
Some Properties of Inclusions of Multisets
and Contractive Boolean Operators

Pierre Hyvernat1

Université de Savoie,
Laboratoire de Mathématiques,

73376 Le Bourget-du-Lac Cedex,
France

Abstract

Consider the following curious puzzle: call an n-tuple X = (X1, . . . , Xn) of sets smaller than another n-
tuple Y if it has fewer unordered sections. We show that equivalence classes for this preorder are very easy
to describe and characterize the preorder in terms of the simpler pointwise inclusion and the existence of
a special increasing Boolean operator f : Bn → Bn. We also show that contrary to increasing Boolean
operators, the relevant operators are not finitely generated, which might explain why this preorder is not
easy to describe concretely.

Keywords: multiset, system of representative, Boolean operators
2000 MSC: 06A06, 06E30, 94C10

Introduction: a puzzle

Let N be a (fixed) set and n be a (fixed) natural number. We can consider the following partial order
on P∗(N)n, the collection of n-tuples of nonempty subsets of N :

X ⊆ Y def
=

∏
1≤i≤n

Xi ⊆
∏

1≤i≤n

Yi

where
∏
iXi is the usual cartesian product. Because we restrict to nonempty subsets, this preorder coincides

with pointwise inclusion:

(X1, . . . , Xn) ⊆ (Y1, . . . , Yn) ⇐⇒ ∀1 ≤ i ≤ n, Xi ⊆ Yi .

We now consider a commutative version of the cartesian product where instead of the usual ordered n-tuples,
we take “unordered n-tuples”.

Definition 1. If X = (X1, . . . , Xn) is an n-tuple of nonempty subsets of N , define S
(
X
)
, the set of

unordered sections of X, as

S
(
X
) def

=

(∏
1≤i≤n

Xi

)/
Sn , (1)

where /Sn denotes quotienting by the action of the symmetric group Sn.

Email address: Pierre.Hyvernat@univ-savoie.fr (Pierre Hyvernat)
URL: http://lama.univ-savoie.fr/~hyvernat/ (Pierre Hyvernat)

1This work was partially funded by the French ANR project récré ANR-11-BS02-0010.

Preprint submitted to Discrete Mathematics April 2014

Strictly speaking, Sn does not really act on
∏
iXi but on Nn. The notion is well-defined because the orbit

of an element of
∏
iXi exists even if not all its elements are themselves in

∏
iXi. From now on, we will

drop the adjective “unordered” and refer to an element of S
(
X
)

simply as a section of X. We now define
the preorder v on P∗(N)n:

Definition 2. If X and Y are n-tuples of nonempty subsets of N , we define X v Y to mean S
(
X
)
⊆ S

(
Y
)
.

We write X ≈ Y for “X v Y and Y v X”, that is, for S
(
X
)

= S
(
Y
)
.

The relation v is only a preorder because it is not antisymmetric:
(
Xσ(1), . . . , Xσ(n)

)
≈ (X1, . . . , Xn) for

any permutation σ.

The aim of this note is to answer the following questions:

1. When do we have X ≈ Y ?

2. What is the relation between X v Y and X ⊆ Y ?

The problem is subtler than it appears and the first question makes for an interesting puzzle: while ele-
mentary, the proof is more complex than what most people initially think. Readers are thus encouraged to
spend a couple of minutes playing with the problem before reading on.

Related notions. The notion of system of representatives was introduced by P. Hall in 1935 [3]. A system
of representatives for the n-tuple of sets X is simply an n-tuple x such that there is a permutation σ
satisfying xi ∈ Xσ(i) for each i ∈ {1, . . . , n}. Equivalence classes of those under permutations are exactly

the unordered sections of X of Definition 1. A lot of attention has been devoted to systems of distinct
representatives, also called transversals, where the components of x are pairwise distinct [8]. Rather than
looking at them individually, we look here at the collection of all possible systems of representatives. This
shift of focus seems to be new in itself, as is the notion of contractive increasing Boolean operator that
appears later. Relating the two will give a concise answer to the second question.

