
Synchronous Games, Simulations and λ-calculus

Pierre Hyvernat1,2

1 Institut mathématique de Luminy, Marseille, France
2 Chalmers Institute of Technology, Göteborg, Sweden

hyvernat@iml.univ-mrs.fr

Abstract. We refine a model for linear logic based on two well-known
ingredients: games and simulations. We have already shown that usual
simulation relations form a sound notion of morphism between games;
and that we can interpret all linear logic in this way. One particularly
interesting point is that we interpret multiplicative connectives by syn-
chronous operations on games.
We refine this work by giving computational contents to our simulation
relations. To achieve that, we need to restrict to intuitionistic linear logic.
This allows to work in a constructive setting, thus keeping a computa-
tional content to the proofs.
We then extend it by showing how to interpret some of the additional
structure of the exponentials.

To be more precise, we first give a model for the typed λ-calculus; and
then give a model for the differential λ-calculus of Ehrhard and Regnier.
Both this models are proved correct constructively.

Introduction

Transition systems and simulation relations are well known tools in computer
science. More recent is the use of games to give models for different programming
languages [1, 9, 2], or as an interesting tool for the study of other programming
notions [3]. We have devised in [12] a denotational model of linear logic based on
those two ideas. Basically, a formula was interpreted by an alternating transition
system (called an interaction system) and a proof was interpreted by a safety
property for this interaction system. Those concepts which were primarily devel-
oped to model imperative programming and interfaces turned out to be a rather
interesting games model: a formula is interpreted by a game (the interaction
systems), and a proof by a “non-loosing strategy” (the safety property).

Part of the interest is that the notion of safety property is very simple: it is
only a subset of the set of states. However, in terms of games, the associated
strategy (whose existence is guaranteed by the condition satisfied by the subset
of states) is usually not computable. We will show that it is possible to overcome
this problem by restricting to intuitionistic linear logic. More precisely, we will
model typed λ-calculus (seen as a subsystem of intuitionistic linear logic) within
a constructive setting. The model for full intuitionistic linear logic (ILL) can
easily be derived the present work and the additive connectives defined in [12].

The structure of safety properties is in fact richer than the structure of λ-
terms. In particular, safety properties are closed under unions. Since there is
no sound notion of “logical sum” of proofs, this doesn’t reflect a logical prop-
erty. However, it is important in programming since it can be used to interpret
non-determinism. The differential λ-calculus of Ehrhard and Regnier ([6]) is an
extension to the λ-calculus, which has a notion of non deterministic sum. We
show how to interpret this additional structure.

1 Interaction Systems

1.1 The Category of Interaction Systems

We briefly recall the important definitions. For more motivations, we refer to [8]
and [12].

Definition 1. Let S be a set (of states); an interaction system on S is given
by the following data:

– for each s ∈ S, a set A(s) of possible actions;
– for each a ∈ A(s), a set D(s, a) of possible reactions to a;
– for each d ∈ D(s, a), a new state n(s, a, d) ∈ S.

We usually write s[a/d] instead of n(s, a, d).

Following standard practise within computer science, we distinguish the two
“characters” by calling them the Angel (choosing actions, hence the A) and
the Demon (choosing reactions, hence the D). Depending on the authors’ back-
ground, other names could be Player and Opponent, Eloise and Abelard, Alice
and Bob, Master and Slave, Client and Server, System and Environment, etc.

One of the original goals for interaction systems (Hancock) was to represent
real-life programming interfaces. Here is for example the interface of a stack of
booleans:

– S = List(B);
– A() = {Push(b) | b ∈ B} ∪ {Pop};

–

D(,Push(b)) = {∗}
D([],Pop) = {error}
D(b : s,Pop) = {∗}

–

n(s,Push(b)) = b : s
n([], Pop, error) = []
n(b : s, Pop) = s

This gives in full details the specification of the stack interface. This is more
precise than classical interfaces which are usually given by a collection of types:
compare with this poor description of stacks:

– Pop : B
– Push : B → ()

which doesn’t specify what the command actually do; but only tells how they
can be used.

The notion of morphism between such interaction systems is an extension of
the usual notion of simulation relation:

Definition 2. If w1 and w2 are two interaction systems on S1 and S2 respec-
tively; a relation r ⊆ S1 × S2 is called a simulation if:

(s1, s2) ∈ r ⇒ (∀a1 ∈ A1(s1)
)

(∃a2 ∈ A2(s2)
)

(∀d2 ∈ D2(s2, a2)
)

(∃d1 ∈ D1(s1, a1)
)

(
s1[a1/d1], s2[a2/d2]

) ∈ r .

