Introduction

The first denotational model for linear logic was the category of coherent spaces
([1]). In this model, formulas are interpreted by graphs; and proofs by cliques
(complete subgraphs). This forms a special case of domain à la Scott.

From a conceptual point of view, the construction of interfaces is a little
different: first, the model looks a little more dynamic; then, seeds —the notion
corresponding to cliques— are not closed under substructures; and finally, they
are closed under arbitrary unions (usually, only directed unions are allowed).

What was a little unexpected is that the interpretation of linear proofs used in
the relational model can be lifted directly to this structure to yield a denotational
model of full linear logic in the spirit of /hyper/multi-coherence or finiteness
spaces.

A promising direction for further research is to explore the links between the
model presented below and non-determinism as it appears both in the differential
lambda-calculus ([2, 3]) and different kind of process calculi. We expect such a
link because of the following remarks: this model comes from the semantics of
imperative languages; it can be extended to a model of the differential lambda
calculus (which can be seen as a variant of “lambda calculus with resource”)
and there is a completely isomorphic category in which predicate transformers
are replaced by (two-sided) transition systems. In particular, all of the logical
operations presented below have natural interpretations in terms of processes...

2

1 Relations and Predicate Transformers

Definition 1. A relation r between two sets is a subset of their cartesian prod-
uct. We write r∼ for the converse relation: r∼ =

{
(b, a) | (a, b) ∈ r}.

The composition of two relations r ⊆ A × B and r′ ⊆ B × C is defined by
r′ · r =

{
(a, c) | (∃b ∈ B) (a, b) ∈ r ∧ (b, c) ∈ r′}.

If X is a set, IdX denotes the identity on X, i.e. IdX = {(a, a) | a ∈ X}.
There seems to be three main notions of morphisms between sets. These give

rise to three important categories in computer science:

– Set, where morphisms are functions;
– Rel, where morphisms are (binary) relations;
– Pow, where morphisms are monotonic predicate transformers.

One can go from Set to Rel and from Rel to Pow using the same categorical
construction ([4]) which cannot be applied further.

Definition 2. A predicate transformer from A to B is a function from P(A) to
P(B). A predicate transformer P is monotonic if x ⊆ x′ implies P (x) ⊆ P (x′).

From now on, we will consider only monotonic predicate transformers. The ad-
jective “monotonic” is thus implicit everywhere.

The term “predicate” might not be the most adequate but the terminology
was introduced by E. Dijkstra some decades ago, and has been used extensively
by computer scientists since then. Formally, a predicate on a set A can be iden-
tified with a subset of A by the separation axiom of ZF set theory; the confusion
is thus harmless.

Definition 3. If r is a relation between A and B, we write 〈r〉 : P(A) → P(B)
for the following predicate transformer: (called the direct image of r)

〈r〉(x) =
{
b ∈ B | (∃a ∈ A) (a, b) ∈ r ∧ a ∈ x} .

Note that in the traditional version of the refinement calculus ([5]), our 〈r〉 is
written {r∼}, but this notation clashes with set theoretic notation and would
make our formulas very verbose with ∼ everywhere.

2 Interfaces

Several denotational models of linear logic can be seen as “refinements” of the
relational model. This very crude model interprets formulas by sets; and proofs
by subsets. It is degenerate in the sense that any formula is identified with
its linear negation! Coherent spaces ([1]), hypercoherent spaces ([6]), finiteness
spaces ([7]) remove (part of) this degeneracy by adding structure on top of the
relational model. We follow the same approach:

Definition 4. An interface X is given by a set |X| (called the state space) and
a predicate transformer PX on |X| (called the specification).

3

The term “specification” comes from computer science, where a specification
usually takes the form:

if the program is started in a state satisfying φ, it will
terminate; and the final state will satisfy ψ.

Such a specification can be identified with the (monotonic) predicate transformer
ψ 7→ “biggest such φ”. This point of view is that of the wp calculus, introduced
by Dijkstra (“wp” stands for “weakest precondition”). Note that the specifica-
tion “goes backward in time”: it associates to a set of final states (which we want
to reach) a set of initial states (which guarantee that we will reach our goal).3

For a complete introduction to the field of predicate transformers in relation
to specifications, we refer to [5].

In the coherence semantics, a “point” is a complete subgraph,4 called a clique.
Since the intuitions behind our objects are quite different, we change the termi-
nology.

Definition 5. Let X be an interface, a subset x ⊆ |X| is called a seed of X if
x ⊆ PX(x). We write S(X) for the collection of seeds of X.

More traditional names for seeds are safety properties, or P -invariant properties:
if some initial state is in x, no matter what, after each execution of a program
satisfying specification P , the final state will still be in x. In other words, P
maintains an invariant, namely “staying in x”. In particular, there can be no
program deadlock when starting from x.

