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Introduction

The Curry-Howard isomorphism, whose existence can be traced back to the 50's in

the work of Haskell Curry and William Howard, has proved a key notion in the

development of modern proof theory. In essence, the Curry-Howard isomorphism is

the following slogan:

\a proof is a program and a program is a proof".

Its conceptual importance cannot be ignored but, ever since the basis of this cor-

respondence has been laid, the isomorphism has mostly worked in one direction:

interpreting a proof as a program. People have developed stronger and stronger \pro-

gramming languages"1 to give computational meaning to bigger and bigger proofs,

but only little attention has been given to providing mathematical content to \real-

life" programs. This is particularly true if one looks at \interactive" programs, which

do not directly correspond to λ-terms. Some work has been done in this direction

in [42], where Peter Hancock takes the view that interactive programs are proofs of

well-foundedness, thus linking interactive programs with traditional proof theory.

One of the key notions appearing in [42] is the notion of interaction system.

Brie
y, an interaction system is given by the following data:

� a set of states;

� for each state, a set of labels for outgoing \Angel" transitions;

� for each Angel transition, a set of labels for outgoing \Demon" transitions;

� each pair Angel-transition/Demon-transition leads to a new state.

The notion is very close to the usual notion of labeled transition system except that

there are two kinds of label: angelic and demonic ones. What is important is that

a Demon transition follows an Angel transition, and that there is no \intermediate

state". We travel in an interaction system in the following manner:

1) we start in a state;

2) the Angel chooses one of its own transitions from that state;

3) the Demon chooses one of its own transitions following the Angel transition;

4) we reach a new state.

In particular, there is no state between 2 and 3. By making the Demon transitions

depend on a particular Angel transition, we obtain a notion which is very di�erent

from a transition system where labels are pairs (Angel label/Demon label). In par-

1: or, to be more precise, stronger and stronger type theories
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ticular, it is possible to distinguish between an \Angel deadlock" (the Angel cannot

move) and a \Demon deadlock" (the Angel can move, but the Demon cannot).

We extend the theory of interaction systems by adding a notion of morphism

bearing similarities, both formal and intuitive, to the usual notion of simulation.

One of the goals is to develop a viable denotational model for \component based

programming": an interaction system can be seen as an interface, i.e. as the abstract

description of the possible use of a program (a speci�cation). Implementing an in-

terface depending on other interfaces (i.e. writing a component) is captured by the

notion of re�nement, also called generalized simulations: we translate high-level com-

mands (which we want to implement) into low-level commands (which we assume to

be already implemented).

The next goal of this work is to extend the Curry-Howard correspondence by

linking this model of programming to mathematical notions. We exhibit an almost

perfect relationship between interaction systems and the concept of \inductively gen-

erated basic topologies".2 The intuition is that states serve as representations for

basic open sets of a topology. The label structure is then an abstract way to describe

the di�erent ways one can cover a basic open by other basic opens. General simula-

tions (i.e. implementations) correspond exactly to the notion of continuous function.

This extends the Curry-Howard isomorphism by linking very concrete notions to more

abstract ones in the following manner:

� an interface corresponds to a (basic) topology;

� a client program corresponds to a (proof of a) covering;

� a server program corresponds to a (proof that a subset is a) closed set;

� a generalized simulation corresponds to a continuous function.

One drawback of interaction systems is that they represent, in general, \strictly ba-

sic" topologies:3 starting from concrete programming interfaces, we usually obtain

non-distributive complete sup-lattices (binary \intersection" of open sets doesn't dis-

tribute over arbitrary \unions" of open sets)! It is however possible to do a little more

work and interpret the extra condition yielding distributivity: this is linked with the

notion of concurrent execution. Unfortunately, the intuitions are not as clear as in

the simple, non-distributive case.

A nice class of non-distributive interaction systems arises naturally: by weak-

ening a particular class of formal spaces giving models for geometric theories ([15]

and [24]) into a class of pretopologies giving models for \linear" geometric theories,

we obtain a completeness result for linear geometric theories. Both geometric theories

and linear geometric theories can be described by interaction systems, but while the

former enjoy \localization" (a property making the lattice of open sets distributive),

the latter do not.

Interaction systems have a very rich structure. They developed naturally in a

second, unsuspected direction: linear logic. To put it simply, linear logic can be seen

as a logic of resources whereas classical logic is a logic of truth. The second part of

2: This takes the form of a full and faithful functor from the category of interaction systems to the
category of basic topologies (proposition 4.2.8).

3: Basic topologies are a weaker form of formal spaces, which are the usual predicative version of
locales or frames.
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this work shows how to use the notion of interaction system to give a denotational

semantics to linear logic. A lot of work has already been done in this area and there

are several denotational models, both \static" (coherence spaces and related) and

\dynamic" (games semantics). The interest of interaction systems is that they yield

a semantics with the two aspects:

� dynamic since the notion itself of interaction systems and their morphisms is

de�ned using an interaction intuition;

� static since the interpretation of a proof is just a set (of states).

Both aspect are related in the sense that the interpretation of a proof is a set of

states satisfying a safety property: it behaves well w.r.t. all possible interactions.

More precisely, from any state in the interpretation, the Angel has (at least) one

move s.t. all the following Demon moves go back into the interpretation. This means

in particular that the Angel can avoid deadlock, were interaction to start in the

interpretation of a proof.

Because of the objects at hands, part II can be seen as an \unorthodox" games

semantics for linear logic. A comprehensive comparison between traditional games

and interaction systems is yet to be done, but we can give some of the di�erences.

A mostly inaccurate slogan for interaction systems as a model for (linear) logic

could be something like \games without explicit strategies". It is quite clear that

interaction systems can be seen as a notion of games, but the notion of morphism

doesn't contain an explicit strategy: they are only relations! An implicit notion

of strategies is present in the notion of safety property, and since morphisms are

safety properties we can guarantee, as a side e�ect, the existence of certain strategies

intrinsic in any morphism. Those strategies however have no real interest since they

are not part of the data de�ning morphisms. (Di�erent strategies may be used for

the same safety property!)4 The reason strategies are not important comes from the

fact that moves are individually unimportant! Their only goal is to serve as links

between states. One can even devise an equivalent category where the notion of

moves has disappeared: this is the category of predicate transformers with forward

data-re�nements. All the structure of interaction systems can be translated faithfully

in terms of predicate transformers. Going from an interaction system to its associated

predicate transformer is very similar to going from a labeled transition system to its

associated unlabeled graph (binary relation). The reason for using one category or

the other is, in an impredicative setting mostly a matter of taste.5

To come back to the comparison between interaction systems and games, one

can say that simulations are at the same time more concrete and more abstract than

traditional morphisms between games (which are special cases of strategies):

� they are more concrete because they correspond to the usual notion of simulation

between labeled transition systems;6

� they are more abstract because the computational part of the simulation is ab-

4: We thus avoid this \unfortunate" aspect of traditional games semantics where a proof (i.e. a
tree) is interpreted by a strategy (i.e. another tree).

5: In a predicative setting, we only have a full and faithful functor from interaction systems to
predicate transformers. It is then easier to work with interaction systems, as most of the operations
cannot be de�ned predicatively on predicate transformers.

6: Interaction systems are themselves very adequate to model \concrete", non-logical situations.
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stracted away: equality of simulations is equality of the underlying relations.

The second point accounts for the relative simplicity of composition of morphisms. In

several of the traditional games semantics, total morphisms (given by total strategies)

are not closed under composition. The reason is that while de�ning the composition of

strategies, there could be some \in�nite chattering" in the middle game. Even when

this problem is solved (by considering partial strategies for example), proving tran-

sitivity is, though not di�cult, not entirely trivial. Here, composition of morphisms

(plain relational composition) is trivially associative.

Finally, one of the nice features about this semantics is that it projects in

the simplest denotational model of linear logic: the relational model. Projecting an

interaction system just means forgetting the move structure and only keeping the set

of states. (A simulation relation is simply sent to itself: a relation.)

There are several crucial di�erences between the notion of \point" (potential

interpretation of proofs) in this model and in other models. In most cases, the

collection of points forms a Scott domain: there is a notion of �nite element and

of directed limit. In our case, the collection of points (safety properties) forms a

complete sup-lattice which is generally not algebraic. The two main facts are the

following:

� a subset of a safety property need not be a safety property;

� a union of safety properties is still a safety property.

The situation is thus radically di�erent from most usual denotational models. The

�rst point means that we do not really consider partial objects: to be an interpretation

of a proof requires the subset of states to be \big enough". (Even though there always

is a trivial smallest safety property: the empty set.) If one compares this to the

closest situation, coherent spaces, the di�erence is obvious: there, a subset of a clique

(complete subgraph) is always a clique.

The second point means that it is \semantically" sound to add proofs: if [[π1]]

and [[π2]] are interpretations of proofs, then [[π1]]∪ [[π2]] is also a \potential" interpre-

tation of a proof. A possible intuition is that this is the interpretation of π1 + π2,

the non-deterministic sum of π1 and π2. This intuition is even more convincing

when applied to interpretations of λ-terms, where + represents non-deterministic

sum of programs. The reason this is not possible in most other denotational models

is that they are based on deterministic intuitions (even when, like in the case of Scott

domains, functions such as the parallel boolean \or" are accepted). For example,

strategies in mainstream game semantics are deterministic, which prevents the union

from being well-de�ned; in more traditional models, we can only add coherent partial

objects: they need to have a common extension.

In the denotational model we obtain, two points are worth noting:

� the additive connectives ⊕ and & are identi�ed;

� when atomic formulas are restricted to the logical constants, the model is trivial.