This definition is very similar to the usual definition of simulation relation be-
tween labelled transition systems, but adds one layer of quantifiers to deal with
reactions. That (s1, s2) ∈ r means that “s2 simulates s1”. By extension, if a2

is a witness to the first existential quantifier, we say that “a2 simulates a1”.
Note that the empty relation is always a simulation. In practise, to prevent this
degenerate case, we would add a notion of initial state(s) and require that initial
states are related through the simulation.

To continue on the previous example, programming a stack interface amounts
to implementing the stack commands using a lower level interface (arrays and
pointer for examples). If we interpret the quantifiers constructively, this amounts
to providing a (constructive) proof that a non-empty relation is a simulation
from this lower level interaction system to stacks. (See [8] for a more detailed
description of programming in terms of interaction systems.)

Recall that the composition of two relations is given by:

(s1, s3) ∈ r2 · r1 ⇔ (∃s2) (s1, s2) ∈ r1 and (s2, s3) ∈ r2

It should be obvious that the composition of two simulations is a simulation and
that the equality relation is a simulation from any w to itself. Thus, we can put:

Definition 3. We call Int the category of interaction systems with simulations.

Note that everything has a computational content: the composition of two sim-
ulations is just given by the composition of the two “algorithms” simulating w3

by w2 and w2 by w1; and that the algorithm for the identity from w to w is
simply the “copycat” strategy.

1.2 Notation

Before diving in the structure of interaction systems, let’s detail some of the
notation.

– An element of the indexed cartesian product
∏

a∈A D(a) is given by a func-
tion f taking any a ∈ A to an f(a) in D(a). When the set D(a) doesn’t
depend on a, it amounts to a function f : A → D.

– An element of the indexed disjoint sum
∑

a∈A D(a) is given by a pair (a, d)
where a ∈ A and d ∈ D(a). When the set D(a) doesn’t depend on a, this is
simply the cartesian product A×D.

– We write List(S) for the set of “lists” over set S. A list is simply a tuple
(s1, s2, . . . sn) of elements of S. The empty list is denoted ().

– The collection Mf (S) of finite multisets over S is the quotient of List(S)
by permutations. We write [s1, . . . sn] for the equivalence class containing
(s1, . . . sn). We write “+” for the sum of multisets. It simply corresponds to
concatenation on lists.

Concerning the product and sum operators, it should be noted that they have
a computational content if one works in a constructive setting: an element of∏

a∈A D(a) is an algorithm with input a ∈ A and output f(a) ∈ D(a); and an
element of

∑
a∈A D(a) is simply a pair as above. This is in fact the basis of

dependent type theory frameworks like Martin-Löf’s type theory or the calculus
of construction.
Remark: even if it was an important motivation for this work, we do not in-
sist too much on the “constructive mathematics” part. Readers familiar with
constructive frameworks should easily see that everything makes computational
sense; and classical readers can skip the comments about computational content.

1.3 Constructions

We now define the connectives of multiplicative exponential linear logic. With
those, making Int into a denotational model of intuitionistic multiplicative ex-
ponential linear logic more or less amounts to showing that it is symmetric
monoidal closed, with a well behaved comonad.

Constant. A very simple, yet important interaction system is “skip”, the inter-
action system without interaction. Following the linear logic convention, we call
it ⊥:

Definition 4. Define ⊥ (or skip) to be the following interaction system on the
Singleton set {∗}:

A⊥(∗) = {∗}
D⊥(∗, ∗) = {∗}
n⊥(∗, ∗, ∗) = {∗} .

Depending on the context, this interaction system is also denoted by 1.

Note that it is very different from the two following interaction systems (on the
same set of states) which respectively deadlock the Angel and the Demon:

Aa(∗) = ∅ Ad(∗) = {∗}
Da(∗,) = Dd(∗, ∗) = ∅
na(∗, ,) = nd(∗, ∗,) = .

Those two systems play an important rôle in the general theory of interaction
systems (the first one is usually called abort, while the second one is usually
called magic) but they do not appear in the model presented below.

Synchronous Product. There is an obvious product construction reminiscent
of the synchronous product found in SCCS (synchronous calculus of communi-
cating systems, [13]):

Definition 5. Suppose w1 and w2 are interaction systems on S1 and S2. Define
the interaction system w1 ⊗ w2 on S1 × S2 as follows:

Aw1⊗w2

(
(s1, s2)

)
= A1(s1)×A2(s2)

Dw1⊗w2

(
(s1, s2), (a1, a2)

)
= D1(s1, a1)×D2(s2, a2)

nw1⊗w2

(
(s1, s2), (a1, a2), (d1, d2)

)
=

(
s1[a1/d1], s2[a2/d2]

)
.

This is the synchronous parallel composition of w1 and w2: the Angel and the
Demon exchange pairs of actions/reactions.