This work can also be seen as a first step toward a factor theory for commutative regular algebra [2].
In his book on regular languages, John Conway develops a fascinating theory of factorization: if R is a
regular set, a subfactorization is tuple of sets X of words satisfying X1 · . . . · Xn ⊆ R, where · denotes
concatenation of regular sets. A subfactorization is a factorization if each Xi is maximal and a factor of R
is any such Xi. Conway shows in particular that a regular set has only finitely many factors, and that they
are all regular.

Conway devotes a chapter to commutative regular algebra, i.e. the theory arising from regular algebra
when word concatenation is made commutative. Factor theory isn’t part of this chapter, probably because
“Commutative regular algebra is notable for the number of results whose proofs one would expect to be
trivial, but which turn out to be very subtle.” ([2], page 95). Commutative factor theory certainly looks
very subtle and this work only gives a very partial answer: given the regular set Y1 · . . . · Yn where each Yi
is a set of symbols, we characterize it factorizations consisting of exactly n factors.

The initial motivation for this work comes from a very different area: denotational models of linear
logic. In [4], the relation S

(
X
)
⊆ T played an important role, where the set T was an arbitrary collection

of n-multisets. Understanding this relation was necessary to compute small examples, and the preorder “v”
naturally appeared in this way. (Note that the results of this paper are not to make those computations any
easier than they were...)

Notation. To make formulas less verbose, we will abuse the vector notation by lifting “∈” pointwise: just
as X ⊆ Y means “∀1 ≤ i ≤ n, Xi ⊆ Yi”, the notation a ∈ X is a synonym for “ai ∈ Xi for all 1 ≤ i ≤ n”.
The (left) action of Sn on n-tuples is written with a dot and is defined as σ · a def

=
(
aσ−1(1), . . . , aσ−1(n)

)
.

When talking about n-multisets (orbits for the action of Sn), we identify an n-tuple with its orbit. In
particular, a ∈ S

(
X
)

means that σ · a ∈ X for some permutation σ, i.e., that ai ∈ Xσ(i) for all 1 ≤ i ≤ n.

2

1. The equivalence relation

The first question has a simple answer: equivalence is just equality up to a permutation of the sets. In
other words, the failure of antisymmetry is captured by the remark coming after Definition 2.

Proposition 1. Given any X and Y in P∗(N)n, we have

X ≈ Y ⇐⇒ ∃σ ∈ Sn, σ ·X = Y . (2)

This proposition is slightly surprising because the left side is definitionally equal to

∀a ∈ X, ∃σ ∈ Sn, σ · a ∈ Y and ∀b ∈ Y , ∃σ′ ∈ Sn, σ
′ · b ∈ X , (3)

while the right side is definitionally equal to

∃σ ∈ Sn,
(
∀a ∈ X, σ · a ∈ Y and ∀b ∈ Y , σ−1 · b ∈ X

)
.

That the latter implies the former is trivial. Proposition 1 asserts the converse: in (3), we can choose the
permutation uniformly for all the a ∈ X and b ∈ Y !

Lemma 1. We have

1. If X v Y then, for all 1 ≤ j ≤ n, there is some 1 ≤ i ≤ n s.t. Xi ⊆ Yj.
2. If X ≈ Y then Xi0 = Yj0 for some pair i0, j0.

Proof. For the first point, suppose that there is some j0 satisfying Xi 6⊆ Yj0 for all 1 ≤ i ≤ n. This means
that there is an a ∈ X s.t. ai /∈ Yj0 for all i. This a cannot be a section of Y . Contradiction!

The second point follows easily: starting from Y1 and repeatedly using the first point, we can construct
an infinite sequence i1, j2, i3, j4, . . . satisfying:

· · · ⊆ Xi2k+1
⊆ Yi2k ⊆ · · · ⊆ Xi3 ⊆ Yj2 ⊆ Xi1 ⊆ Y1

Because there are only finitely many possible indices, there are k and k′, with k < k′ and i2k = i2k′ . This
implies that the sets Xi2k and Yj2k+1

are equal.