The collection of cliques in the (hyper)coherent semantics forms a c.p.o.: the
sup of any directed family exists. The collection of seeds in an interface satisfies
the stronger property:

Lemma 1. For any interface X,
(S(X),⊆)

is a complete sup-lattice.

Proof. ∅ is trivially a seed; and by monotonicity of P , a union of seeds is a seed.
ut

The fact that seeds are closed under union may seem counter-intuitive at first;
but one possible interpretation is that we allow for non-deterministic data. For
example, all denotational models of linear logic have an object for the booleans:
its state space is {t, f}, and the cliques are always ∅, {t} and {f}. The union of
{t} and {f} is usually not itself a clique because “one cannot get both true and
false”. However, if one interprets union as a non-deterministic sum, then {t, f}
is a perfectly sensible set of data.

However, nothing guarantees that a seed is the unions of all its finite subseeds;
a given seed needs not even contain any finite seed!. (The canonical example
being PX(x) = X, with X infinite.)

3 In a previous version, interfaces also had to enjoy the property P (∅) = ∅ and
P (|X|) = |X|. This condition doesn’t interact well with second order interpreta-
tion and has thus been dropped.

4 The intuition is that a set of data is coherent iff it is pairwise coherent.

4

3 Constructions on Interfaces

A denotational model interprets formulas as objects in a category (and proofs
as morphisms). We thus need to define all the constructions of linear logic at
the level of interfaces. The most interesting cases are the linear negation and the
tensor product (and the exponentials, but they will be treated in section 6).

Note that there will always be an “ambient” set A for predicates. We write
x for the A-complement of x.
Let X = (|X|, PX) and Y = (|Y |, PY) be two interfaces;

Definition 6. The dual of X is defined as (|X|, P⊥X) where P⊥X (x) = PX(x).
We write it X⊥. An antiseed of X is a seed in X⊥.

In terms of specifications, a ∈ P⊥(x) means “if the program is started in a, and
if execution terminates, the final state will be in x”. If P is concerned with wp
calculus, then P⊥ is concerned with wlp calculus. (Weakest liberal precondition,
also introduced by Dijkstra.)

This operation of “negation” is the reason we do not ask for any properties
on the predicate transformer. It respects neither continuity nor commutation
properties! In many respects, this operation is not very well-behaved.

Definition 7. The tensor of X and Y is the interface (|X| × |Y |, PX ⊗ PY)
where PX ⊗ PY (r) is the predicate transformer

r 7→
⋃

x×y⊆r

PX(x)× PY (y) .

We write it X ⊗ Y .

PX ⊗ PY is the most natural transformer to construct on |X| × |Y |. It was
used in [8] to model parallel execution of independent pieces of programs. The
intuition is the following: a program satisfies PX ⊗ PY if, when you start it
in the pair (ai, bi) ∈ PX ⊗ PY (r) of initial states, the two final states will be
related through r. In particular, this means that execution is synchronous: both
executions need to terminate.

Definition 8. The with of X and Y is the interface (|X|+ |Y |, PX &PY) where
PX & PY (x, y) =

(
PX(x), PY (y)

)
.5 We write it X & Y .

This operation is not very interesting from the specification point of view: it is
a kind of disjoint union.

Definition 9. The other connectives are defined as usual:

– 0 = (∅, Id); > = 0⊥; 1 = ({∗}, Id); ⊥ = 1⊥;
– X ⊕ Y (plus) is the interface

(
X⊥ & Y ⊥

)⊥;

5 it uses implicitly the fact that P(|X|+ |Y |) ' P(|X|)× P(|Y |)

5

– X

&

Y (par) is the interface
(
X⊥ ⊗ Y ⊥

)⊥;
– X −◦ Y is the interface X⊥ &

Y .

We have:

Lemma 2. ⊥ = 1; > = 0 and X ⊕ Y = X & Y .

The proof is immediate. The first two equalities are satisfied in several of the
denotational models of LL; the second one is a little less common. (For example,
it is satisfied in finiteness spaces, but in no ...-coherence spaces.)

As an application of the definitions, let’s massage the definition of A −◦ B into
something readable:
(a, b) ∈ A−◦B(r)
⇔ { definition }

(a, b) ∈ (
A⊥

&

B
)
(r)

⇔ { definition, involutivity of ⊥ }
(a, b) ∈ (

A⊗B⊥
)⊥(r)

⇔ { definition of ⊥ }
(a, b) /∈ A⊗B⊥(r)
⇔ { definition of ⊗ }

¬(
(∃x× y ⊆ r) a ∈ A(x) ∧ b ∈ B⊥(y)

)
⇔ { logic }

(∀x× y ⊆ r) a /∈ A(x) ∨ b /∈ B⊥(y)
⇔ { logic }

(∀x× y ⊆ r) a ∈ A(x) ⇒ b ∈ B(y)
⇔ { lemma: x× y ⊆ r iff 〈r〉x ⊆ y }

(∀〈r〉x ⊆ y) a ∈ A(x) ⇒ b ∈ B(y)
⇔ { change of variable: y 7→ y }

(∀〈r〉x ⊆ y) a ∈ A(x) ⇒ b ∈ B(y).
From this, we derive:

Lemma 3. (a, b) ∈ A−◦B(r) iff a ∈ A(x) ⇒ b ∈ B(〈r〉x) for all x ⊆ |X|.
For any interface X, Id|X| ∈ S(X −◦X).