For any sensible notion of morphism, skip should be a neutral element for
this product. It is indeed the case, for the following reason: the components of
w ⊗ skip and w are isomorphic by dropping the second (trivial) coordinate:

w ⊗ 1 w

S × {∗} S
A

(
(s, ∗)) = A(s)× {∗} A(s)

D
(
(s, ∗), (a, ∗)) = D(s, a)× {∗} D(s, a)

n
(
(s, ∗), (a, ∗), (d, ∗)) =

(
s[a/d], ∗) s[a/d]

This implies trivially that {((s, ∗), s) | s ∈ S} is an isomorphism. For similar
reasons, this product is transitive and commutative.

Lemma 1. “ ⊗ ” is a commutative tensor product in the category Int. Its
action on morphisms is given by:

(
(s1, s

′
1), (s2, s

′
2)

) ∈ r ⊗ r′ ⇔
{

(s1, s2) ∈ r
and (s′1, s

′
2) ∈ r′

Checking that r ⊗ r′ is indeed a simulation is easy.

Linear Arrow. The definition of the interaction system w1 (w2 is not as
obvious as the definition of the tensor (⊗):

Definition 6. If w1 and w2 are interaction systems on S1 and S2, define the
interaction system w1 (w2 on S1 × S2 as follows:

A
(
(s1, s2)

)
=

∑

f∈A1(s1)→A2(S2)

∏

a1∈A1(s1)

D2

(
s2, f(a1)

) → D1(s1, a1)

D
(
(s1, s2), (f, G)

)
=

∑

a1∈A1(s1)

D2

(
s2, f(a1)

)

n
(
(s1, s2), (f, G), (a1, d2)

)
=

(
s1[a1/Ga1(d2)] , s2[f(a1)/d2]

)
.

It may seem difficult to get some intuition about this interaction system; but it
is a posteriori quite natural: (see Proposition 1)

– An action in state (s1, s2) is given by:
(1) a function f (the index for the element of the disjoint sum) translating

actions from s1 into actions from s2;
(2) for any action a1, a function Ga1 translating reactions to f(a1) into

reactions to a1.
– A reaction to such a “translating mechanism” is given by:

(1) an action a1 in A1(s1) (which we want to simulate);
(2) and a reaction d2 in D2(s2, f(a1)) (which we want to translate back).

– Given such a reaction, we can simulate a1 by a2 ∈ A2(s2) obtained by
applying f to a1; and translate back d2 into d1 ∈ D1(s1, a1) by applying Ga1

to d2. The next state is just the pair of states s1[a1/d1] and s2[a2/d2].

It thus looks like the interaction system w1 (w2 is related to simulations
from w1 to w2. It is indeed the case:

Proposition 1. In Int, “ ⊗ ” is left adjoint to “ (”.

Proof. The proof is not really difficult, but is quite painful to write (or read).
Here is an attempt.
Note that the following form of the axiom of choice is constructively valid:3

AC :
(∀a ∈ A

)(∃d ∈ D(a)
)
ϕ(a, d) ⇔ (∃f ∈ ∏

a∈A D(a)
)(∀a ∈ A

)
ϕ
(
a, f(a)

)

When the domain D(a) for the existential quantifier doesn’t depend on a ∈ A,
we can simplify it into:

AC :
(∀a ∈ A

)(∃d ∈ D
)
ϕ(a, d) ⇔ (∃f ∈ A → D

)(∀a ∈ A
)
ϕ
(
a, f(a)

)

In the sequel, the part of the formula being manipulated will be written in
bold. That r is a simulation from w1 ⊗ w2 to w3 takes the form4

(s1, s2, s3) ∈ r ⇒ (∀a1 ∈ A1(s1)
)(∀a2 ∈ A2(s2)

)
(∃a3 ∈ A3(s3)

)
(∀d3 ∈ D3(s3, a3)

)
(∃d1 ∈ D1(s1, a1)

)(∃d2 ∈ D2(s2, a2)
)

(
s1[a1/d1], s2[a2/d2], s3[a3/d3]

) ∈ r

Using AC on the ∀a2∃a3, we obtain:

(s1, s2, s3) ∈ r ⇒ (∀a1 ∈ A1(s1)
)

(∃f ∈ A2(s2) → A3(s3)
)

(∀a2 ∈ A2(s2)
)(∀d3 ∈ D3(s3, f(a2))

)
(∃d1 ∈ D1(s1, a1)

)(∃d2 ∈ D2(s2, a2)
)

(
s1[a1/d1], s2[a2/d2], s3[f(a2)/d3]

) ∈ r

3 This form of the axiom of choice is provable in Martin-Löf’s type theory or in the
calculus of construction...

4 modulo associativity (S1 × S2)× S3 ' S1 × (S2 × S3) ' S1 × S2 × S3...