Thus, if X ≈ Y , one of the sets appears on both sides and we can start the construction of σ in (2). To
finish the proof of Proposition 1 by induction on n, we need to show the following implication:

(Z,X2, . . . , Xn) ≈ (Z, Y2, . . . , Yn) ⇒ (X2, . . . , Xn) ≈ (Y2, . . . , Yn) . (4)

If the collection of unordered sections is seen as a “commutative cartesian product”, the next definition
would be the corresponding “division”.

Definition 3. Let T be a collection of n-multisets and Z ∈ P∗(N) we put

T ÷ Z def
=

{
(a2, . . . , an) | ∀a ∈ Z, (a, a2, . . . , an) ∈ T

}
.

When Z = {a}, it is a commutative version of Brozowski’s derivative [1], and in the general case, it
corresponds to the commutative notion of factor of T with respect to Z [7].

Implication (4) above follows from the following lemma:

Lemma 2. We have:
S(X1, X2, . . . , Xn)÷X1 = S(X2, . . . , Xn) . (5)

Proof. The “⊇” inclusion follows from the definition.

3

For the “⊆” inclusion, suppose (a2, . . . , an) ∈ S
(
X
)
÷ X1 and choose b ∈ X1. By hypothesis, we

necessarily have (b, a2, . . . , an) ∈ S
(
X
)
, i.e., there is a permutation τ s.t. (b, a2, . . . , an) ∈ (Xτ(1), . . . , Xτ(n)).

If τ(1) = 1, then τ defines a permutation on {2, . . . , n} and we have (a2, . . . , an) ∈ (Xτ(2), . . . , Xτ(n)).
We can conclude directly.

If τ(1) 6= 1, up to permuting the sets X2, . . . , Xn and choosing an appropriate element in the orbit
of (a2, . . . an), we can assume that τ(1) = 2, τ(2) = 1 and τ(i) = i when 2 < i ≤ n, or in other words,
that b ∈ X2, a2 ∈ X1 and ai ∈ Xi whenever 2 < i ≤ n.
Put a1

def
= a2. Because a1 = a2 ∈ X1, we have (a1, a2, . . . , an) ∈ S

(
X
)

by hypothesis, that is, σ · a ∈ X
for some permutation σ. Note that since a1 = a2, we can interchange the values σ(1) and σ(2) and still
have σ · a ∈ X.
Let k

def
= min

{
i | i > 0, σi(1) ∈ {1, 2}

}
. Up to changing the values of σ(1) and σ(2), we can assume

that σk(1) = 1 and that the set I
def
= {1, σ(1), . . . , σk−1(1)} is the cycle containing 1. We define the set Ic

as {1, . . . , n} \ I.
Rearrange the columns of

a1
•

a2
• . . . ai

• . . . an
•

|∈ |∈ |∈ |∈
•

Xσ(1)

•
Xσ(2)

. . .
•

Xσ(i)
. . .

•
Xσ(n)

into two parts:

a1
•

aσ(1)
• . . . aσk−1(1)

•
|∈ |∈ |∈
•

Xσ(1)

•
Xσ2(1)

. . .
•

Xσk(1) = X1︸ ︷︷ ︸
I

a2
• . . . ai

• . . .
|∈ |∈
•

Xσ(2)
. . .

•
Xσ(i)

. . .︸ ︷︷ ︸
Ic

.

The indices of X on the left are exactly those in I, and so are the indices of a. Thus, the indices of X
and a on the right are exactly those in Ic. This shows that (ai)i∈Ic is a section of (Xi)i∈Ic . Also, because
each of σ(1), . . . , σk−1(1) is strictly more than 2 (by the definition of k), we have aσi(1) ∈ Xσi(1) for
all 1 ≤ i ≤ k − 1 by a previous hypothesis. This shows that the permutation

ρ : {2, . . . , n} → {2, . . . , n}, ρ(i)
def
=

{
i if i ∈ {σ(1), . . . , σk−1(1)}
σ(i) otherwise

satisfies ρ · (a2, . . . , an) ∈ (X2, . . . , Xn). This finishes the proof that (a2, . . . , an) is indeed a section
of (X2, . . . , Xn).