The �rst point is a consequence of the previous remark that safety properties, and thus

simulations, are closed under unions: any model with a notion of \sum" on morphisms

does identify the additives.7 Rather than trying to change the semantics, we try to

7: Technically: in any category enriched over commutative monoids, the product and coproduct
coincide (if they exist).
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�nd a logic corresponding to this. One such logic exists: the di�erential λ-calculus

of Thomas Ehrhard and Laurent R�egnier. It has, besides a notion of sum, a very

rich additional structure. We show that we can interpret this di�erential structure

in a non trivial way within interaction systems. This is interesting because it gives

a model of di�erential λ-calculus having very di�erent intuitions from the original

models: K�othe spaces and �niteness spaces, both based on a notion of \�nitary" sets.

The second problem is, from a categorical point of view, not very important.

From a more concrete point of view however, it questions the relevance of interaction

systems. To justify them as a good model, we extend the semantics to second order

linear logic. In order to do so, we follow closely the model appearing in [38] and the

work of Alexandra Bruasse from [18]. We obtain in this way a canonical interpretation

of Π11 formulas, i.e. propositional linear logic. Once this is done, getting full second

order is, though a little technical, neither di�cult nor very exciting. We check on very

simple examples that this model is non trivial and does correspond to what we have

in mind. It shows that as opposed to the simple relational model, interaction systems

or predicate transformers have a real discriminative power. The situation seems to

be very close to the case of coherent spaces, except that we have added unions and a

di�erential structure.

Content

This thesis is divided in two parts: the �rst one is mostly carried out in a strongly

constructive setting, namely predicative dependent type theory; the second one lives

in a traditional classical setting. Those two parts correspond, roughly speaking, to the

work done respectively in Chalmers (G�oteborg, Sweden) and in Luminy (Marseille,

France). They are representative of the local interests. A simple way to summa-

rize the di�erence between the two parts, besides constructivity requirements, is the

following:

� at the intersection of both worlds lies a category Int. Its objects are given by

interaction systems and its morphisms by linear simulations;

� programming and topology are concerned with a Kleisli construction over a

monad ∗ of \re
exive and transitive closure";

� (linear) logic is concerned with a Kleisli construction over the (co)monad ! of

\synchronous multithreading".

Unfortunately, as of this writing, the two constructions have almost no relation to

each other, save for the core category Int.

Brie
y, after some preliminaries about type theory (chapter 1), the �rst part

introduces, together with their computational relevance, the notion called interaction

systems and their basic structure (chapter 2 and 3). The aim is to show that inter-

action systems are adequate to represent both the notion of programming interfaces

(section 2.6) and the notion of (inductively generated) basic topology (chapter 4). By

its very nature, this part has a strong computational content. We thus avoid as much

as possible the use of non-constructive principles, and go even further by working in

a predicative framework.

The second part drops all constructivity requirements and uses the abstract

structure of interaction systems to give a \synchronous" model for full propositional
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linear logic (chapter 6). Not all the structure of interaction systems is used, but we

can extend the model to take into account the operation of di�erentiation present in

Ehrhard and R�egnier's di�erential λ-calculus (section 6.4).

If one is not interested in the interactive intuition of interaction systems, it

is possible to simplify the presentation and obtain the very concise model presented

in chapter 7 based on the notion of predicate transformers. Using this version of

the model as a starting point, we �nally interpret full second order linear logic in

chapter 8.

Notes

This work is, except when explicitly stated, original with the following proviso:

� chapters 1 and 5 are mostly standard introductions, except for the discussions

about equality in sections 1.1.6 and 1.1.7 which recall some of the ideas present

in Peter Hancock's thesis ([42]).

� Most of the de�nitions appearing at the beginning of chapter 2 were already

developed by Peter Hancock and Anton Setzer.

� The categorical structure of interaction systems with simulations (chapter 3) and

of the category of predicate transformers with forward data-re�nement is original.

(But the link between the two is mostly due to Peter Hancock.)

� The link with basic / formal topology is original but bene�ted from many dis-

cussion with Thierry Coquand and Giovanni Sambin.

� Finally, the extension of the model of section 7.1 to second order is inspired by

the work of Alexandra Bruasse and Thomas Ehrhard on the relational model.

Parts of this work can be found in more concise form:

� sections 4.2 and 4.3 on the application of interaction systems to constructive

topology (together with the relevant parts from chapter 2) appeared in [43];

� section 6.4 about the di�erential λ-calculus is contained in [55] and in [54];

� and section 7.1 about the denotational model based on predicate transformers is

the subject of [53].



1 Preliminaries

Part I of this work will be developed with constructivity in mind. Motivating and in-

troducing the general concepts of constructive mathematics would take us too far and

we refer to the abundant literature on the subject ([61], [83] and [84], and [17]). To

be more precise, most of part I is developed within a framework of \predicative con-

structive type theory". Since the second part will abandon the goal of constructivity

(except in section 6.4), we will try to make the framework as transparent as possible.

It must be noted that only the ambient logic is constructive and that everything from

this �rst part also holds constructively.

1.1 Martin-Löf Type Theory

Martin-L�of dependent type theory ([62]) can be described as an expressive typed

λ-calculus. The core consists of λ-terms with a strict typing discipline (dependent

function types) ensuring strong normalization. In addition to the usual function

types, we also have at our disposal a notion of dependent sum and a notion of inductive

de�nitions. This theory is described in details in [62] and [68]. We then extend this

with a notion of coinductive de�nitions and discuss the problems of general equality.

Since they will be central in the sequel, we also show how to deal with the concepts

of subsets and binary relations.

1.1.1 The Type Theory and its Associated Logic

We assume basic knowledge about the simply typed λ-calculus. For all this work, we

only need two kinds for types:

� Set is the collection of datatypes, also called sets;

� Type is the collection of proper types, containing, among others, Set.

To simplify notation, we pretend that any set is also a proper type: Set ⊆ Type.1

We make a typographic distinction between sets (capital roman letters like S)

and proper types (calligraphic capital letters, like S). We write membership in a set

with the \ε" symbol: \s ε S" while membership in a proper type is written with a

colon: \X : A".

1: This is harmless in practice.
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Intuitively speaking, Set consists of all the \datatypes". It is closed under most

usual set-forming operations, with the notable exception of the powerset construc-

tion (see the discussion about predicativity in section 1.2.1). Elements of Set are

called . . . sets, and they are \small".

On the other hand, Type consists of the collections too big to be sets. The most

trivial example is Set itself: the collection of all datatypes is certainly not a datatype.

Similarly, the collection of functions from Set to Set is not a set, but is an element

of Type. Elements of Type are called proper types and are intuitively \big". The

di�erence between sets and proper types is in a way similar to the di�erence between

sets and classes in von Neumann/Bernays/G�odel set theory or between di�erent levels

of Grotendieck universes.

# Remark 1: this terminology can be very confusing at �rst, especially
for computer scientists who are used to using the word \type" for usual
datatypes (i.e. sets). We use the generic term \type" when we do not
really care about the kind of objects, and we may specify using the ad-
jectives \small" (for sets) or \big" (for proper types).

§ Dependent Product. We follow a rather informal presentation. To be precise, one

needs to de�ne types, contexts, typing judgments, etc. Some care is de�nitely needed,

but this is is irrelevant for our purposes.

The most important set constructor is the dependent function type. It is called

dependent product and is governed by the following rules:

�
A : Set x ε A ` B(x) : Set

(ΠxεA) B(x) : Set
formation;

�
x ε A ` f ε B(x)

(λxεA).f ε (ΠxεA) B(x)
introduction;

� and
t ε (ΠxεA) B(x) a ε A

t(a) ε B(a)
elimination.

The reduction rule for the dependent product is:2(
(λxεA).f

)
a = f[a/x] .

Thus, a term f of type (ΠxεA) B(x) is a function taking any a ε A to an element

of B(a). This is exactly the de�nition of indexed cartesian product in classical math-

ematics. When the set B(x) doesn't depend on x ε A, we recover the usual function

space which we abbreviate by \A→ B". To make explicit the fact that the dependent

product is a function space, we use the notation:

(xεA)→ B(x)

as a synonym for (ΠxεA) B(x).

We also have the same construction at the level of types, with the same rules

and the same notation. We also allow mixed constructions of the form A → B but

then the kind of the dependent product will always be Type.

2: Just like in usual λ-calculus, \f[a/x]" is the term f where x has been substituted by a. As

always, we need to make sure this doesn't capture free variables by �rst doing some α-conversion.
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# Remark 2: the \pure type system part" corresponds to having the two
sorts Set : Type and the rules (Set, Set), (Set, Type) and (Type, Type), i.e. it
corresponds to λPω. (See [11].)
In particular for any set S, we are allowed to form the types S → Set (using
the rule (Set, Type)) and (S → Set) → Set (using the rule (Type, Type)).

§ Dependent Sum. There is a second set constructor, dual to the dependent product:

the dependent sum. Just like the dependent product is an indexed cartesian product,

the dependent sum is an indexed disjoint sum. It obeys the rules:

�
A : Set x ε A ` B(x) : Set

(ΣxεA) B(x) : Set
formation

�
a ε A b ε B(a)

(a, b) ε (ΣxεA) B(x)
introduction

�
p ε (ΣxεA) B(x) f ε (xεA)→

(
yεB(x)

)
→ C

(
(x, y)

)
split(p, f) ε C(p)

elimination

with the following reduction rule:

split
(
(a, b), f

)
= f

(
(a, b)

)
.