We can now apply AC on ∀d3∃d2:

(s1, s2, s3) ∈ r ⇒ (∀a1 ∈ A1(s1)
)

(∃f ∈ A2(s2) → A3(s3)
)

(∀a2 ∈ A2(s2)
)

(∃g ∈ D3(s3, f(a2)) → D2(s2, a2)
)

(∀d3 ∈ D3(s3, f(a2))
)

(∃d1 ∈ D1(s1, d1)
)

(
s1[a1/d1], s2[a2/g(d3)], s3[f(a2)/d3]

) ∈ r

and apply AC one more time on ∀a2∃g to obtain:

(s1, s2, s3) ∈ r ⇒ (∀a1 ∈ A1(s1)
)

(∃f ∈ A2(s2) → A3(s3)
)

(∃G ∈ ∏
a2∈A2(s2)

D3(s3, f(a2)) → D2(s2, a2)
)

(∀a2 ∈ A2(s2)
)(∀d3 ∈ D3(s3, f(a2))

)
(∃d1 ∈ D1(s1, d1)

)
(
s1[a1/d1], s2[a2/Ga2(d3)], s3[f(a2)/d3]

) ∈ r

which is equivalent to

(s1, s2, s3) ∈ r ⇒ (∀a1 ∈ A1(s1)
)

(
∃(f, G) ∈

∑
f∈A2(s2)→A3(s3)∏
a2∈A2(s2)

D3(s3, f(a2)) → D2(s2, a2)

)

(∀(a2, d3) ∈ ∑
A2(s2)

D3(s3, f(a2))
)

(∃d1 ∈ D1(s1, d1)
)

(
s1[a1/d1], s2[a2/Ga2(d3)], s3[f(a2)/d3]

) ∈ r

By definition, this means that r is a simulation from w1 to w2 (w3.
Once more, all this formal manipulation keeps the computational content of the
simulations. (Because AC is constructively valid.) ut
The notion of safety property from [12] corresponds to simulations from 1 to w,
or equivalently, subsets x of S such that:

s ∈ x ⇒ (∃a ∈ A(s)
)(∀d ∈ D(s, a)

)
s[a/d] ∈ x .

The analogy with strategies should be obvious: if x is a safety property, and
s ∈ x then the Angel has a strategy to avoid deadlocks, starting from s.

Multithreading. We now come to the last connective needed to interpret the
λ-calculus. Its computational interpretation is related to the notion of multi-
threading, i.e. the possibility to run several instances of a program in parallel.
Let’s start by defining synchronous multithreading in the most obvious way:

Definition 7. If w is an interaction system on S, define ÃL(w), the multithreaded
version of w to be the interaction system on List(S) with:

ÃL.A
(
(s1, . . . sn)

)
= A(s1)× . . . A(sn)

ÃL.D
(
(s1, . . . sn), (a1, . . . an)

)
= D(s1, a1)× . . . D(sn, dn)

ÃL.n
(
(s1, . . . sn), (a1, . . . an), (d1, . . . dn)

)
=

(
s1[a1/d1], . . . sn[an/dn]

)
.

This interaction system is just an “n-ary” version of the synchronous product.
To get the abstract properties we want, we need to “quotient” multithreading
by permutations. Just like multisets are list modulo permutation, so is !w the
multithreaded ÃL(w) modulo permutations. This definition is possible because
ÃL(w) is “compatible” with permutations: if σ is a permutation, we have

σ · ((s1, . . . sn)
[
(a1, . . . an)/(d1, . . . dn)

])
=(

σ · (s1, . . . sn)
)
[σ · (a1, . . . an)/σ · (d1, . . . dn)] .

The final definition is:

Definition 8. If w is an interaction system on S, define ÃL(w), define !w to be
the following interaction system on Mf (S):

!A(µ) =
∑

s∈µ ÃL.A(s)
!D

(
µ, (s, a)

)
= ÃL.D(s, a)

!n
(
µ, (s, a), d

)
= S · ÃL.n(s, a, d) .

Unfolded, it gives:

– an action in state µ (a multiset) is given by an element s of the equivalence
class µ (a list) together with an element a in ÃL.A(s) (a list of actions);

– a reaction is given by a list of reactions d in ÃL.D(s, a);
– the next state is the equivalence class containing the list s[a/d] (the orbit

of s[a/d] under the action of the group of permutations).

This operation enjoys a very strong algebraic property:

Proposition 2. “ ! ” is a comonad in Int.