The shapes of images along X

&

Y are usually difficult to visualize, but we
have the following on “rectangles”:

Lemma 4. Let X and Y be interfaces; then for all x ⊆ |X| and y ⊆ |Y | we
have: PX ⊗ PY (x× y) = PX(x)× PY (y) ⊆ PX

&

PY (x× y).

Proof. That PX ⊗ PY (x× y) = PX(x)× PY (y) is straightforward.
Suppose now a ∈ PX(x) and b ∈ PY (y), let’s show that (a, b) ∈ PX

&

PY (x× y):
suppose x′ × y′ ⊆ x× y
⇒ { claim (see below) }

x ⊆ x′ ∨ y ⊆ y′

⇒ { monotonicity }
a ∈ PX(x′) ∨ b ∈ PY (y′).

6

Claim: x′ × y′ ⊆ x× y ⇒ x ⊆ x′ ∨ y ⊆ y′

Proof of claim: suppose ¬(x ⊆ x′) ∧ ¬(y ⊆ y′)
⇒ x ∩ x′ 6= ∅ ∧ y ∩ y′ 6= ∅
⇒ x× y ∩ x′ × y′ 6= ∅
⇒ ¬(x′ × y′ ⊆ x× y). ut

Furthermore, seeds in A and B are related to seeds in A⊗ B and A

&

B in
the following way:

Lemma 5. Let A and B be interfaces. We have:

(i) if x ∈ S(A) and y ∈ S(B) then x× y ∈ S(A⊗B);
(ii) if x ∈ S(A) and y ∈ S(B) then x× y ∈ S(A

&

B).

Proof. The first point is obvious; the second point is a direct consequence of
Lemma 4. ut

4 Linear Proofs and Seeds

The previous section gave a way to interpret any linear formula F by a interface
F ∗. (When no confusion arises, F ∗ is written F .) We now interpret linear proofs
of F as subsets of the state space of F ∗.6 We refer to [1] or the abundant literature
on the subject for the motivations governing those inference rules.

(1) If π is
` 1

then π∗ = {∗};

(2) if π is
` Γ,>

then π∗ = ∅;

(3) if π is
π1 ` Γ
` Γ,⊥

then π∗ =
{
(γ, ∗) | γ ∈ π∗1

}
;

(4) if π is
π1 ` Γ,A,B
` Γ,A &

B
then π∗ =

{(
γ, (a, b)

) | (γ, a, b) ∈ π∗1
}
;

(5) if π is
π1 ` Γ,A π2 ` ∆,B

` Γ,∆,A⊗B

then π∗ = π∗1 ⊗ π∗2 =
{(
γ, δ, (a, b)

) | (γ, a) ∈ π∗1 ∧ (δ, b) ∈ π∗2
}
;

(6) if π is
π1 ` Γ,A
` Γ,A⊕B

then π∗ =
{(
γ, (1, a)

) | (γ, a) ∈ π∗1
}
;

6 recall that a sequent A1, . . . An is interpreted by A1

&

. . . An and the notation π ` Γ
means “π is a proof of sequent Γ”

7

(7) if π is
π1 ` Γ,B
` Γ,A⊕B

then π∗ =
{(
γ, (2, b)

) | (γ, b) ∈ π∗1
}
;

(8) if π is
π1 ` Γ,A π2 ` Γ,B

` Γ,A&B

then π∗ is
{(
γ, (1, a)

)|(γ, a) ∈ π∗1
} ∪ {

(γ, (2, b))|(γ, b) ∈ π∗2
}
;

(9) if π is
π1 ` Γ,A π2 ` ∆,A⊥

` Γ,∆
then π∗ =

{
(γ, δ) | (∃ a) (γ, a) ∈ π∗1 ∧ (δ, a) ∈ π∗2

}
.

This interpretation is correct in the following sense:

Proposition 1. If π a proof of F , then π∗ is a seed in F ∗.