The elimination rule may look unnecessarily complex, but for our purposes, it su�ces

to note that one can de�ne the two projections:

�
p ε (ΣxεA) B(x)

π1(p) ε A
�rst projection

�
p ε (ΣxεA) B(x)

π2(p) ε B
(
π1(p)

) second projection

as π1(p) , split
(
p, (λxy.x)

)
and π2(p) , split

(
p, (λxy.y)

)
.

Note that when B(x) doesn't depend on x ε A, then this is just a usual cartesian

product.3 We then write A× B rather than (ΣxεA) B.

§ Other Constructions. Since we need to start with something, we also have the

singleton set {∗} and the empty set ∅ with the obvious rules. There is also a notion

of disjoint sum A+ B with rules

�
A : Set B : Set

A+ B : Set
formation

�
a ε A

inl(a) ε A+ B
intro (left) and

b ε B

inr(b) ε A+ B
intro (right)

�
x ε A+ B f ε (aεA)→ C

(
inl(a)

)
g ε (bεB)→ C

(
inr(b)

)
case(x, f, g) ε C(i)

elim

with reduction rule:

case
(
inl(a), f, g

)
= f(a) and case

(
inr(b), f, g

)
= g(b) .

Following standard programming practice, we use the notation

case x of inl(a) ⇒ f(a)

inr(b)⇒ g(b) .

3: Yes! Cartesian product is an instance of the dependent sum!
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# Remark 3: the disjoint sum could be de�ned as an indexed sum over a
two elements set, but this requires . . . a two element set.

Following another programming practice, we allow the use of constructors.

They are introduced with the \data" keyword: for example,

data Cons1
(
aεA, bεB(a)

)
Cons2(a1εA, a2εA, a3εA)

is a verbose way to describe the set \(ΣaεA)B(a) + A×A×A". Note that this allows

to de�ne the empty set and the singleton sets as:

∅ , data and {∗} , data ∗

i.e. respectively as the set with no constructor and the set with a unique constructor.

§ Curry-Howard Isomorphism. So far, Set contains ∅, {∗} and is closed under Π, →,

Σ, × and +. The Curry-Howard isomorphism shows how to translate formulas into

sets and proofs into terms, and vice and versa:

type theory : ∅ {∗} Π Σ × + →
logic : False True ∀ ∃ ∧ ∨ ⇒

The equivalence between terms and proofs is more subtle and requires some knowledge

about intuitionistic natural deduction: a term of type F where F is a logical formula

can be seen as a proof of the formula F. (In the Brouwer-Heyting-Kolmogorov sense.)

Martin-L�of type theory identi�es sets and propositions in the sense that proving

a proposition F is identi�ed with giving a term of type F. Depending on the context,

we may switch from the type theoretical notation to the logical notation transparently.

We even mix the symbols to make things more readable. No confusion arises from

this because until the beginning of part II, the logical symbols are always interpreted

by their intuitionistic predicative versions (except when explicitly stated).

1.1.2 Inductive Definitions

The main interest of \high-level" type theories like Martin-L�of type theory lies in the

possibility to have user-friendly inductive de�nitions. As we'll brie
y recall in the

next section, inductive de�nitions are available \for free" in impredicative theories,

but impredicativity is too big of a prize to pay and we try to avoid it. We thus

introduce ad hoc principles to deal with them. We will not go into the details about

the justi�cation of inductive de�nitions: the literature on this subject is complete

enough. (This is treated in [4].)

Rather than giving the formal de�nition, we'll only look at an example: the

case of lists over an arbitrary set. The following is the de�nition as we could write it

in a functional programming language:

List (A:Set) : Set

List A := data Nil | Cons(a:A,t:List A)
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Since \List A" appears on the right hand side of \,", it means we are actually

solving an equation: in a less verbose way, X = {∗}+A×X. We write this de�nition

as:

List(A) : Set

List(A) , (µX : Set) data Nil

Cons(a ε A , t ε X)

where the binder \µ" is here to mean \inductive de�nition".

We restrict inductive de�nition to strictly positive functors, i.e. in an inductive

de�nition, the variable X may not appear on the left of an arrow type.4

The induction principle (or the fact that we are using the least solution) is

used in the following way: de�ne the length of a list to be a natural number with:

length(l) , case l of Nil ⇒ 0

Cons(a, t)⇒ 1+ length(t) .

We also use \pattern matching" notation as in:

length(Nil) , 0

length
(
Cons(a, t)

)
, 1+ length(t) .

We will later extend the schema of de�nition to allow the de�nitions of objects of

type S→ Set by least �xpoint, in the spirit of [70]. We will detail that when necessary.

§ Agda. This part of the theory (with a more general schema for inductive de�nitions)

has been implemented as a \programming" environment in the Agda system ([26]).

Inside this system, the de�nition of lists would take the exact form:
List (A::Set) :: Set

= data Nil

| Cons (a::A)(l::List A)

and (supposing A is a set, and that natural numbers are de�ned) the length function

would be written as
length (l::List A) :: Nat

= case l of (Nil) -> 0

(Cons a t) -> 1+(length t)

Writing a term and checking that it is of the correct type in Agda is, by the Curry-

Howard isomorphism, equivalent to proving a proposition in intuitionistic logic. Sev-

eral lemmas and propositions from the �rst part of this work have been formalized in

this way: of particular interest are proposition 3.3.1 and proposition 2.6.8.

1.1.3 Coinductive Definitions

By the Knaster-Tarski theorem, the collection of �xpoints of a monotonic operator

on a complete lattice forms itself a complete lattice. In particular, there is a least

�xpoint and a greatest �xpoint. The notion of inductive de�nition can be seen as a

computational way to introduce least �xpoints, and there ought to be a dual compu-

tational principle to introduce greatest �xpoints: coinductive de�nitions. We present

4: This restriction is stronger than usual positivity where the variable may only occur positively,
i.e. only at the left of an even number of arrows.
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below a standard approach. It should be noted that in the presence of equality, coin-

ductive de�nitions can be de�ned within Martin-L�of type theory: see [59], [64] or the

de�nition of the positivity predicate in [23].

We �rst treat an example, and brie
y give the general principle. Let's de-

�ne streams (in�nite lists) over an arbitrary set. Streams over A cannot be de�ned

as (µX).A × X, since this is easily seen to be empty. Streams will be de�ned as a

greatest �xpoint:

Stream(A) : Set

Stream(A) , (νX ε Set) data Cons(a ε A , t ε X)

i.e. a stream is something of the form \Cons(a, s)" where a is an element of A and s is

a new stream. Thus, we can get as many elements of A as we want by looking deeper

and deeper inside s. The rules associated to this de�nition are:

�
A : Set

Stream(A) : Set
formation

�
X : Set C : X→ A× X x ε X

coiter(X,C, x) ε Stream(A)
introduction

�
s ε Stream(A)

elim(s) ε A× Stream(A)
elimination

with the reduction rule:

elim
(
coiter(X,C, x)

)
= (a, t) where a , π1

(
C(x)

)
t , coiter

(
X,C, π2

(
C(x)

))
.

For the general case, suppose F is a strictly positive operator from Set to Set,

so that we can in particular de�ne an action of F on functions:5

F : Set→ Set

X 7→ F(X) and (f ε X→ Y) 7→
(
Ff ε F(X)→ F(Y)

)
.

We can then de�ne νF with the rules:

�
νF : Set

formation

�
X : Set C : X→ F(X) x ε X

coiter(X,C, x) ε νF
introduction

�
s ε νF

elim(s) ε F(νF)
elimination

with the reduction rule:

elim
(
coiter(X,C, x)

)
= Ff

(
C(x)

)
where f ε X→ νF

f(y) , coiter(X,C, y) .

Let's just mention that the introduction rule can be understood as the speci�cation

of an appropriate morphism from a speci�c coalgebra (the pair (X,C) in our example)

5: i.e. F is a covariant functor
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to the (weakly) �nal coalgebra de�ned by (νF, elim). We have coiter(X,C) ε X→ νF

and the appropriate diagram commute by the reduction rule:

elim · coiter(X,C) = Fcoiter(X,C) · C .

Equality of terms in a coinductive type is usually identi�ed with a notion of bisimu-

lation. Since we will not need this equality, we skip the actual de�nition.6

1.1.4 Predicates

The Curry-Howard isomorphisms shows that type theory can be used as a logical

framework. One can add \simple" mathematical objects like natural numbers, func-

tions, etc. What about notions which are not datatypes in the usual sense? One such

example is the notion of subset. We now show how to represent \subsets" in Martin-

L�of type theory. This is done by developing a toolbox allowing one to manipulate

subsets almost transparently without leaving the framework already described. Refer

to [80] for the details.

Set theory usually identi�es a subset with its characteristic function. We do

the same here, though the notion of \characteristic function" is di�erent. Instead of

taking its values in {True,False}, the characteristic function will take its values in

the collection of proposition: if U ⊆ S and cU is its characteristic function,

� classical: \cU(s)" is the truth value of \s ε U;

� constructive: \cU(s)" is the proposition \s ε U".

Martin-L�of type theory identi�es a proposition with the set of its proofs:

� Martin-L�of: \cU(s)" is the set (of proofs that) \s ε U".

Thus, we de�ne:

. Definition 1.1.1: for any set S, de�ne the collection of predicates on S as:

P(S) , S→ Set .

Similarly, if S is a proper type, de�ne P(S) , S→ Set.

We write the predicate ϕ : P(S) more seductively as {sεS | ϕ(s)}.

This is reminiscent of the comprehension axiom scheme of ZF set theory7 which

guarantees that such a {s ε S | ϕ(s)} does indeed form a set.