Proof. We need to find two operations:

– εw : !w → w defined as εw =
{(

[s], s
) | s ∈ S

}
;

– and δw : !w → !!w defined as the converse of the graph of the “concat”
function:

δw =
{(∑

i∈I

µi, [µi]i∈I

) | ∀i ∈ I µi ∈Mf (S)
}

For any w, those operations are indeed simulations: for εw, it is quite obvious,
and for δw, it is quite painful to write. Let’s only give an example from which
the general case can easily be inferred:

1. we have ([[s1, s2, s3], [t1], []], [s1, s2, s3, t1]) ∈ δw

2. for any command ((a1, a2, a3), (b1), ()) in state [[s1, s2, s3], [t1], []], we need to
find an action in [s1, s2, s3, t1]: simply take (a1, a2, a3, b1);

3. for any reaction (d1, d2, d3, e1) to this action, we need to find a reaction to
the original command, i.e. to ((a1, a2, a3), (b1)()): take ((d1, d2, d3), (e1), ());

4. the next states are respectively
– [[n(s1, a1, d1), n(s2, a2, d2), n(s3, a3, d3)], [n(t1, b1, e1)], []]

– and [n(s1, a1, d1), n(s2, a2, d2), n(s3, a3, d3), n(t1, b1, e1)].
They are indeed related through δw.

To be really precise, one would need to manipulate lists of states (representative
of the multisets); but this only makes the proof even less readable.

Checking that the appropriate diagrams commute is immediate. It only in-
volves the underlying sets and relations, and not the interaction systems or
simulation conditions. (In fact , finite multisets form a comonad in the category
of sets and relations...) ut

2 Interpreting the λ-Calculus

We now have all the ingredients to give a denotational model for the typed
λ-calculus: a type T will be interpreted by an interaction system T ∗; and a
judgement “x1 : T1, . . . xn : Tn ` t : T” will be interpreted by simulation from
!T ∗1 ⊗ . . . !T ∗n to T ∗.

2.1 Typing rules

The typing rules for the simply typed λ-calculus are given below:

1.
Γ ` x : ω

if x : ω appears in Γ ;

2.
Γ ` t : ω → ω′ Γ ` u : ω

Γ ` (t)u : ω′
;

3.
Γ, x : ω ` t : ω′

Γ ` λx.t : ω → ω′
.

We follow Krivine’s notation for the application and write “(t)u” for the appli-
cation of t to u.

2.2 Interpretation of Types

We assume a set of type variables (“propositional variables”): X, . . . Nothing
depend on the valuation we give to those type variables, so that we are almost
interpreting Π1 λ-calculus.5

For a valuation ρ from type variables to interaction systems, the interpreta-
tion of types is defined in the usual way:

Definition 9. Let ω be a type. Define the interpretation ω∗ of ω as:

– X∗ = ρ(X);
– (ω → ω′)∗ = !ω∗ (ω′∗.

5 System-F in which all the quantifiers appear at the beginning of the term. To get
an idea on how to get a real model of system-F , refer to [10].

2.3 Interpretation of Terms

If ω is a type, write |ω| for the set of states of its interpretation:

– |Xi| = Si (set of states of ρ(Xi));
– |ω → ω′| =

(Mf |ω|
)× |ω′|.

A valuation is a way to interpret typed variables from the context:

Definition 10. If Γ = x1 : ω1, . . . xn : ωn is a context, an environment for Γ
is a tuple γ in Mf |ω1| × . . .Mf |ωn|. To simplify notation, we may write the
tuple γ = (µ1, . . . µn) as “x1 := µ1, . . . xn := µn”. We may also write γ(x) for
the projection of γ on the appropriate coordinate. Sum of tuples of multisets is
defined pointwise.

We now interpret judgements: if we can type Γ ` t : ω′ and if γ is an
environment for Γ , the interpretation [[t]]γ of term t in environment γ is a subset
of |ω| defined as follows:

Definition 11. We define [[t]]γ by induction on t:

1. if we have
Γ ` x : ω

with x : ω in Γ ,

then [[x]]γ =
{{s} if γ(x) = [s] and γ(y) = [] whenever x 6= y
∅ otherwise ;

2. if we have
Γ ` t : ω → ω′ Γ ` u : ω

Γ ` (t)u : ω′
,

then s ∈ [[(t)u]]γ iff (µ, s) ∈ [[t]]γ0 for some µ = [s1, . . . sn] ∈ Mf |ω| s.t.
si ∈ [[u]]γi for all i = 1, . . . n and γ = γ0 + γ1 + . . . γn;

3. if we have
Γ, x : ω ` t : ω′

Γ ` λx.t : ω → ω′
,

then [[λx.t]]γ = {(µ, s) | µ ∈Mf |ω|, s ∈ [[t]]γ,x:=µ}.

It is immediate to check that this definition is well formed.