Proof. By induction on the structure of π: we will check that seeds propagate
through the above constructions. It is mostly trivial computation, except for two
interesting cases:
(5): suppose that π1 is a seed in Γ

&

A and that π2 is a seed in ∆

&

B. We need
to show that π1 ⊗ π2 =

{(
γ, δ, (a, b)

) | (γ, a) ∈ π1 ∧ (δ, b) ∈ π2

}
is a seed in the

sequent Γ

&

∆

&

(A⊗B).
Let

(
γ, δ, (a, b)

) ∈ π1 ⊗ π2

⇔
(γ, a) ∈ π1 and (δ, b) ∈ π2

⇒ { π1 and π2 are seeds in Γ, A and ∆, B }
(γ, a) ∈ Γ,A(π1) and (δ, π2) ∈ ∆,B(π2).
By contradiction, let

(
γ, δ, (a, b)

)
/∈ Γ,∆,A⊗B(π1 ⊗ π2)

⇒(
γ, δ, (a, b)

) ∈ Γ⊥ ⊗∆⊥ ⊗ (A⊗B)⊥(π1 ⊗ π2)
⇒ { for some u× v × r ⊆ π1 ⊗ π2: }

γ ∈ Γ⊥(u) ∧ δ ∈ ∆⊥(v) ∧ (a, b) ∈ (A⊗B)⊥(r)︸ ︷︷ ︸⇒
. . . ∧

(
(∀x× y ⊆ r) a ∈ A⊥(x) ∨ b ∈ B⊥(y)

)
.

In particular, define x = 〈π1〉u and y = 〈π2〉v; it is easy to show that x× y ⊆ r,
so that we have a ∈ A⊥(x) or b ∈ B⊥(y).
Suppose a ∈ A⊥(x): we have γ ∈ Γ⊥(u) and u × x ⊆ π1 (easy lemma); so by
definition, (γ, a) ∈ Γ⊥ ⊗A⊥(π1), i.e. (γ, a) /∈ Γ,A(π1)! This is a contradiction.
Similarly, one can derive a contradiction from b ∈ B⊥(y).
This finishes the proof that π1 ⊗ π2 is a seed of Γ,∆,A⊗B.
(9): let π1 be a seed in Γ,A = Γ⊥−◦A and π2 a seed in ∆,A⊥, i.e. π∼2 is a seed
in A−◦∆. Let’s show that π =

{
(γ, δ) | (∃a) (γ, a) ∈ π1 ∧ (δ, a) ∈ π2

}
= π∼2 · π1

is a seed in Γ,∆.
Suppose (γ, δ) ∈ π∼2 ·π1, i.e. that (γ, a) ∈ π1 and (a, δ) ∈ π∼2 for some a. We will
prove that (γ, δ) is in Γ,∆(π) = Γ⊥ −◦∆(π). According to Lemma 3, we need
to show that if γ ∈ Γ⊥(u) then δ ∈ ∆(〈π〉u).

8

Let γ ∈ Γ⊥(u)
⇒ { (γ, a) ∈ π1 ⊆ Γ⊥ −◦A(π1) }

a ∈ A(〈π1〉u
)

⇒ { (a, δ) ∈ π∼2 ⊆ A−◦∆(π∼2) }
δ ∈ ∆(〈π∼2 〉〈π1〉u

)
⇔

δ ∈ ∆(〈π〉u). ut

5 Morphisms, Categorical Structure

To complete the formal definition of a category of interfaces, we need to define
morphisms between interfaces. This is done in the usual way:

Definition 10. A linear arrow from X to Y is a seed in X −◦ Y .

Here is a nicer characterization of linear arrows from X to Y :

Lemma 6. r ∈ S(X −◦ Y) iff 〈r〉(PX(x)
) ⊆ PY

(〈r〉(x)) for all x ⊆ |X|.
Proof. Suppose r is a seed in X −◦ Y , let b ∈ 〈r〉PX(x)
⇒

there is some a s.t. (a, b) ∈ r and a ∈ PX(x)
⇒ { r is a seed in X −◦ Y }

(a, b) ∈ PX −◦ PY (r)
⇒ { definition of −◦ }

b ∈ PY (〈r〉x).
Conversely, suppose 〈r〉PX(x) ⊆ PY 〈r〉(x); let (a, b) ∈ r, and a ∈ PX(x). We
have b ∈ 〈r〉PX(x), and by hypothesis, b ∈ PY (〈r〉x). ut
Lemma 7. If r ∈ S(X −◦ Y) and r′ ∈ S(Y −◦ Z) then r′ · r ∈ S(X −◦ Z).

Proof. This is the essence of point (9) from Proposition 1; or a simple corollary
to Lemma 6. ut
Taken together with Lemma 3, this makes interfaces into a category:

Definition 11. We write Int for the category with interfaces as objects and
linear arrows as morphisms.

This category is an enrichment of the usual category Rel. The construction
can be summarized in the following way:

Lemma 8. Int is obtained by lifting Rel through the following specification
structure ([9]):

– if X is a set, PrX ≡ P(X) → P(X);
– if r ⊆ X × Y , P ∈ PrX and Q ∈ PrY , then P{r}Q iff 〈r〉 · P ⊆ Q · 〈r〉.