2. The preorder

The initial question was not very formal and read as: “What is the relation between X v Y and X ⊆ Y ?”
It is obvious that X ⊆ Y implies X v Y , but unfortunately, the converse does not hold, even if we consider n-
tuples of sets up to permutations. For example, we have

X :=
(
{3}, {1, 2, 3}

)
v Y :=

(
{1, 3}, {2, 3}

)
because the sections of X are all sections of Y :

S
(
X
)

=
{

[3, 1], [3, 2], [3, 3]
}
⊂ S

(
Y
)

=
{

[1, 2], [1, 3], [3, 2], [3, 3]
}
.

Lemma 1 asserts that each set on the right is a superset of some set on the left. This is indeed the case as
both {1, 3} and {2, 3} are supersets of the same set {3}. However, one set on the left side is strictly bigger
than all the sets on the right side: {1, 2, 3} ⊃ {2, 3} and {1, 2, 3} ⊃ {1, 3}!

4

More generally,
(
Y1∩Y2, Y1∪Y2) v

(
Y1, Y2

)
and any operator F on n-tuples of sets obtained by composing

functions (Yi, Yj) 7→ (Yi ∩ Yj , Yi ∪ Yj) on any pairs of coordinates,2 will satisfy F
(
Y
)
v Y . For example,

F (Y1, Y2, Y3)
def
=

(
Y1 ∩ Y3, Y2 ∩ (Y1 ∪ Y3), Y2 ∪ (Y1 ∪ Y3)

)
v

(
Y1 ∩ Y3, Y2, Y1 ∪ Y3

)
v

(
Y1, Y2, Y3

)
.

We will characterize (Proposition 3) which operators F on P∗(N)n satisfy F (Y) v Y by looking at functions
acting on tuples of Boolean values, i.e., Boolean operators.

Definition 4. Let B
def
= {0, 1} equipped with the order 0 ≤ 1. This is a complete lattice with operations

written ∨ and ∧. The lattice structure is lifted pointwise to Bn.
If u ∈ Bn, the weight of u is the number of 1s in u. It is written |u|.

We write elements of Bn as words: for example, “011101 ∈ B6”.

Definition 5. If a ∈ N and X ∈ P∗(N)n, the characteristic word of a along X is an element of Bn. It is
written χX(a) and is defined by

(
χX(a)

)
i

= 1 iff a ∈ Xi.

Thus, χX(a) describes in which components of X the element a appears, and |χX(a)| is the number of the
components of X which contain a. There is a necessary condition for X v Y : “for all a ∈ N , if a appears
in k components of Y , then it appears in at most k components of X”. Concisely, this condition can be
written as “|χX(a)| ≤ |χY (a)| for all a ∈ N”. This condition is reminiscent of the condition appearing in
Hall’s celebrated “marriage theorem” [3]. Like in the marriage theorem, this condition is also sufficient in
the appropriate setting:

Proposition 2. Given X and Y two n-tuples of non-empty subsets of N that satisfy

1. the function a 7→ χY (a) is bijective from N to Bn \ {0 · · · 0},
2. the function f : χY (a) 7→ χX(a), with domain Bn \ {0 · · · 0} is increasing;

we have X v Y if and only if
∣∣χX(a)

∣∣ ≤ ∣∣χY (a)
∣∣ for all a ∈ N .