# Remark 4: it is tempting to de�ne subsets of S as S → {True,False},
but this would restrict to computable subsets: we would then need to deal
with \algorithms" rather than formulas. As a naive example, consider
the de�nition of the subset of even natural numbers:

- E(n) , (∃k) n = 2k;

- E(n) , case n of 0 ⇒ True
1 ⇒ False
m + 2 ⇒ E(m) .

The �rst de�nition is obviously better as far as mathematics is concerned.

6: Using the bisimulation intuition, it is possible to encode coinductive types within predicative
theory in the presence of extensional equality (see [59]), or strong forms of intensional equality
(see [64]). The problem of coinductive de�nitions is thus pertinent only when restricting the use of
equality...

7: ∀x∃y (∀z zεy ⇔ (z ε x ∧ϕ(z)), for any proposition ϕ with at most one free variable
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The type P(S) is very well-behaved and all the usual (simple) operations can be

de�ned in a systematic way:

. Definition 1.1.2: let S be a set, and let X, Y be predicates on S; de�ne:

� s ε X is a synonym for X(s);

� X ⊆ Y is an abbreviation for (ΠsεS)X(s) → Y(s), or using the logical

notation: (∀sεS) s ε X⇒ s ε Y;

� X G Y (read \X overlaps Y") is an abbreviation for (ΣsεS)X(s) × Y(s),

or using the logical notation: (∃sεS) s ε X ∧ s ε Y;

� ∅S : P(S) , (λsεS).∅ i.e. no element s ε S belongs to ∅S;

� FullS : P(S) , (λsεS).{∗} i.e. any s ε S belongs to FullS;

� X ∪ Y , {sεS | s ε X ∨ s ε Y};
� X ∩ Y , {sεS | s ε X ∧ s ε Y}.

We can also de�ne indexed extrema: if I : Set and if Xi : P(S) for all i ε I,

�
⋂
iεI Xi , {sεS | (∀iεI) s ε Xi};

�
⋃
iεI Xi , {sεS | (∃iεI) s ε Xi}.

The only point deserving some comment is the new \G" symbol. It acts as a positive

dual to inclusion: just like \⊆" hides a universal quanti�er, so does \G" hide an

existential quanti�er. Despite its simplicity, it seems that Giovanni Sambin was the

�rst to stress its importance in constructive frameworks ([80]?).

The expected result holds almost trivially:

◦ Lemma 1.1.3: for any type S, the proper type P(S) with ⊆, ∅S, FullS,⋃
and

⋂
is a complete8 Heyting algebra.

# Remark 5: traditionally, a complete Heyting algebra H is a complete
lattice s.t. for any a, the operation a ∧ has a right adjoint a ⇒ .
Impredicatively, this is equivalent to saying that H is a complete lattice
satisfying the \in�nite distributivity law": a∧

W
i bi =

W
i(a∧bi). In our

context, we cannot prove the equivalence, but P(S) is a Heyting algebra
according to both de�nitions: put U ⇒ V , λs.U(s) → V(s).

Note that there is a typographic distinction between elements of a set (\s ε S") and

elements of a predicate (\s ε X"). Those two assertions have a completely di�erent

nature: the �rst one is a judgment while the second one is a set.

1.1.5 Relations

Relations are special cases of predicates: a binary relation R between S1 and S2 is

a predicate on the cartesian product S1 × S2. We write Rel(S1, S2) as a synonym

for P(S1× S2). Equivalently, using \curry�cation", a relation between S1 and S2 is a

function from S1 to predicates of S2:

(S1 × S2)→ Set ' S1 → (S2 → Set) ' S1 → P(S2) .

Consequently, if R is a relation between S1 and S2, there are several ways to state

that s1 ε S1 and s2 ε S2 are related through R:

8: where by \complete", we means that all set-indexed suprema exist. See section 4.1 for more
details.
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� (s1, s2) ε R;

� s2 ε R(s1);

� R(s1, s2).

We will usually prefer the �rst notation.

The structure of predicates lifts to relations: relations are ordered by (point-

wise) inclusion and they have a structure of complete Heyting algebra. We have the

following additional operations:

� converse;

� composition;

� transitive closure.

Those do not di�er from the traditional de�nitions:

1) converse: if R : Rel(S1, S2), de�ne R∼ : Rel(S2, S1) as:

(s2, s1) ε R
∼ , (s1, s2) ε R ;

2) composition: for R : Rel(S1, S2) and R′ : Rel(S2, S3), de�ne R′ · R : Rel(S1, S3) as:

(s1, s3) ε R
′ · R , (∃s2εS2) (s1, s2) ε R ∧ (s2, s3) ε R

′

= R(s1) G R
′∼(s3) ;

3) transitive closure: for R : Rel(S, S), de�ne R+ : Rel(S, S) as R ∪ R · R ∪ R · R · R . . .
More precisely, using an inductive de�nition:

(s, s′) ε R+ , (µX : Set)

data Leaf(r) where r ε R(s, s′)

Cons(si, r, r
′) where si ε S

r ε R(s, si)

r′ ε R+(si, s
′) .

We have:

◦ Lemma 1.1.4:

� composition is associative; its neutral element is the equality;

� converse is involutive and (R · R′)∼ = R′∼ · R∼.

If ones de�nes the re
exive transitive closure R∗ to be Eq ∪ R+, we

obtain a Kleene algebra
(
Rel(S, S),∪, ·, ∗).

1.1.6 Families and Equality

§ The Problem of Equality. The equality relation on S: EqS , {(s, s′) ε S× S | s = s′}
is of utmost importance in mathematics. However, the notion of equality in (pred-

icative) type theory is not clear at all. Real mathematical equality is extensional:

we inherit it from set theory and its \extensionality axiom".9 However, type theory

with extensional equality has undecidable type checking! One solution is to make

the proof objects for equality explicit. For this reason, Martin-L�of's early theories

9: \∀x∀y (∀z zεx ⇔ zεy) ⇒ x = y"
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had a notion of \intensional equality". This equality allows to keep type checking

decidable, but the notion is at the least awkward!

The idea to have the following formation rule:

�
S : Set s ε S s′ ε S

Id(S, s, s′) : Set

where \s =S s
′" is a synonym for the set Id(S, s, s′)

� with introduction rule:
S : Set s ε S

re
(s) ε Id(S, s, s)
.

We refer to [68], [50] or [48] for the elimination and computation rules.

One particular problem with intensional equality comes with the following

statement, called \uniqueness of identity proofs":

UIPA: (∀a1, a2 ε A)
(
∀p1, p2 ε IdA(a1, a2)

)
IdIdA(a1,a2)(p1, p2) .

This principle asserts that two proofs that a1 =A a2 must be equal. This is derivable

in a type theory enriched with \pattern matching" but independent of the core type

theory, see [50].

In practice, many usual datatypes have an implicit notion of equality which is

de�nable if needs be. This suggest that one could reject the equality type and de�ne it

when necessary. However, what properties should an equality relation satisfy? There

are two main possibilities:

� it should be re
exive and substitutive: if s = s′ and P(s) then P(s′), i.e. the

following type is inhabited: (∀s, s′) Id(s, s′)→ P(s)→ P(s′) for any P : S→ Set.

This is the notion of datoid: set with a re
exive / substitutive relation.

� it should be an equivalence relation: sets equipped with an equivalence relation

are called setoids.10 This allows to de�ne quotient setoids but the proofs become

very verbose: all the operation de�ned on a setoid must be extensional, that is,

respect the internal equivalence.

The extreme position is not using equality! While this objective is infeasible in the

long run, it allows to notice details that are otherwise invisible. For example, one

handicap when rejecting identity is that we cannot talk about singleton subsets any

more: if s ε S, we cannot form the predicate {s} as it is de�ned as {s′εS | s′ =S s}!

The approach taken here is mixed: in Part I, we will try to avoid equality

as much as possible and make its use explicit when necessary. When needed, we

informally use an extensional equality but it seems that everything can be done

in intentional type theory. Since the second part of this thesis lives in classical

mathematics, we will forget about this after page 110.

# Remark 6: in impredicative type theory, the problem of equality is not
so problematic. Using impredicative quanti�cation one can de�ne the
so-called \Leibniz" equality

x =X y , (∀P : X → Set) P(x) ⇒ P(y) .

10: Those also correspond to Bishop's notion of set.
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§ Families. Even if we refrain from using equality, it is quite natural to de�ne the

family {(s, s) | s ε S}, obviously representing equality. This suggest an alternative

way to de�ne subsets of S:

{f(i) | i ε I} where I : Set

f ε I→ S

which corresponds to the axiom of replacement from ZF set theory. We put:

. Definition 1.1.5: let S be a set, de�ne the collection of families over S as:

F(S) , (ΣI:Set) I→ S .

Similarly, if S is a proper type, de�ne F(S) , (ΣI:Set) I→ S. We write the

family (I, f) either as {f(i) | iεI} or as
(
f(i)
)
iεI

.

Just like predicates, F(S) is always a proper type.

Equality of families is, for our purposes, equality of the underlying subsets:

we do not care about multiplicities of elements.

(I, f) ≈ (J, g) ⇔
{

(∃σ:I→ J) f = g · σ
∧ (∃ρ:J→ I)g = f · ρ .

(This of course requires equality on the underlying set.)

A somewhat moral di�erence between families and predicates is that the former are

\concrete": they give a way to generate their elements while the latter are \abstract":

they only give a property to be satis�ed. In standard mathematical practice, the two

notions coincide:

� a predicate X = {s ε S | ϕ(s)} is translated into the family {s | s ε X};
� conversely, a family F = {f(i) | i ε I} is turned into {s ε S | (∃iεI) s = f(i)}.

Written in type theory:

{s ε S | ϕ(s)} 7→ {π1(p) | p ε (ΣsεS) ϕ(s)}
{f(i) | i ε I} 7→ {s ε S | (ΣiεI) s =S f(i)} .