Let’s now turn our attention to the structure of this category:

9

Lemma 9. In Int, > is terminal and & is the cartesian product.

Proof. This is immediate. ut
Lemma 10. ⊥ is an involutive contravariant functor.

Proof. Involutivity is trivial; contravariance is only slightly trickier:
r is a seed in A−◦B
⇔ { Lemma 6 }

∀x 〈r〉A(x) ⊆ B〈r〉x
⇔

∀x B〈r〉x ⊆ 〈r〉A(x)
⇔ { lemma: y ⊆ 〈r〉x iff 〈r∼〉y ⊆ x }

∀x 〈r∼〉B〈r〉x ⊆ A(x)
⇒ { in particular, for x of the form 〈r∼〉x; we have x ⊆ 〈r〉〈r∼〉x (lemma) }

∀x 〈r∼〉B⊥(x) ⊆ A⊥
(〈r∼〉x)

i.e. r∼ is a seed in B⊥ −◦A⊥. The action of ⊥ on morphisms is just ∼. ut
Corollary 1. Int is autodual through ⊥; 0 is initial; and ⊕ is the coproduct.

It is now easy to see that linear arrows transform seeds into seeds, and, in the
other direction, antiseeds into antiseeds:

Proposition 2. Suppose r is a linear arrow from X to Y :

(i) 〈r〉 is a sup-lattice morphism from S(X) to S(Y);
(ii) 〈r∼〉 is a sup-lattice morphism from S(Y ⊥) to S(X⊥).

Proof. Let r ∈ S(X −◦Y) and x ⊆ X(x); we want to show that 〈r〉x ⊆ Y (〈r〉x).
Let b ∈ 〈r〉x
⇔

(∃a) (a, b) ∈ r ∧ a ∈ x
⇒ { r is a seed in X −◦ Y }

(∃a) (a, b) ∈ X −◦ Y (r) ∧ a ∈ x
⇒ { definition of X −◦ Y with the fact that 〈r〉x ⊆ 〈r〉x }

b ∈ Y (〈r〉x).
Showing that 〈r〉 commutes with sups is immediate: it commutes with arbitrary
unions, even when the argument is not a seed.
The second point follows because r∼ ∈ S(Y ⊥ −◦X⊥). ut
Lemma 11. ⊗ [

&

] is a categorical tensor product with neutral element 1 [⊥].

Proof. We need to show the bifunctoriality of ⊗. This was actually proved in
the previous section (Proposition 1, point (5)). The bifunctoriality of

&

follows
by duality; and the rest is immediate. ut
As a summary of this whole section, we have:

Proposition 3. Int is a ∗-autonomous category. (In particular, Int is symmet-
ric monoidal closed.)

10

Proof. This amounts to checking trivial equalities, in particular, that the follow-
ing diagram commutes: (where d is the natural isomorphism X ' X⊥⊥)

X −◦ Y
⊥

//

d−1
X · ·dY))SSSSSSSSSSSSSSS Y ⊥ −◦X⊥

⊥

²²
X⊥⊥ −◦ Y ⊥⊥

It is immediate because d = Id and ⊥ = ∼. ut

6 Exponentials

The category Int is thus a denotational model for multiplicative additive linear
logic. Let’s now add the exponentials !X and ?X.

Unsurprisingly, we will use finite multisets; here are the necessary definitions
and notations:

Definition 12. Let S be a set;

– if (si)i∈I and (tj)j∈J are finite families on S, say (si) ' (tj) iff there is a
bijection σ from I to J such that si = tσ(i) for all i in I.

– A finite multiset over S is an equivalence class of '. We write [si] for the
equivalence class containing (si).

– Mf (S) is the collection of finite multisets over S.
– Concatenation of finite families7 can be lifted to multisets; it is written +.
– If x and y are two subsets of S, we write x∗y for the set {[a, b] | a ∈ x∧b ∈ y}.

Its indexed version is written
d

i∈I xi; it is a kind of commutative product.
– If U and V are two subsets of Mf (A), the set {u + v | u ∈ U ∧ v ∈ V } is

written U ∗ V (same symbol, but no confusion arises).

Definition 13. For X = (|X|, P), define !X = (Mf (|X|), !P) where

[a1, . . . an] ∈ !P (U) ⇔ (∃(xi)1≤i≤n

) l

i

xi ⊆ U ∧ (∀i = 1, . . . n) ai ∈ P (xi)

Let ?X =
(
!(X⊥)

)⊥.

Recall that a multiset [ai] is in
d
xi iff there is a bijection σ s.t. ∀i, ai ∈ xσ(i).