Looking at the example
(
{3}, {1, 2, 3}

)
v
(
{2, 3}, {1, 3}

)
might help to understand the conditions of the

proposition. The first condition means that there is exactly one element that belongs only to Y1 (“2”),
exactly one element that belongs only to Y2 (“1”) and exactly one element that belongs to both (“3”).
When the first condition is satisfied, the second condition amounts to “when a appears in more sets than b
on the right side, then a appears in more sets than b on the left side”. The graph of the resulting function f
can be read below

a : 1 2 3
χY (a) : 01 10 11
χX(a) : 01 01 11 .

We can extend this graph with a harmless 0 · · · 0 7→ 0 · · · 0 to obtain the function (b1, b2) 7→ (b1 ∧ b2, b1 ∨ b2).
Proposition 2 follows from a more general lemma:

Lemma 3. We have X v Y iff f(u)
def
=
∨
χY (a)≤u χX(a) satisfies |f(u)| ≤ |u| for all u.

The function f is the least increasing function (for the extensional order) satisfying f
(
χY (a)

)
≥ χX(a)

for any a.

2provided the intersection isn’t empty to agree with Definition 1

5

Proof. For the “⇐” implication, suppose that a ∈ X. We want to show that σ · a ∈ Y for some permuta-
tion σ. If we look at the bipartite graph Ga,Y

Ga,Y
def
=

a1
•

a2
• . . . an

•

•
Y1

•
Y2

. . .
•
Yn

,

with an edge between ai and Yj when ai ∈ Yj , finding a σ s.t. σ · a ∈ Y is equivalent to finding a per-
fect matching in Ga,Y . By Hall’s marriage theorem, this is equivalent to “every subset of {a1, . . . , an} of
cardinality p has at least p neighbors”.

Take some subset U ⊆ {a1, . . . , an} of cardinality p. Because a is a section of X, this set has at least p
neighbors in the corresponding Ga,X graph. Let u

def
=
∨
a∈U χY (a), if a ∈ U , then χY (a) ≤ u by definition

of u, so that χX(a) ≤ f(u) by definition of f . We thus have
∨
a∈U χX(a) ≤ f(u). We get

p ≤

∣∣∣∣∣ ∨
a∈U

χX(a)

∣∣∣∣∣︸ ︷︷ ︸
of neighboors
of U in Ga,X .

≤ |f(u)| ≤ |u| def
=

∣∣∣∣∣ ∨
a∈U

χY (a)

∣∣∣∣∣︸ ︷︷ ︸
of neighboors
of U in Ga,Y .

,

which concludes the “⇐” implication.

For the “⇒” implication, let X v Y and p = |u| < |f(u)|. By definition of f , we can find a
set {a1, . . . , ak} ⊆ N which satisfies χY (ai) ≤ u for i = 1, . . . , k and

∣∣∨
i≤k χX(ai)

∣∣ > p. In particular,
we have ∣∣∣∣∣∣

∨
1≤i≤k

χY (ai)

∣∣∣∣∣∣ ≤ p <

∣∣∣∣∣∣
∨

1≤i≤k

χX(ai)

∣∣∣∣∣∣ .
For each 1 in

∨
i≤k χX(ai) take one element of {a1, . . . , ak} that accounts for this 1. Call the resulting

tuple a. Note that this might not be an n-tuple, but its length is strictly greater than p (and may contain
repetitions). It is only a partial section of X: to complete it into a section of the whole X, simply add one
element from each of the remaining (non-empty) sets. The result is also a section of Y and in particular,
each element of a needs to fit in one component of Y . This is impossible because there are at most p sets Yj
that can contain the elements of the tuple a. Contradiction!

Lemma 3 does characterize the v preorder but still looks a little ad-hoc. We now give a more concise
characterization that relates v with ⊆, thus answering our initial question. First note that we can lift
any f : Bn → Bm to a function P(N)n → P(N)m:

Definition 6. Suppose f : Bn → Bm, define f̂ : P(N)n → P(N)m as

f̂
(
Y
) def

= X with a ∈ Xi iff f
(
χY (a)

)
has a 1 at coordinate i .