Since the translation from families to subset requires a notion of equality on S, those

two notions become di�erent when the notion of equality is questioned. Moreover,

this translation between predicates and families doesn't work in either direction when

considering \subsets" of a proper type A:

� to go from a predicate to a family, we need to index the family by (ΣA:A)ϕ(A),

which is not a set;

� to go from a family to a predicate, we need to have a notion of equality on A,

which is in general impossible.

The two notions are thus de�nitely di�erent when dealing with \big" types.

When S is a proper type equipped with an equality, it is sometimes possible

to turn a predicate {X | ϕ(X)} of S into a family (Yi)iεI:

{X | ϕ(X)} ' (Yi)iεI , (∀X : S)
(
ϕ(X)↔ (∃iεI) X =S Yi

)
.

(see on page 27 for a discussion about this type of quanti�cation)

We then say that {X | ϕ(X)} is a set-indexed predicate.



24 1 Preliminaries

A technical di�erence is that as functors, the operators P( ) and F( ) have

opposite variance:

. Definition 1.1.6: extend P( ) and F( ) to functors Set→ Type or Type→ Type

in the following way:

(f ε X→ Y) 7→
(
Pf : P(Y)→ P(X)

)(
Ff : F(X)→ F(Y)

)
with:

Pf : {yεY | ϕ(y)} 7→
{
xεX | ϕ

(
f(x)

)}
Ff :

(
g(i)

)
iεI

7→
(
g · f(i)

)
iεI

.

\P( )" is thus contravariant while \F( )" is covariant.

# Remark 7: a second di�erence between subsets and families lies in the
fact that families allow to talk about multiplicities of elements: since we do
not ask the indexing function to be injective (this would require equality),
elements may appear many times in a family.

With equality, the structure of F(S) is the same as that of P(S): we have

a (complete) Heyting algebra whose atoms are given by singletons. If we remove

equality, the situation is more colorful:

� the empty family is de�ned as the unique family indexed by the empty type;

� the full family can only be de�ned on sets: FullS , {s | s ε S};
� the union is de�ned as {f(i) | i ε I}∪{g(j) | j ε J} , {case(k, f, g) | k ε I+ J}.11

On the other hand, we cannot say that an element belongs to a family, as it requires

an equality:

s \ε"
{
f(i) | iεI

}
⇔ (∃iεI) s = f(i) .

For the same reason, neither intersection, inclusion nor overlapping can be de�ned.

However, we can de�ne inclusion of a family in a subset and overlapping between a

family and a subset:

� {f(i) | iεI} ⊆ {s | ϕ(s)} i� (∀iεi)ϕ
(
f(i)
)
;

� {f(i) | iεI} G {s | ϕ(s)} i� (∃iεI) ϕ
(
f(i)
)
.

Finally, the singleton family {s} is trivially de�ned as {s | iεI} for any non empty I.

1.1.7 Transition Systems

Equipped with this new notion of subset, we take a second look at relations. We get

two di�erent notions:

� if we take R : F(A× B), we get the notion of span: a triple (I, f, g) with I : Set,

f ε I→ A and g ε I→ B;

� if we take R : A → F(B), we get a notion which we call a transition system: a

function from A to F(B).

Those two notions are isomorphic only with equality. Each has some advantages and

drawbacks: for example, spans are \reversible" using a converse operation (just swap-

ping the two \legs") but are not composable while transition systems are composable

11: This operation is also called concatenation of families.
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but not reversible. We keep the notion of transition systems, as they are a simple

version of interaction system, de�ned at the beginning of chapter 2.

Let's unfold the de�nition: if S1 and S2 are sets and v : S1 → F(S2), we have

that v maps any s1 ε S1 to:

� an indexing set which we call v.A(s1);

� together with an indexing function v.ns1
ε v.A(s1)→ S2.

The intuition we have about such a structure is the following:

� S1 and S2 are sets of states;

� v.A(s1) is the set of outgoing transitions (labels) from state s1. We also use the

term \actions" to denote elements of v.A(s1);

� v.ns1
(a) is the state (in S2) reached after transition a from s1. When the tran-

sition system is clear from the context, we write it s1[a].

Thus, a transition system from S1 to S2 is some kind of labeled directed bipartite

graph, with all the transitions going from S1 to S2. When we use the same set of

states S as the domain and the codomain, we get something which is very close to

the usual notion of labeled transition system. The transition from s to s[a] is usually

denoted by s
a−→ s[a].

. Definition 1.1.7: a transition system from set S1 to set S2 is given by:

� a function A : S1 → Set;

� and a function n ε (sεS1)→ A(s1)→ S2.

Equivalently, a transition system from S1 to S2 is a function v : S1 → F(S2).

A transition system is called homogeneous when its domain and codomain

are the same set.

To any transition system v, we can associate a relation with the meaning that s2
and s1 are related i� there is a transition from s1 to s2:

. Definition 1.1.8: let v = (A,n) be a transition system from S1 to S2, de�ne a

relation v◦ on S2 × S1 as:

(s2, s1) ε v
◦ ⇔

(
∃aεA(s1)

)
s1[a] = s2 .

This obviously requires equality on S2.

§ Operations on Transition Systems. Without equality, the collection of transition

systems enjoys di�erent properties than the collection of relations. The three main

points are:

� there is an identity skipS : S→ F(S) corresponding to equality;

� we can de�ne the composition of v : S1 → F(S2) and v′ : S2 → F(S3);

� we can de�ne the re
exive and transitive closure v∗ of v : S→ F(S).

Thus, even without equality, the collection of transition systems will form a category.

This is not the case for real relations since we need equality to de�ne the identities.

Similarly, the collection of homogeneous transition systems on a set will form a Kleene

algebra while relations do not (we need equality to de�ne the re
exive and transitive

closure).

The concrete de�nitions go as follow:
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1) the transition system skip : S→ F(S):

skipS.A(s) , {∗}
skipS.n(s, ∗) , s ;

2) the composition v ; v′ of v = (A,n) : S1 → F(S2) and v′ = (A′, n′) : S2 → F(S3):

(v ; v′).A(s1) ,
(
ΣaεA(s1)

)
A′
(
s1[a]

)
(v ; v′).n

(
s1, (a, a

′)
)
, (s1[a])[a′] .

Thus, an action in v ; v′ is a pair of two consecutive actions: the �rst one in v

and the second in v′.

3) the re
exive and transitive closure of v : S→ F(S) is de�ned as v∗ = (A∗, n∗):

A∗ , (µX : S→ Set) (λs ε S)

data Nil

Cons(a, a′) where a ε A(s)

a′ ε X(s[a])

and

n∗(s,Nil) , s

n∗
(
s, (a, a′)

)
, n∗(s[a], a′) .

The de�nition of A∗ uses a schema which is slightly more general than traditional

inductive de�nitions: we de�ne a predicate on S (a function from S to Set) rather

than a set. In the Agda language, this de�nition would be simply written as

Astar (s::S) :: Set

= data Nil

| Cons (a::A(s)) (a’::Astar(n(s,a)))

and the de�nition of n∗ would be:

nstar(s::S , a’::Astar(s)) :: S

= case a’ of

(Nil) -> s

(Cons a a’) -> nstar( n(s,a) , a’ )

Unfortunately, the converse of a transition system is not de�nable without equal-

ity: this makes transition system an asymmetric structure, adequate to model non

reversible phenomena.

1.2 Impredicativity

Martin-L�of type theory is \predicative". This terminology which originated from

Russel was supposed to mean that there were no \vicious circularities". The no-

tion is di�cult to formalize, and encompasses several concepts. Below is a tentative

explanation of the kind of predicativity we have in mind.12

12: There is a second notion of predicativity related to the proof theoretic strength of a system. A
system whose strength is greater than the ordinal Γ0 is called \impredicative" (see [34]).
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1.2.1 A Tentative Explanation of Predicativity

§ Constructive Set Theory. The perfect example of theory which is predicative is

constructive set theory (CZF, see [6]) which originated from the work of John Myhill.

The basic idea is to take the axioms of ZF set theory and:

� work with intuitionistic logic;

� remove the powerset axiom: \∀x∃y∀z z ⊆ x↔ z ε y".

One needs to modify other axioms in order to get a sensible system. For example,

having the full foundation axiom allows to get both the powerset axiom and the

excluded middle!

This gives a �rst \de�nition" for impredicativity: is impredicative a de�ni-

tion which uses the powerset axiom. Examples of such de�nitions are any de�nition

using quanti�cation over the collection of subsets of a set. Here is for example an

impredicative de�nition of the vector space generated by a set of vectors:

the vector space generated by a set V of vectors is the smallest vector

space containing V. More precisely,

〈V〉 ,
⋂
{W | W is a vector space , V ⊆W} .

Compare with the following predicative de�nition of the same concept:

the vector space generated by a set V of vectors is the set of all linear

combinations of elements of V.

The question of \why" the powerset axiom should be avoided is more a philosophical

question than a real technical problem. As Peter Hancock once told me,

to me, the main lesson of about 150 years of mathematical logic is

that the idea of a powerset is unfathomably mysterious. We can't

even say anything reasonable about its cardinal! (generalized con-

tinuum hypothesis). How on earth can people feel they are on solid

ground here??

One problem when using such a system as a foundation for mathematics is that

its logical strength is very low: CZF is below second order arithmetics, i.e. below

analysis! The same applies to any other predicative system and in particular to

Martin-L�of type theory.