If Γ = x1 : ω1, . . . xn : ωn, write !Γ for !ω∗1 ⊗ . . . !ωn; similarly, we omit the
superscript ∗ and write ω for ω∗. The interpretation of terms is correct in the
following sense:

Proposition 3. Suppose that Γ ` t : ω′, then the relation “ ∈ [[t]] ” is a
simulation relation from !Γ to ω′.
In other words, if s ∈ [[t]]γ , then s (in ω′) simulates γ (in !Γ).

This is quite surprising because the interpretation of t doesn’t depend on the
interaction systems used to interpret the types but only the underlying set of
states.6

6 The interpretation is called the relational interpretation: it can be defined in the
category of sets and relations...

Proof. We work by induction on the structure of the type inference.

1. Axiom: it amount to showing that {([], . . . [], [s], [], . . . [], s) | s ∈ |ω|} is a
simulation from !Γ to ω. This is easy: the only actions available in state
([], . . . [s], [], . . .) are of the form ((), . . . (a), () . . .) where a ∈ A(s), and they
are simulated by the action a. The reaction d is translated back into reaction
((), . . . , (d), (), . . .); and the rest is obvious.

2. Application: suppose we have s ∈ [[(t)u]]γ . By definition, we know that we
have (µ, s) ∈ [[t]]γ0 for some µ = [s1, . . . sn] s.t. each si is in [[u]]γi

for a
partition γ = γ0 + γ1 + . . . γn.
By induction hypothesis, we thus know that (µ, s) (in ω → ω′) simulates γ0

(in !Γ); and that any si (in ω) simulates γi (in !Γ).
Rather than doing the full formal proof (which involves many indices), we’ll
show how it works on an example. The general case can easily be deduced
from that.
Suppose Γ is reduced to a single assumption x : ν so that γ is reduced to
a single multiset, [v1, v2, v3] for our example. Suppose s ∈ [[(t)u]]x:=[v1,v2,v3]

because:
– ([t1, t2], s) ∈ [[t]]x:=[v2]

– t1 ∈ [[u]]x:=[v1,v3] and t2 ∈ [[u]]x:=[].
We need to show that s simulates [v1, v2, v3]:
(a) suppose a1 ∈ Aν(v1), a2 ∈ Aν(v2) and a3 ∈ Aν(v3);
(b) we need to find an action in Aω′(s) simulating (a1, a2, a3):

(1) by induction hypothesis, t1 simulates [v1, v3], so that we can find an
action b1 ∈ Aω(t1) simulating (a1, a3);

(2) similarly, t2 simulates [], so that we can find an action b2 ∈ Aω(t2)
simulating ();

(3) we also have that ([t1, t2], s) (in ω → ω′) simulates [v2] (in !ν). By
proposition 1, this is equivalent to saying that s (in ω′) simulates
([v2], [t1, t2]) (in !ν ⊗ !ω).
Thus, we can find an action a ∈ Aω′(s) simulating

(
(a2), (b1, b2)

)
.

By composing the above two simulations on the right ((b1, b2) simu-
lates (a1, a3)), we thus obtain that a simulates (a1, a2, a3).

We now need to translate the reactions back: let d ∈ Dω′(s, a),
(3) by induction, we can translate d into a reaction

(
(d2), (e1, e2)

)
to(

(a2), (b1, b2)
)
;

(2) we can translate e2 into a reaction () to b2;
(1) and finally we can translate e1 into a reaction (d1, d3) to (a1, a3).
Thus, we obtain reactions d1 ∈ Dν(v1, a1), d2 ∈ Dν(v2, a2) and d3 ∈
Dν(v3, a3).

(c) The new states we get from those actions/reactions are: s[a/d] on one
side; and [v1[a1/d1], v2[a2/d2], v3[a3/d3]] on the other side. They are in-
deed related because:
(1) t1[b1/e1] ∈ [[u]]x:=[v1[a1/d1],v3[a3/d3]];
(2) t2[b2/e2] ∈ [[u]]x:=[];
(3) and finally [t1[b1/e1], t2[b2/e2]] ∈ [[t]]x:=v2[a2/d2].

3. Abstraction: this is immediate. Suppose (µ, s) ∈ [[λx.t]]γ ; we need to show
that (µ, s) (in ω → ω′) simulates γ (in !Γ). By proposition 1, this is equiva-
lent to showing that s (in ω′) simulates (γ, µ) (in !Γ ⊗ !w). This is exactly
the induction hypothesis.

ut

To summarise all this, here is a tentative rewording of the above: if Γ ` t : ω,

(1) each type represent a process;
(2) each process in the context can be run in parallel multiple times;
(3) the environment γ represents the initial states for the context;
(4) if s ∈ [[t]]γ then s can be used as an initial state to simulate γ;
(5) the algorithm for the simulation is contained in t.