This transformation is, in a precise categorical sense, natural. It amounts to lifting the Boolean operations ∧
and ∨ to their set theoretic versions ∩ and ∪ in a way that is compatible with function composition. For
example, with the “and/or” function (b1, b2) 7→ (b1 ∧ b2, b1 ∨ b2) we obtain

(
Y1, Y2

)
7→
(
Y1 ∩ Y2, Y1 ∪ Y2

)
.

Definition 7. Call an increasing function f : Bn → Bn contractive if it satisfies |f(u)| ≤ |u| for all u ∈ Bn.

A corollary to Lemma 3 is:

Proposition 3. For any X and Y , we have

X v Y ⇐⇒ X ⊆ f̂
(
Y
)

for some increasing, contractive f : Bn → Bn.

6

Proof. We know that X v Y is equivalent to having |f(u)| ≤ |u| for all u in Bn, where f is defined as in

Lemma 3. This function f satisfies X ⊆ f̂(Y): use u
def
= χY (a) to check that a ∈ Xi is an element of the i-th

set of f̂(Y).

For the converse, suppose f is contractive increasing with X ⊆ f̂(Y) and let χY (a) ≤ u. Suppose

that χX(a) contains a 1 in position i. This means that a ∈ Xi and thus a is in the i-th set of f̂(Y). We can
conclude that f

(
χY (a)

)
contains a 1 in position i. This implies that f(u) also contains a 1 in position i.

3. Contractive functions are not finitely generated

If one had a simple representation of contractive increasing Boolean operators from Bn to itself, then
Proposition 3 would give a simple representation of the v preorder. It is well known that all Boolean
operators Bn → Bm with n inputs and m outputs can be represented by a Boolean circuit using only
“and”, “or” together with “not” cells. Strictly speaking, we also need constant values and need a way to
forget or duplicate inputs. The complete set of cells is depicted in Figure 1, where the last cells are:

• constants 1 and 0 (zero input, one output),

• drop (one input, zero output),

• duplicate (one input, two outputs),

• crossing (two inputs, two outputs).

and or not
0

dup

1

Figure 1: Boolean cells

These cells, together with a finite set of relations expressing properties of the operations (associativity,
etc.), give a finite presentation of the monoidal category of Boolean operators.3 We can generate the
subcategory of increasing operators by removing the “not” cell from the generators. Unfortunately, no such
thing is possible for contractive increasing Boolean operators.

Proposition 4. Contractive increasing Boolean operators are not finitely generated.

In other words, any finite set of cells will either miss some contractive Boolean operator, or generate
some non contractive Boolean operator.

First, a preliminary lemma:

Lemma 4. Let f : Bn → Bn be an increasing contractive Boolean operator; the following are equivalent:

1. f is the action of a permutation u 7→ σ · u for some σ ∈ Sn,

2. f is bijective,

3. f is injective on words of weight 1.

3All of this has a precise algebraic meaning, see [6] for details.

7

Proof. Trivially, 1 implies 2 and 2 implies 3. Suppose now that f is increasing and contractive on Bn.
Suppose moreover that f is injective on words of weight 1. We can define a permutation σ on {1, . . . , n} by
putting

τ(i) = j iff f(ei) = ej

where ei represents the word with a single 1 in position i. If u contains a 1 in position i, then, because f
is increasing, f(u) must contain a 1 in position τ(i). Because f is contractive, f(u) cannot contain more 1s
than there are in u. Thus, the 1s of f(u) correspond exactly to the images of the 1s of u along τ : f is indeed
the action of a permutation.

Proof (Proposition 4). Suppose, by contradiction, that there is a finite set of cells that generates all
increasing contractive Boolean operators, and write m for the maximal arity of the cells in this set.
Any non-invertible function has a representation as in Figure 2 where

• the topmost rectangle contains only crossings (and invertible cells which are, by Lemma 4, equivalent
to crossings),

• the cell C is not invertible and has arity c ≤ m,

• and the lowermost rectangle contains the rest of the circuit.

... ...

...

...

...

...