§ PI-1 Quanti�cation. Predicativity thus amounts to removing quanti�cation over

subsets. However, there are cases where such a quanti�cation does make sense, even

in a predicative framework: this is the case of Π11 quanti�cation. The intuition is

` (∀X:Set)ϕ(X) i� X : Set ` ϕ(X) .

Thus, while the expression \(∀X:Set)ϕ(X)" is predicatively not a proposition, the

judgment \X : Set ` ϕ(X)" still makes sense. We will freely use such Π11 quanti�cation.

However, we cannot nest such quanti�cation with the other constructions. In

particular, such a universal quanti�cation should never occur negatively in a formula.

The technical details of why Π11 is predicatively acceptable can be found in [21]: it

is shown that the strength of Π11 is equivalent to the strength of iterated inductive

de�nitions. A result inspired by this, but in a simpler context, can be found in [7]

(see also [25]).
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§ Type Theory. The notion of predicativity can also get a \precise" de�nition in the

framework of type theories. Pure type systems ([11]) are type systems based on the

pure λ-calculus with the following formation rules for function type:

Γ ` A : s1 Γ, a : A ` B : s2

Γ ` (Πx:A) B : s3

where (s1, s2, s3) is a triple of kinds. A system is predicative if for all such rules, we

have s2 � s3 and s1 � s3.

The typical example of such impredicative system is Girard system-F ([37]) or

Reynolds polymorphic λ-calculus ([73]). It has a single rule

Type : ∗ α : Type ` τ : Type

(Πα:Type) τ : Type

where the order on kinds is only Type < ∗.

An alternative view on this condition is to say that a system is predicative if it

has a well-founded notion of \subformula". It is simple to de�ne subformulas for the

simply typed λ-calculus, but the notion is not so simple for system-F. This is what

made the proof of strong normalization so di�cult and required the introduction of

the notion of \candidats de r�educibilit�e" by Jean-Yves Girard.

The problem with such a de�nition is that it is highly syntactical: there is no

guarantee a priori that we cannot �nd an equivalent presentation of the type system

satisfying the above condition. However, as far as system-F is concerned, we have a

semantical counterpart stating that system-F has no \naive" model: [74] shows that

system-F doesn't have a set theoretic model.

# Remark 8: this problem is however \easily" solved by using subtler mod-
els having notions of continuity or stability. We will in fact develop such
a model (for second order linear logic and thus for system-F in chapter 8)
when the question of predicativity will not bother us anymore...

§ The Case of Martin-L�of Type Theory. The type theory presented in section 1.1 can

be seen as a predicative theory, as strong as it can get. It is possible to show ([60])

that this type theory (with intensional equality) enriched with a powerset constructor

allows to get classical logic. Since Martin-L�of type theory with the excluded middle

is as strong as ZFC set theory, this is very bad from a constructive point of view...

However, as this work will show, Martin-L�of type theory is still a decent mathematical

framework.

It should be noted that Peter Aczel has shown that Martin-L�of type theory,

enriched with a notion of \generalized inductive de�nition" is \equivalent" to CZF,

in the sense that they have the same expressivity ([5]). Working in one system or the

other is thus just a matter of taste.

§ Inductive De�nitions. The principle of inductive de�nitions can be seen as a \pred-

icative" counterpart to the Knaster-Tarski theorem:
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let F be a monotonic operator on a complete lattice, then the collec-

tion of �xpoints of F is a complete lattice with least element µF and

greatest element νF. Moreover, we have:

µF =
∧
{V | F(V) � V}

νF =
∨
{V | V � F(V)} .

Let's look how it applies to the inductive de�nition of lists over A: the operator in

question is F : Set→ Set with F(X) , {∗}+A×X. The inductive de�nition introduces

an element List(A) of Set such that:

� we have a function F
(
List(A)

)
→ List(A), namely:

λx . case x of ∗ ⇒ Nil

(a, l)⇒ Cons(a, l) .

That is, List(A) is a pre-�xpoint;

� this pre-�xpoint is smaller than any other pre-�xpoint: if g ε F(X)→ X, then we

have a function f ε List(A)→ X:

f(l) , case l of Nil ⇒ g(∗)
Cons(a, t)⇒ g

((
a, f(t)

))
.

Thus, List(A) is indeed a least pre-�xpoint. A similar analysis of coinductive de�ni-

tion is possible...

# Remark 9: the technology of categories allows to be a little more precise:
an inductive de�nition is not just a least pre-�xpoint, but it should have
some structure. This is achieved by requiring that an inductive de�nition
is an initial (=least) algebra (=pre-�xpoint) of a covariant (=monotonic)
functor (=operator). Dually, coinductive de�nition are terminal coalge-
bras for covariant functors.

1.2.2 Impredicative Systems, Encodings

One of the nice features about impredicative systems is their expressive power. It is

well-known that second-order universal quanti�cation and implication allow to de�ne

all the intuitionistic connectives via the so-called Prawitz encoding:

� ⊥ , (∀α) α;

� F ∧G , (∀α) (F→ G→ α)→ α;

� F ∨G , (∀α)
(
(F→ α)→ (G→ α)

)
→ α;

� (∃β) F(β) , (∀α)
(
(∀β) (F(β)→ α)

)
→ α.

We can in the same way de�ne the product \×" and sum \+" in system-F, or in

other impredicative type theories. What is even more surprising is the fact that we

can encode inductive de�nitions! Let's �rst look at the type of natural numbers:

N , (µX : Set) data zero

succ(n ε X) .

In system-F, the de�nition of natural number is (\Church numerals"):

N , (∀α) α→ (α→ α)→ α .

The second de�nition may not be as intuitive, but is surely very elegant!
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The general recipe to translate an inductive de�nition (µX) F inside an impred-

icative theory is the following: if F is a monotonic functor on X,

(µX) F , (∀α)
(
F(α)→ α

)
→ α .

The problem however, is to see the computational meaning of other impredicative

quanti�cations. For example, what is the meaning of the following type:

κ , (∀α)
(
(α→ α)→ α

)
→ α ?

This certainly doesn't correspond to an inductive de�nition since the functor F would

be F(X) = X→ X, which is not monotonic.

# Remark 10: since the type κ is Π1
1, we have a simple description of terms

inhabiting it: they are known as \Kierstead" λ-terms and their normal
forms are:`

λF
´

F

„
(λx1εα) F

“
(λx2εα) F

`
(λx3εα) . . . F(xi)...

´”«
.

Similarly, but not as widely known is the fact that we can encode coinductive

de�nitions in a completely dual way. For example, the type of streams over a set A

would give, in system-F:

Stream(A) , (∃α) α× (α→ A× α) ,

which gets hopelessly unreadable if one expands the de�nition. Just for fun, have a

look at the unfolded de�nition:

(∀β)((∀α)(((∀γ)(α→ (α→ ((∀δ)(A→ α→ δ)→ δ))→ γ)→ γ)→ β))→ β .

For the general case, we put:

νF , (∃α) α×
(
α→ F(α)

)
.

1.3 Classical Logic

Even if predicative type theory will be the framework of choice for the �rst part of

this work, impredicative systems like the calculus of construction are still perfectly

\constructive". However, adding new principles easily brings the full power of classical

logic, thus taking us beyond any obvious constructive interpretation. The only place

where we will really make use of such a principle in Part I is in section 3.5. The three

most usual ways of getting classical logic from intuitionistic logic are:

� add the law of excluded middle A ∨ ¬A for all formula A;

� add the double negation ¬¬A→ A for all formula A;

� add Pierce's law
(
(A→ B)→ A

)
→ A for all formulas A and B.

It is a traditional exercise to show that they are equivalent in intuitionistic logic...

Due to the structure of our objects, classical logic is most adequately introduced

with another principle: the contraposition of the axiom of choice. It was noted from
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the very beginning by Per Martin-L�of that the following formulation of the axion of

choice is provable in his system:13

AC: (∀xεX)
(
∃yεY(x)

)
ϕ(x, y)⇔

(
∃fε(xεX)→ Y(x)

)
(∀xεX) ϕ

(
x, f(x)

)
.

The classical dual of the axiom of choice is thus the following principle, which de�es

(so it seems) intuition:

CtrAC:
(
∀fε(xεX)→ Y(x)

)
(∃xεX) ϕ

(
x, f(x)

)
⇔ (∃xεX)

(
∀yεY(x)

)
ϕ(x, y) .

The contraposition of the axiom of choice implies Pierce's law in the following manner:

take two sets X and Y, and let ϕ(x, y) be the singleton set {∗}. We can simplify as

follows:

� (ΣxεX)ϕ(x, y) simpli�es into X;

� (ΠfεX→ Y)X simpli�es into (X→ Y)→ X;

� and on the right-hand-side, (ΣxεX)(Πy ε Y) ϕ(x, y) simpli�es into X.

In the end, CtrAC becomes:(
(X→ Y)→ X

)
↔ X

which is just Pierce's law! To derive Pierce's law in a more traditional logical context,

ifA and B are formulas, de�ne X , {xε{∗} | A} and Y , {kε{∗} | B}. Wim Veldman

apparently studies some constructive restrictions of CtrAC in [85].

While we are on this matter, it should be noted that Pierce's law does have a

constructive interpretation in the form of the \call with current continuation" opera-

tion present in the LISP programming language. Such interpretations were �rst stud-

ied by Gri�n in [40]. However, this computational interpretation doesn't lift to strong

frameworks like Martin-L�of type theory: it is incompatible with the axiom of choice

([47] or [58]). The best way to give a constructive analysis of \AC + classical logic"

seems to use a game interpretation and a double negation translation of AC ([14]), or

to use a cc operator, together with a new operator like a \clock" ([57]).

1.4 Notations and Conventions

To �nish this introduction, let's try to give some notation. Since type theory tends

to be very verbose, it is important to decide on implicit conventions to simplify

expressions without loosing information...