A useful intuition is that [a1, . . .] ∈ !P (U) iff [a1, . . .] is in a “weak infinite
tensor”

⊕
nX

⊗n(U). In terms of specifications and programs, it suggests multi-
threading: for an initial state [a1, . . . an], start n occurrences of the program in
the states a1,. . . an; the final state is nothing but the multiset of all the n final
states.8 The “weak” part means that we forget the link between a particular
final state and a particular initial state.

Note that this is a “non-uniform” model in the sense that the web of !X
contains all finite multisets, not just those whose underlying set is a seed. It is
thus closer to non-uniform (hyper)coherence semantics (see [10] or [11]) than to
the traditional (hyper)coherence semantics.

7 defined on the disjoint sum of the different index sets
8 The interpretation of !, like that of ⊗ is a synchronous operation.

11

Let’s prove a simple lemma about the exponentials:

Lemma 12. Suppose U ⊆Mf (|A|):
(i) [a] ∈ !A(U) iff there is some x “included” in U (i.e. ∀a ∈ x [a] ∈ U) s.t.

a ∈ A(x);
(ii) l + l′ ∈ !A(U) iff there are V ∗ V ′ ⊆ U s.t. l ∈ !A(V) and l′ ∈ !A(V ′);
(iii) [a] ∈ ?A(U) iff for all x “included” in U , a ∈ A(x);
(iv) l + l′ ∈ ?A(U) iff for all V ∗ V ′ ⊆ U , l ∈ ?A(V) or l′ ∈ ?A(V ′).

Proof. The first point is immediate and the second is left as an exercise. The
third and last point are consequences of the definition of ? in terms of !. ut

Define now the interpretation of proofs with exponentials:

(10) if π is
π1 ` Γ,A
` Γ, ?A

then π∗ =
{(
γ, [a]

) | (γ, a) ∈ π∗1
}
;

(11) if π is
π1 ` Γ
` Γ, ?A

then π∗ =
{(
γ, []

) | γ ∈ π∗1
}
;

(12) if π is
π1 ` Γ, ?A, ?A

` Γ, ?A
then π∗ =

{
(γ, l + l′) | (γ, l, l′) ∈ π∗1

}
;

(13) if π is
π1 ` ?Γ,A

` ?Γ, !A
then we define

(
γ1, . . . γl, [a1 . . . an]

) ∈ π∗ if for each j = 1, . . . l, there is
a partition γj =

∑
1≤i≤n γ

i
j and the following holds: for each i = 1, . . . n,

(γi
1, . . . γ

i
l , ai) ∈ π∗1 .

Proposition 4. If π a proof of ` Γ , then π∗ is a seed of Γ .

Proof. Points (10) and (11) are immediate.
(12): suppose π1 is a seed Γ, ?A, ?A and let (γ, l + l′) be an element of π.
By contradiction, suppose that (γ, l + l′) /∈ Γ, ?A(π)
⇔

(γ, l + l′) ∈ Γ⊥ ⊗ !A⊥(π)
⇔ { for some u× U ⊆ π }

γ ∈ Γ⊥(u) ∧ l + l′ ∈ !A⊥(U)
⇔ { Lemma 12 }

γ ∈ Γ⊥(u) ∧ (∃V ∗ V ′ ⊆ U) l ∈ !A⊥(V) ∧ l′ ∈ !A⊥(V ′)
⇒ { lemma: u× V × V ′ ⊆ π1 }

γ ∈ Γ⊥(u) ∧ l ∈ !A⊥(V) ∧ l′ ∈ !A⊥(V ′)
⇒

(γ, l, l′) ∈ Γ⊥ ⊗ !A⊥ ⊗ !A⊥(π1)
⇔

(γ, l, l′) /∈ Γ, ?A, ?A(π1), which contradicts the fact that π1 is a seed in Γ, ?A, ?A.

12

(13): suppose that Γ contains only one formula B. The general case will follow
from a lemma proved below (Lemma 13). Suppose that π1 is a seed in ?B,A;
let (l, [a1, . . . an]) be in π, i.e. (li, ai) ∈ π1 for i = 1, . . . n, for some partition
(l1, . . . ln) of l.
Suppose by contradiction that (l, [a1 . . . an]) /∈ ?B, !A(π)
⇔

(l, [a1, . . . an]) ∈ !B⊥ ⊗ ?A⊥(π)
⇔ { for some U × V ⊆ π }

l ∈ !B⊥(U) ∧ [a1, . . . an] ∈ ?A⊥(V)
⇒ { definition of ?A }

l ∈ !B⊥(U) ∧
((∀(xi)

) d
xi ⊆ V ⇒ (∃i) ai ∈ A(xi)

)

⇔ { Lemma 12 for l: for some (Ui) s.t.
d

i Ui ⊆ U }
(∀i) li ∈ !B⊥(Ui) ∧

((∀(xi)i

) d
i xi ⊆ V ⇒ (∃i) . . .