To finish the justification that we have a denotational model, we now need
to check that the interpretation is invariant by β-reduction.

Proposition 4. For all terms t and u and environment γ, we have

[[(λx.t)u]]γ = [[t[u/x]]]γ .

The proof works by induction and is neither really difficult nor very interesting.
It can be found on http://iml.univ-mrs.fr/∼hyvernat/academics.html.

3 Interpreting the Differential λ-calculus

Simulation relations from w to w′ enjoy the additional property that they form
a complete sup-lattice:

Lemma 2. The empty relation is always a simulation from any w to w′; and if
(ri)i∈I is a family of simulations from w to w′, then

⋃
i∈I ri is also a simulation

from w to w′.

The proof is immediate...

Unfortunately, this doesn’t reflect any property of λ-terms. The reason is
that (1) not every type is inhabited, and (2) we do not see a priori how to take
the union of two terms. For example, what is the meaning of λxλy.x ∪ λxλy.y
in the type X → X → X?7

Ehrhard and Regnier’s differential λ-calculus ([6]) extends the λ-calculus by
adding a notion of differentiation of λ-terms. One consequence is that we need
to have a notion of sum of arbitrary terms, interpreted as a non-deterministic
choice. It is not the right place to go into the details of the differential λ-calculus
and we refer to [6] for motivations and a complete description.

In the typed case, we have the following typing rules:

7 In terms of usual datatypes translation, this term would be t ∪ f in the type B.

1.
Γ ` 0 : ω

and
Γ ` t : ω Γ ` u : ω

Γ ` t + u : ω
;

2.
Γ ` t : ω → ω′ Γ ` u : ω

Γ ` D t · u : ω → ω′
.

The intuitive meaning is that “D t · u” is the result of (non-deterministically)
replacing exactly one occurrence of the first variable of t by u. We thus obtain a
sum of terms, depending on which occurrence was replaced. This gives a notion
of differential substitution (or linear substitution) which yields a differential-
reduction. The rules governing this reduction are more complex than usual
β-reduction rules. We refer to [6] for a detailed description.

We extend the interpretation of terms in the following way:

Definition 12. Define the interpretation of a typed differential λ-term by in-
duction on the type inference:

1. if we have
Γ ` 0 : ω

, then we put [[0]]γ = ∅;

2. if we have
Γ ` t : ω Γ ` u : ω

Γ ` t + u : ω
,

then we put [[t + u]]γ = [[t]]γ ∪ [[u]]γ ;

3. if we have
Γ ` t : ω → ω′ Γ ` u : ω

Γ ` D t · u : ω → ω′
,

then we put (µ, s′) ∈ [[D t · u]]γ iff (µ + [s], s′) ∈ [[t]]γ1 for some s ∈ [[u]]γ2 s.t.
γ = γ1 + γ2.

Proposition 3 extends as well:

Proposition 5. Suppose that Γ ` t : ω′ where Γ is a context and t a differential
λ-term. The relation “ ∈ [[t]] ” is a simulation relation from !Γ to ω′.

Proof. The proof for the sum and the 0 are contained in proposition 2.

For differentiation, suppose we have (µ, s′) ∈ [[D t · u]]γ , i.e. (µ + [s], s′) ∈ [[t]]γ1

for some s ∈ [[u]]γ2 , with γ = γ1 + γ2. We need to show that (µ, s′) (in ω → ω′)
simulates γ (in !Γ). Since γ = γ1 +γ2, it is enough to show that we can simulate
(γ1, γ2) (in !Γ ⊗ !Γ).
By proposition 1, this is equivalent to showing that s′ (in ω′) simulates (γ1, γ2, µ)
(in !Γ ⊗ !Γ ⊗ !ω).
Let aγ1 ∈ !AΓ (γ1), aγ2 ∈ !AΓ (γ2) and aµ ∈ !Aω(µ); we need to find an action
in Aω′(s′) to simulate (aγ1 , aγ2 , aµ):

(1) by induction hypothesis, we know that s (in ω) simulates γ2 (in !Γ); so that
we can find an action a ∈ Aω(s) simulating aγ2 ;

(2) by induction, we know that s′ (in ω′) simulates (γ1, µ + [s]) (in !Γ ⊗ !ω), so
that we can find an action a′ ∈ Aω′(s′) simulating

(
aγ1 , (aµ, a)

)
.

Since a simulates aγ2 , by composition, a simulates
(
aγ1 , (aµ, aγ2)

)
; and by

associativity and commutativity, we can thus simulate (aγ1 , aγ2 , aµ).