� Elements of Type are denoted by calligraphic capital letter like A. One notable

exception is the proper type of all sets, written Set.

� Elements of a proper type A are written as capital, roman letters: for example,

we have S : Set, U : P(S) and R : Rel(S, T).

� For actual sets, we try to keep letters from the beginning of the alphabet together

with S (set of states). In order to get enough diversity, we put decorations on

the names: A4, S
′, etc. .

� For predicates, we usually use U, V and W.

13: The fact that AC is constructively valid had been noted before by Howard and Bishop.
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� For relations, we almost exclusively use R, with decorations.

� Element of a set are themselves written in small, roman letters. We have s ε S,

u ε U(s) and r ε R(s, t). When the sets have decoration, we try to keep them on

the names of elements, like s2 ε S2.

� Variable objects (sets or their elements) are usually written with letters from the

end of the alphabet: x, y, . . . or X, Y, . . .

We apply (un)curri�cation (A→ B→ C ' A× B→ C) transparently. In particular,

if f is of type A1 → A2 → A3 → B, f(a1, a2, a3) is a notation for the repeated

application ((f a1) a2) a3. This is to keep standard mathematical notation rather

than type theoretic notation which is not easily parsed.

The symbol , is used for de�nitions: \name , de�nition".

For technical reason, it wasn't possible to keep a consistent notation across the

whole thesis. Some of the notation becomes obsolete in a classical setting and we will

change some of the conventions in the second part of this work. Those changes will

be explained when appropriate (page 111).



Part I

General Theory
and Applications





2 Interaction Systems

The object of study of this thesis is a structure called interaction system (Peter Han-

cock's terminology). Because of its \genericity", this structure has been introduced

(with di�erent degrees of generality) by many authors under di�erent names and with

many di�erent purposes. Let's mention some of the interesting uses we have seen:

� [82]: Alfred Tarski seems to have used a �nitary version as Post-systems;

� [41]: Kripke like semantics for intuitionistic logic;

� [4]: abstract description of generalized inductive de�nitions;

� [29]: complete model for intuitionistic logic;

� [70]: grammars with ideas of applications to linguistic;

� [68]: justi�cation for families of mutually dependent inductive types;

� [23] and [27]: description of inductively generated formal topologies;

� [44], [45] and [66]: abstract description of a \programming language";

� [15] and [24] as a topological model for geometric theories;

� [46] and [64] as representations for \polynomial (set-based) functors".

To a lesser extend, one can also see any specie of games (like in [22], [51] or [3]) as a

variant of interaction systems. The converse is also true (i.e. interaction systems are

a kind of two players game) but the developments di�er in many ways.

Our �rst motivation ([52]) for looking at interaction systems came from Peter

Hancock and Anton Setzer who used interaction systems to model interactive pro-

grams ([44], [45] and [66]). The notion of interaction systems as we use it was brought

to its present form by Anton Setzer and Peter Hancock.

This �rst chapter presents, in a non-technical way, the basic structure of inter-

action systems, their morphisms and several properties they enjoy.

2.1 Basic Definitions and Examples

2.1.1 Interaction Systems

Interaction system bear many similarities with the simple notion of transition system

de�ned in section 1.1.7, but there now are two kinds of transitions:
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. Definition 2.1.1: let S1 and S2 be sets; an interaction system from S1 to S2 is

given by the following data:

� a function A : S1 → Set;

� a function D : (s1εS1)→ A(s1)→ Set;

� a function n ε (s1εS1)→
(
aεA(s1)

)
→ D(s1, a)→ S2.

If w is an interaction system, we name its components w.A, w.D and w.n.

When no confusion arises, we drop the \w." and simply write A, D and n,

possibly with decorations. When the interaction system is clear from the

context, we write s[a/d] instead of n(s, a, d) .

An interaction system from S to S is called homogeneous. In this case, we

say that w is an interaction system on S.

Since most of this work deals with homogeneous systems, we implicitly assume that

the \domain" and \codomain" of the interaction system are identical.

A �rst intuition about interaction systems is that:

� the set S is a set of states;

� if s is a state, A(s) is the set of possible actions available in state s;

� if a is an action in state s, the set D(s, a) is the set of possible reactions to a;

� �nally, if d is a reaction to action a, the state s[a/d] is the new state after the

action a had been \performed" and reaction d has been \received".

More speci�c interpretations will be given in section 2.1.2

In practice, just like for transition systems, we might like to have a notion of

\initial states": states from which interaction can be initiated.

# Remark 11: the main reason we do not bother with initial states is sim-
plicity. Having initial states naturally brings forward the problem of
reachability of states: initialized interaction systems ought to be identi�ed
when their \connected component containing the initial state" coincide
(whatever that really means), i.e. we do not really care about unreach-
able states . Dealing with simple interaction systems allows to evacuate
this problem, at least for the time being...

Following standard (??) terminology in computer science, we call the entity choosing

the actions the Angel, hence the A. For the sake of simplicity, the Angel will be

a female and referred to as a \she". The entity responding to the actions, i.e. the

entity choosing the reactions is called the Demon, hence the D. The Demon will be a

male and referred to as a \he". Depending on the audience's background, they could

have been named Player and Opponent, Eloise and Abelard, Alice and Bob, Master

and Slave, Client and Server, System and Environment, alpha and beta, Arthur and

Berta etc.

§ Structural Isomorphism. There is a natural notion of \structural isomorphism" for

interaction systems: say that two interaction systems are structurally isomorphic if

they are isomorphic component-wise:

. Definition 2.1.2: if w and w′ are interaction systems respectively on S and

on S′, we say that w and w′ are structurally isomorphic if we have the

following:

� an isomorphism σ ε S
∼→ S′;

� for each s ε S, an isomorphism αs ε A(s) ∼→ A′
(
σ(s)

)
;
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� for each a ε A(s), an isomorphism δs,a ε D(s, a) ∼→ D′(σ(s), αs(a)
)

such that

σ
(
n(s, a, d)

)
= n′

(
σ(s), αs(a), δs,a(d)

)
.

We write w ≈ w′ to mean that w is structurally isomorphic to w′. This

relation is obviously an equivalence relation.

Of course, this de�nition requires equality.

This notion of isomorphism is too �ne for most purposes and section 2.4 is

devoted to �nding a \good" notion of (iso)morphism between interaction systems.

Sections 2.6.2 and 3.3.1 will latter introduce other notions of morphism, adequate for

some particular applications of interaction systems.

§ An Alternative View. Just like transition systems, interaction systems have a more

concise, abstract de�nition using families. This allows to see interaction systems as

a higher-order variation on transition systems.

◦ Lemma 2.1.3: an interaction system from S1 to S2 is equivalent to a

function w : S1 → F2(S2).

If we recall that transition systems are concrete representations for relations, we

can see interaction systems as concrete representations for functions S1 → P2(S2).

Such functions are called predicate transformers and will be introduced in details in

section 2.5.

2.1.2 Many Possible Interpretations

De�nition 2.1.1 is very general, and many situations can be modeled, or at least

approximated by interaction systems. Here is a (non exhaustive) list.

§ Physical world. In the most naive interpretation, S represents the set of physical

states of a system. It could for example consist of physical quantities like temperature,

pressure and the like. The Angel represents any entity which can try to in
uence the

world described by S. The Demon is then given by the laws of physics. The fact that

their might be many possible reactions comes from the fact that the state may not

describe everything (
ipping a coin is non-deterministic if the knowledge about the

environment is not precise enough) or because we have a level of details such that

quantum phenomena do occur.

§ Games. A natural interpretation is to see an interaction system as a game. For

example, the game of chess is easily described by an interaction system: S will be

the set of con�gurations of the board, A(s) is the set of possible moves for White in

state s, and D(s, a) is the set of possible moves for Black after White's move a. The

new state s[a/d] is just the state of the board obtained from s after the pair of moves

White-a/Black-d.

This kind of symmetric games might however be more adequately described

using a symmetric variant of interaction systems called Janus system:
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. Definition 2.1.4: a Janus system on states SA and SD is given by:

� a function A : SA → Set;

� a function nA ε (sεSA)→ A(s)→ SD;

� a function D : SD → Set;

� a function nD ε (sεSD)→ D(s)→ SA.

Equivalently, a Janus system on SA and SD is given by a pair of opposite

transition systems:

vA : SA → F(SD) and vD : SD → F(SA) .

The idea is that the Angel and Demon have their own, disjoint sets of states and

that they alternate moves. This notion is being studied by Markus Michelbrinks in

Swansea; it is also at the heart of Giovanni Sambin's work on \basic pairs" ([78]).

# Remark 12: many logicians used to games semantics are taken aback by
the asymmetric nature of interaction systems. Most would prefer working
with the more symmetric Janus systems. Anticipating on the second part
of this thesis, let's explain why the notion of Janus system is inadequate
for our purposes. While it is simple enough to de�ne connectives like ⊕
and ⊗ on Janus systems, the notion of morphism is not as obvious.

One argument invoked is that negation is very easy in Janus sys-
tem: just change the Angel and the Demon:

η = (SA, SD, A, D, nA, nD) 7→ η⊥ , (SD, SA, D, A, nD, nD) .

However, it is di�cult to see how the above operation could achieve the
goal of changing an Angel strategy into a Demon strategy: if a strategy for
the Angel in η is of the form (∃a1)(∀d1)(∃a2)(∀d2) . . ., then a strategy
for the Angel in η⊥ will be of the form (∃d1)(∀a1)(∃d2)(∀a1) . . . This
is a strategy for the Demon in η if we allow the Demon to start. This is
in essence the reason of the presence of \dummy moves" in negation in
many games semantics. This makes realizing F⊥⊥ = F not trivial. One
very nice feature of our negation operator will be that it doesn't change the
set of state, while still interchanging the Angel and the Demon strategies.