⇒ { define xi = 〈π1〉Ui; lemma:
d

i xi ⊆ V }(
(∀i) li ∈ !B⊥(Ui)

)
∧

(
(∃i) ai ∈ A(xi)

)

⇒ { lemma: Ui × xi ⊆ π1 }
(∃i) (∃Ui × xi ⊆ π1) li ∈ !B⊥(Ui) ∧ ai ∈ A(xi)
⇔

(li, ai) ∈ !B⊥ ⊗A⊥(π1)
⇔

(li, ai) /∈ ?B,A(π1), which contradicts the fact that π1 is a seed in ?B,A. ut
Lemma 13. For all interfaces X and Y , we have !(X & Y) = !X ⊗ !Y .

Proof. The state spaces are isomorphic viaMf (|X|+|Y |) 'Mf (|X|)×Mf (|Y |).
We will use this transparently, for example lX + lY ∈ R iff (lX , lY) ∈ R. This is
possible because the sets are disjoint: we can always split a multiset in x ∗ y into
two multisets in x and y. (In other words: if x ∩ y = ∅ then x ∗ y ' x× y.)

Notice also that (1, a) ∈ X&Y (x, y) ⇔ a ∈ X(x) so that when considering a
particular element of X + Y (x, y), only one part of the argument (x, y) is really
important; the other can be dropped (or replaced with ∅).
⊆: suppose [a1, . . . an] + [b1, . . . bm] ∈ !(X & Y)(R)
⇔ { for some (xi)i=1...n and (yj)j=1...m }d
i xi ∗

d
j yj ⊆ R ∧ (∀i) ai ∈ X(xi) ∧ (∀j)bj ∈ Y (yj)

⇒ { define U ′ =
d

i xi and V ′ =
d

j yj }
(∃U ′ × V ′ ⊆ R) [ai] ∈ !X(U ′) ∧ [bj] ∈ !Y (V ′)
⇔

([a1, . . . an], [b1, . . . bm]) ∈ !X ⊗ !Y (R).
⊇: suppose ([a1, . . . an], [b1, . . . bm]) ∈ !X ⊗ !Y (R)
⇔ { for some U ′ × V ′ ⊆ R }

[a1, . . . an] ∈ !X(U ′) ∧ [b1, . . . bm] ∈ !Y (V ′)
⇔ { for some (xi) s.t.

d
xi ⊆ U ′ and (yj) s.t.

d
yj ⊆ V ′ }

(∀i) ai ∈ X(xi) ∧ (∀j) bj ∈ Y (yj)
⇒ { di xi ×

d
j yj ⊆ U × V and thus

d
i xi ∗

d
j yj ⊆ R }

[a1, . . . an] + [b1, . . . bm] ∈ !(X & Y)(R). ut

13

This allows us to transform any sequent ?Γ = ?B1

&

. . . ?Bn into ?(B1⊕ . . . Bn),
and thus, formally ends the proof of Proposition 4 point (13).

7 Linear Interfaces and Linear Seeds

What is the structure of those interfaces that come from a linear formula? The
answer is unfortunately trivial:

Proposition 5. If F is a linear formula, then PF = IdP|F |.

Proof. Immediate induction. Let’s treat the case of the exponentials:
suppose F (x) = x; suppose moreover that [a1, . . . an] ∈ U
⇒

ai ∈ F ({ai}) for all i and
d{ai} = {[a1, . . . an]} ⊆ U

⇒
[a1, . . . an] ∈ !F (U)
Similarly, suppose [a1, . . . an] ∈ !F (U)
⇒

each ai ∈ F (xi) = xi for some (xi) s.t.
d
xi ⊆ U

⇒ { [a1, . . . an] ∈ d
xi }

[a1, . . . an] ∈ U . ut
In particular, every subset of |F | is a clique and an anticlique: the situation

is thus quite similar to the purely relational model. In the presence of atoms
however, interfaces become much more interesting.

Adding atoms is sound because the proof of Proposition 1 doesn’t rely on
the particular properties of interfaces. Note that we need to introduce a general
axiom rule and its interpretation:

(14) if π is
` X,X⊥

then π∗ = Id|X| = {(a, a) | a ∈ |X|}.

This is correct in the sense that π∗ is always a clique in X

&

X⊥.
With such atoms, the structure of linear interfaces gets non trivial.9 For

example, let’s consider the following atom X =
({−,+}, P)

defined by:

– P (∅) = ∅ and P (|X|) = |X|;
– P ({+}) = {−} and P ({−}) = {+}.

This is the simplest example of an interesting interface, and corresponds to a
“switch” specification. (Interpret − as “off” and + as “on”.)

Lemma 14. if P is the above specification:

(i) P⊥ = P ;
(ii) P · P = Id;
9 We can extend this to a model for Π1 logic, and even to full second order, see [12].