To translate back a reaction d′ to a′ into a reaction (dγ1 , dγ2 , dµ), we proceed
similarly:

(2) by induction, we can translate d′ into a reaction (dγ1 , dµ, d) to
(
aγ1 , (aµ, a)

)
;

(1) by induction, we can also translate the reaction d (in Dω(s, a)) into a reaction
dγ2 (in !DΓ (s, aγ2)).

We thus obtain reactions dγ1 , dγ2 and dµ as desired. That the resulting next
states are still related is quite obvious... ut

We now need to check that the interpretation is invariant by β-reduction and
differential reduction.

Proposition 6. For all differential terms t and u and environment γ, we have:

[[(λx.t)u]]γ = [[t[u/x]]]γ
[[D(λx.t) · u]]γ = [[λx . (∂t/∂x) · u]]γ

Just like for Proposition 4, the proof is quite easy but tedious. The interested
reader can find it at http://iml.univ-mrs.fr/∼hyvernat/academics.html.

Conclusion

Technically speaking, this work is not very different from [12], which is itself
quite close to [11]. The main reasons for producing it are:

– first, it shows that we can give a computational content to the notion of
simulation if we do not try to interpret all of linear logic;

– second, it shows that some of the additional structure of interaction sys-
tems and simulation does have a logical significance. We showed that by
interpreting the differential λ-calculus.

Even if we haven’t done it formally, it is quite easy to extend the model to full
intuitionistic linear logic while keeping the computational content of simulations.
To define the additive, we use the definition of ⊕ from [12].

It is in principle possible to formalise all the above in a proof assistant (Agda
[4] or Coq [5] come to mind).8 From such a system, one could extract the simu-
lations. For example, a term of type T → T ′ would give an algorithm simulating
many synchronous occurrences of T by a single occurrence of T ′.
8 One needs to be careful to be able to deal with the notion of equivalence classes used

in the definition of !w. The idea is to use interaction systems on “setoids”, where
the equivalence relation is a simulation...

It is however difficult to apply this to obtain real-life simulations. The prob-
lem is that we only get “purely logical” simulations. Simulations of interest for
application rely heavily on the different interaction systems used. One way to get
more interesting simulations (from a practical point of view) might be to use con-
stant interaction systems (booleans, natural numbers, or more practical ones like
stacks, memory cells, etc..) as ground types, together with specific simulations
(the values true and false, successor function, or more practical simulations) as
inhabitant of specific types.

In pretty much the same way as [12] makes Int into a denotational model
for classical linear logic, we can make interaction systems into a denotational
model for “classical differential linear logic”: differential interaction nets [7].
This system doesn’t make much sense logically speaking, but seems to enjoy
relationship with process calculi. This is an encouraging direction of research.

References

1. Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full abstraction
for PCF. Information and Computation, 163(2):409–470, 2000.

2. Samson Abramsky and Guy McCusker. Linearity, sharing and state: a fully
abstract game semantics for IDEALIZED ALGOL with active expressions. In
ALGOL-like languages, Vol. 2, Progr. Theoret. Comput. Sci., pages 297–329.
Birkhäuser Boston, Boston, MA, 1997.

3. Sansom Abramsky, Dan Ghica, Luke Ong, and Andrzej Murawski. Applying game
semantics to compositional software modelling and verification. In Tools and Algo-
rithms for the Construction and Analysis of Systems, volume 2988 of LNCS, pages
421–435. Springer-Verlag, 2004.

4. The Agda proof assistant. http://www.cs.chalmers.se/∼catarina/agda/.
5. The Coq proof assistant. http://coq.inria.fr/.
6. Thomas Ehrhard and Laurent Regnier. The differential lambda calculus. Theoret.

Comput. Sci., 309(1):1–41, 2003.
7. Thomas Ehrhard and Laurent Regnier. Differential interaction nets. Invited paper,

Workshop on Logic, Language, Information and Computation (WoLLIC), 2004.
8. Peter Hancock and Pierre Hyvernat. Programming as applied basic topology. to

be published in Annals of Pure and Applied logic, 2004.
9. J. Martin E. Hyland and Luke Chih-Hao Ong. On full abstraction for PCF: I, II

and III. Information and Computation, 163(2):285–408, 2000.
10. Pierre Hyvernat. Predicate transformers and linear logic: second order. unpub-

lished note, 2004.
11. Pierre Hyvernat. Predicate transformers and linear logic: yet another denota-

tional model. In Jerzy Marcinkowski and Andrzej Tarlecki, editors, 18th Interna-
tional Workshop CSL 2004, volume 3210 of LNCS, pages 115–129. Springer-Verlag,
September 2004.

12. Pierre Hyvernat. Synchronous games, deadlocks and linear logic. unpublished
note, 2005.

13. Robin Milner. Calculi for synchrony and asynchrony. Theoret. Comput. Sci.,
25(3):267–310, 1983.