C

Figure 2: A Boolean circuit

By Lemma 4, we know that the cell C is not injective on inputs of weight 1. It means there are two input
wires i1 and i2 s.t. C gives the same value on the two elements of Bn consisting of 0s and a single 1 in
position i1 or i2. Because this is independent of the inputs v on the n−m remaining wires, we obtain:

Claim. Supposing contractive increasing Boolean operators were finitely generated with a cell of arity less
than m, then for any non-invertible contractive increasing Boolean operator f : Bn → Bn, with n ≥ m, we
have:

∃σ ∈ Sn ∀v ∈ Bn−m f
(
σ(01.0.v)

)
= f

(
σ(10.0.v)

)
.

The permutation σ is used to simplify the notation: it reorders the wires to put i1 and i2 in positions 1
and 2, and the remaining input wires for C in positions 3, . . . , c.

For any maximal arity m, we will construct a (large) n together with a function f : Bn → Bn that
contradicts this fact: whenever we choose input wires i1 and i2 and put any m − 2 other input wires to 0,
we can complete the remaining input wires in such a way that putting i1

def
= 0 and i2

def
= 1, or putting i2

def
= 0

and i1
def
= 1 makes a difference in the output of the function. Thus, this function will not be representable

using the given set of cells.

8

Given a (large) n, define f : Bn → Bn as:

f(u)
def
=

0n if |u| = 0 (1)

1 0n−1 if |u| = 1 (2)

1k 0n−k if |u| = k is even (3)

1101 0n−4 if u = 0 · · · 0 110l1 0 · · · 0, with l > 0 (4)

1110 0n−4 if |u| = 3 but u not of the previous shape (5)

12
k

01 0n−2
k−2 if u = 0 · · · 0 12

k

02
k

1 0 · · · 0, with k > 1 (6)

12
k

01 0n−2
k−2 if u = 0 · · · 0 102

k

12
k

0 · · · 0, with k > 1 (7)

12k10 0n−2k−2 in all the remaining cases. (8)

This function is contractive because we have |f(u)| = |u|. Moreover, it is increasing because whenever v is
a successor4 of u, we have f(v) > f(u):

• f(u) = 12k 0 · · · when |u| = 2k

• f(u) = 12k10 0 · · · or f(u) = 12k01 0 · · · when |u| = 2k + 1.

Suppose input wires k1, . . . , km−2 are fixed to 0 and we want to differentiate between input wires i1 and i2,
with i1 < i2. By putting some 1s in the appropriate remaining wires, we can make f give different results
when “i1

def
= 0, i2

def
= 1” and “i1

def
= 1, i2

def
= 0”.

• If there are two consecutive wires between i1 and i2 (but not touching i2) which are not among k1,
. . . , km−2, we put those two wires to 1 and all the other wires to 0. By lines (4) and (5) from the
definition of f , we will get two different results.

• If not, the wires i1 and i2 cannot be too far apart. (There are at most 2m− 2 wires between them...)
If we can find a sequence of 2k consecutive wires at distance 2k to the left of i1, or a sequence of 2k

consecutive wires at distance 2k to the right of i2, we can put those wires to 1 and the rest to 0. By
lines (6) and (8) or (7) and (8) of the definition of f , we will also get different results.

For this to work, we have to make sure n is big enough. At worst, the wires k1,. . . , km−2 can prevent
us from finding an appropriate sequence m− 2 times. In particular, if i1 is big enough (bigger than 2m+1),
such a sequence is bound to happen. The same is true when i2 is small enough compared to n. In the end,
choosing n bigger than, say, 22m+2 plus an additional ε will guarantee that we can differentiate any i1 and i2
among any set of m wires. A more careful analysis shows that it is in fact enough to take n

def
= 2m+1 + 4.

This concludes the proof.