14

(iii) S(X) =
{∅, {+,−}};

(iv)
{
(+,−), (−,+)

} ∈ S(X ⊗X).

Proof. This is just trivial computation... ut

Point (iv) shows in particular that a seed in X ⊗ Y needs not contain a
product of seeds in X and Y . (Compare with Lemma 5.)

The hierarchy generated from this single interface is however still relatively
simple: call a specification deterministic if it commutes with non-empty unions
and intersections.

Lemma 15. Let F be any specification constructed from the above P and the
linear connectives. Then F is deterministic. Moreover, F is of the form 〈f〉
where f is an obvious bijection on the state space of F .10

A less trivial (in the sense that it is not deterministic) specification is the
following: if X is a set, magicX(x) = X. In terms of programming, the use of
the magic command allows to reach any predicate, even the empty one!

Lemma 16. Id|X| magicX −◦magicX(Id|X|) if X 6= ∅.

Thus we cannot strengthen the definition of seeds to read “x = P (x)” without
imposing further constraints on our specifications. It is still an open question
to find a nice class of predicate transformers for which it would be possible.
(However, considerations about second order seem to indicate that strengthening
the definition of seeds in such a way is not a good idea.)

In the case with atoms, because the structure of seeds (sup-lattice) is quite
different from the structure of cliques in the ...-coherent model (domain), it is
difficult to relate seeds and cliques. In particular, a seed needs not be a clique
(since the union of arbitrary cliques is not necessarily a clique); and a clique
needs not be a seed (since a subset of a seed is not necessarily a seed).

Conclusion

One aspect which was not really mentioned here is the fact that linear arrows
from A to B are equivalent to the notion of forward data refinement (Lemma 6)
from the refinement calculus. In particular, a linear proof of A −◦ B is a proof
that specification B implements specification A. It would interesting to see if any
application to the refinement calculus could be derived from this work. In the
same direction, trying to make sense of the notions of backward data refinement,
or of general data refinement in terms of linear logic could prove interesting.11

10 where 〈f〉(x) = {f(a) | a ∈ x}
11 A data refinement from specification F to specification G is a predicate transformer

P s.t. P ·F ⊆ G ·P ; a forward [resp. backward] data refinement is a data refinement
which commutes with arbitrary unions [resp. arbitrary intersections].

15

The fact that this model is degenerate in the propositional case is disappoint-
ing, but degeneracy disappear when we consider Π1 logic, and a fortiori when we
consider full second-order (see [12]). The point of extending this propositional
model to Π1 is to remove the dependency on specific valuations for the atoms
present in a formula.

One the interesting consequences of this work is that a a proof of a formula F
gives a guarantee that the system specified by the formula F can avoid dead-
locks seems to point toward other fields like process calculi and similar models
for “real” computations. This direction is currently being pursued together with
the following link with the differential lambda-calculus ([2]): one property of
this model which doesn’t reflect any logical property is the following; we have a
natural transformation A−◦ !A called co-dereliction, which has a natural inter-
pretation in terms of differential operators on formulas (see [3]). Note that such
a natural transformation forbids any kind of completeness theorem, at least as
far as “pure” linear logic is concerned.

References

1. Girard, J.Y.: Linear logic. Theoretical Computer Science 50 (1987)
2. Ehrhard, T., Regnier, L.: The differential lambda calculus. Theoretical Computer

Science 309 (2003) 1–41
3. Ehrhard, T., Regnier, L.: Differential interaction nets. unpublished note (2004)
4. Gardiner, P.H.B., Martin, C.E., de Moor, O.: An algebraic construction of predi-

cate transformers. Science of Computer Programming 22 (1994) 21–44
5. Back, R.J., von Wright, J.: Refinement Calculus: a systematic introduction. Grad-

uate texts in computer science. Springer-Verlag, New York (1998)
6. Ehrhard, T.: Hypercoherences: a strongly stable model of linear logic. Mathemat-

ical Structures in Computer Science 3 (1993) 365–385
7. Ehrhard, T.: Finiteness spaces. to appear in Mathematical Structures in Computer

Science (2004)
8. Back, R.J., von Wright, J.: Product in the refinement calculus. Technical Report

235, Turku Center for Computer Science (1999)
9. Abramsky, S., Gay, S.J., Nagarajan, R.: A specification structure for deadlock-

freedom of synchronous processes. Theoretical Computer Science 222 (1999) 1–53
10. Bucciarelli, A., Ehrhard, T.: On phase semantics and denotational semantics: the

exponentials. Annals of Pure and Applied Logic 109 (2001) 205–241
11. Boudes, P.: Non-uniform hypercoherences. In Blute, R., Selinger, P., eds.: Elec-

tronic Notes in Theoretical Computer Science. Volume 69., Elsevier (2003)
12. Hyvernat, P.: Predicate transformers and linear logic: second order. unpublished

note (2004)