References

[1] Brzozowski, J. A., Oct. 1964. Derivatives of regular expressions. J. ACM 11 (4), 481–494.
[2] Conway, J. H., 1971. Regular Algebra and Finite Machines. Chapman and Hall.
[3] Hall, P., 1935. On representatives of subsets. Journal of the London Mathematical Society 10, 26–30.
[4] Hyvernat, P., September 2004. Predicate transformers and linear logic: yet another denotational model. In: Marcinkowski,

J., Tarlecki, A. (Eds.), 18th International Workshop CSL 2004. Vol. 3210 of Lecture Notes in Computer Science. Springer-
Verlag, pp. 115–129.

[5] Knuth, D. E., Jan. 2011. Combinatorial Algorithms. Vol. 4A of The Art of Computer Programming. Addison-Wesley
Professional.

[6] Lafont, Y., 2003. Towards an algebraic theory of boolean circuits. Journal of Pure and Applied Algebra 184 (23), 257 –
310.

[7] Marin, M., Kutsia, T., 2010. On the computation of quotients and factors of regular languages. Frontiers of Computer
Science in China 4 (2), 173–184.

[8] Mirsky, L., 1971. Transversal theory; an account of some aspects of combinatorial mathematics. Mathematics in Science
and Engineering. Elsevier Science.

4v is a successor of u if v > u and |v| = |u| + 1.

9

Appendix A. An algorithm

Proposition 3 is more elegant but Lemma 3 has an interesting byproduct: it gives a concrete algorithm to
check if X v Y . For that, construct the function f from Lemma 3 and check that it satisfies the condition.
Just as a proof of concept, here is the main part of the algorithm, in the Python programming language.
Minor alterations have been made to make it more readable. The most difficult (and fun) part was to write
the function combinations that generates all the vectors of length n and weight w using one of the subtle
algorithms from [5]!5

def check (N, n ,X,Y) :
N is a set , n is an integer , X / Y are tuples of sets .
def combinations (w) :

generates all vectors of weight w
omitted (see Knuth , or use you favorite method)

def sup (u , v) : # complexity : O(n)
computes the pointwise " or " on n - tuples
omitted (simple)

def weight (u) : # complexity : O(n)
computes the weight of an n - tuple
omitted (simple)

def ch i (a , Z) : # complexity : O(n log (z)) (z is cardinality of Z)
for i in range (n) : # we use Python builtin " set " type

i f a in Z [i] : # so that "a in Z[i]" mean "a belongs to Z[i]"
u [i] = 1

return u

F = {} # F is a finite map with at most 2^ n elements ,
access is logarithmic : O(log (2^ n)) = O(n)

for a in N: # complexity : c *
chiX = ch i (a ,X) # n log (x)
chiY = ch i (a ,Y) # + n log (y)
F[chiY] = sup (F [chiY] , chiX) # + 2n

for w in range (n+1): # generating all tuples
for u in combinations (w) : # complexity : about 2^ n *

v = F[u] # n
for i in range (n) : # + n *

i f u [i] == 1 : #
u [i] = 0 #
v = sup (v ,F [u]) # n ^2
u [i] = 1 #

F[u] = v #
i f weight (v) > w: # + n

return False
return True # if we reached this far , the condition is satisfied

If N has cardinality c and the components of X and Y have cardinalities at most x and y; and if we
suppose that the standard operations on sets and finite functions have logarithmic complexity, the hints in
the comments give a total complexity of roughly O

(
cn
(

log(x) + log(y)
)

+ 2nn3
)
. Because both x = O(c)

and y = O(c), we get a complexity of O
(
nc log(c) + 2nn3

)
. If c is fixed, this is O(n32n); if n is fixed, this

is O
(
c log(c)

)
. In almost all cases, this is better (and much easier to write) than the naive approach that

checks if each a ∈ X is a section of Y , even if we are allowed to use an oracle to guess the permutations.

5The complete file is available from http://lama.univ-savoie.fr/~hyvernat/research.php

10

http://lama.univ-savoie.fr/~hyvernat/research.php

	The equivalence relation
	The preorder
	Contractive functions are not finitely generated
	An algorithm