Finally, even if all those problems are set aside, one cannot ignore
the fact that, with the synchronous de�nition of tensor, this negation
would make the category compact closed,1 i.e. the multiplicatives would
collapse into a single connective.

One last reason why this structure is inadequate for our purposes is that is not at all

obvious how to de�ne the re
exive closure of a Janus system.

§ Knowledge. An interpretation which turns out to be interesting in the sequel is to

see s ε S as a state of knowledge the Angel has about the world. She can try to extend

her knowledge by asking questions. Responses come of course from the Demon. A

response will make her knowledge increase. The fact that the state \increases" with

time will be quite important when we talk about localized interaction systems in

section 4.3. (See also section 4.4.1.)

§ Resources. We can easily devise a \non-monotonic" variant of the previous inter-

action system: S doesn't represent knowledge about the world but resources at the

disposal of the Angel. She can use those resources to conduct experiments which

1: It is possible to use them to construct a non-trivial ?-autonomous category see [65], but the
intuitions are entirely di�erent.
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may have di�erent outcomes. What is produced by those experiments is added to the

available resources, but what was used . . . is used. This is in essence the subject of

section 4.4.2.

§ Post Systems. An interaction system can be seen as a generalized discharge-free

deduction system (a Post system): given a proposition to prove, there can be many

di�erent inference rules one can apply (Angel's choice). For one such inference rule,

there are several premises one needs to prove (Demon's choice).This is the notion

used by Peter Aczel under the name rule set to describe generalized inductive de�-

nitions ([4]): the Angel chooses a particular constructor and the Demon responds by

choosing one argument for this constructor. The notion of strategy for the Angel is

quite important since it is linked with the notion of proof and term...

§ Grammars. One other idea is to use interaction systems to model grammars: a state

is a non-terminal token, an action for the Angel is a rule with this token as the left

hand side and a reaction is one of the non-terminal tokens appearing on the right

hand side of the rule. This was the original motivation for introducing interaction

systems by Kent Petersson and Dan Synek in [70]. They de�ned a scheme for special

inductive de�nitions relative to the type signature:

A : Set

B(a) : Set where a ε A

C(a, b) : Set where a ε A, b ε B(a)

d(a, b, c) ε A where a ε A, b ε B(a), c ε C(a, b)

i.e. relative to a pair (A,w) of a set A and an interaction system on A. They called

the resulting inductive type \tree set".

§ Interfaces. This will somehow be the main \concrete" example: describing the

services o�ered by an interface for programming. Since we will describe interfaces in

details in section 2.6, we do not go into the details for the moment.

§ Topological Space. This interpretation is quite di�erent in nature. Since this will

be the subject of section 4.2, we omit the details and simply say that a state can be

seen as an element of a base for a topological space and that the actions and reactions

give the possible ways to cover a particular basic open set by other basic open sets.

Here is table summarizing all this:

s ε S a ε A(s) d ε D(s, a) n(s, a, d)

physical state action reaction next state

state of board move counter-move next state

state of knowledge question answer new knowledge

resources experiment outcome new resources

proposition inference rule premise new proposition

inductive type constructor argument type of argument

non-terminal production rule RHS token new token

state command response new state

basic open covering index for... new basic open
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2.2 Combining Interaction Systems

Given two interaction systems, there are natural ways to combine then. We give the

most obvious ones below.

§ Disjoint Sum. A very simple thing to do is to make the \disjoint union" of the

interaction systems, reminiscent of the disjoint sum of two labeled transition systems:

. Definition 2.2.1: let w1 and w2 be interaction systems on S1 and S2. De�ne

the interaction system w1 ⊕w2 on S1 + S2 as:

(w1 ⊕w2).A(s) , case s of inl(s1) ⇒ A1(s1)

inr(s2)⇒ A2(s2)

(w1 ⊕w2).D(s, a) , case s of inl(s1) ⇒ D1(s1, a)

inr(s2)⇒ D2(s2, a)

(w1 ⊕w2).n(s, a, d) , case s of inl(s1) ⇒ s1[a/d]

inr(s2)⇒ s2[a/d] .

We call w1 ⊕w2 the disjoint sum of w1 and w2.

The interaction system w1 ⊕w2 is quite boring: interaction takes place either in w1
or in w2, but always on the same side!

§ Synchronous Tensor. On the other side of the spectrum, we can impose the Angel

and the Demon to play on both sides all the time. This is a kind of \lock-step"

synchronous product, similar to the operation with the same name de�ned in [67] for

labeled transition systems.

. Definition 2.2.2: suppose w1 and w2 are interaction systems on S1 and S2;

de�ne w1 ⊗w2 to be the following interaction system on S1 × S2:

(w1 ⊗w2).A
(
(s1, s2)

)
, A1(s1)×A2(s2)

(w1 ⊗w2).D
(
(s1, s2), (a1, a2)

)
, D1(s1, a1)×D2(s2, d2)

(w1 ⊗w2).n
(
(s1, s2), (a1, a2), (d1, d2)

)
,

(
s1[a1/d1], s2[a2/d2]

)
.

We call w1 ⊗w2 the \synchronous tensor" of w1 and w2.

This is very restrictive since a failure to play on one side yields a failure to play

in the synchronous tensor. Because of its algebraic properties (see section 3.4), this

operation will be central in the second part of this work where it will model the tensor

of linear logic.

§ Angelic and Demonic Tensors. Somewhere between \interaction only on one side"

and \interaction always on both sides" lie two other possibilities:

� interaction on one side at a time, the Angel decides which;

� interaction on one side at a time, the Demon decides which.

This means that we can interleave interaction in w1 and w2. Such an interaction is

biased either toward the Angel, in which case we talk about the Angelic tensor, or

toward the Demon, in which case we talk about the Demonic tensor.
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. Definition 2.2.3: if w1 and w2 are interaction systems on S1 and S2, de-

�ne w0 � w2 and w1 � w2 on S1 × S2 with components (A�, D�, n�)

and (A�, D�, n�):

A�
(
(s1, s2)

)
, A1(s1) +A2(s2)

D�
(
(s1, s2), a)

)
, case a of inl(a1) ⇒ D1(s1, a1)

inr(a2)⇒ D2(s2, a2)

n�
(
(s1, s2), a, d)

)
, case a of inl(a1) ⇒ (s1[a1/d], s2)

inr(a2)⇒ (s1, s2[a2/d])

and

A�
(
(s1, s2)

)
, A1(s1)×A2(s2)

D�
(
(s1, s2), (a1, a2)

)
, D1(s1, a1) +D2(s2, d2)

n�
(
(s1, s2), (a1, a2), d

)
, case d of inl(d1) ⇒ (s1[a1/d1], s2)

inr(d2)⇒ (s1, s2[a2/d2]) .

The �rst one is called the Angelic tensor of w1 and w2 and the second one

is called the Demonic tensor of w1 and w2.

Note that in a �, the Angel needs not be consistent in her choice of moves: if she

chooses (a1, a2) and the Demon responds with d1, then for the next interaction, the

Angels may choose (a′1, a
′
2) where a′2 6= a2.

All of ⊕, ⊗, � and � can be de�ned as well for heterogeneous systems.

§ Obvious Properties. Those four operations are commutative and associative in a

strong sense:

◦ Lemma 2.2.4: for any interaction systems w1, w2 and w3, we have:

� w1 ♣ (w2 ♣w3) is structurally isomorphic to (w1 ♣w2) ♣w3;

� w1 ♣w2 is structurally isomorphic to w2 ♣w1;

where ♣ is one of ⊕, ⊗, � or �.

Moreover, ⊗ distribute over ⊕: w⊗(w1⊕w2) ≈ (w⊗w1)⊕(w⊗w2).

They all have a neutral element:

. Definition 2.2.5: de�ne the following interaction systems:

� null is the unique interaction system on the empty set of state;

� skip is the following interaction system on {∗}:

skip: A(∗) , {∗}
D(∗, ∗) , {∗}
n(∗, ∗, ∗) , ∗ ;

� abort and magic are the following interaction systems on S , {∗}:

abort: A(∗) , ∅ and magic: A(∗) , {∗}
D(∗, ) , D(∗, ∗) , ∅
n(∗, , ) , n(∗, ∗, ) , .
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Those constants have natural interpretations in terms of interaction:

� null is probably the most boring interaction system: there are no state!

� abort is strongly \winning" for the Demon: the Angel cannot move, interaction

doesn't even start!

� magic is strongly \winning" for the Angel: the Demon cannot answer! The system

stops (\hangs") after the �rst action.

� skip is the second most boring interaction system after null. Interaction doesn't

bring any information because there is only one way to interact. It is the perfect

example of a \stable" system. This system, as simple as it may seem enjoys a

highly non-trivial property: see section 3.5.

Those interaction systems satisfy:

◦ Lemma 2.2.6: for any interaction system w, we have

� w⊕ null ≈ w;

� w⊗ skip ≈ w;

� w� abort ≈ w;

� w�magic ≈ w.

2.3 Sequential Composition and Iteration

The reason we are mainly interested in homogeneous interaction systems is that in-

teraction can be iterated: after interaction (a/d) from s, the Angel can chose a new

action in A(s[a/d]) to which the Demon can respond, etc. We omit parenthesis and

write s[a1/d1][a2/d2] . . . [an/dn] for the state reached after the sequence of interac-

tion (a1/d1, . . . , an/dn). Such a sequence of interaction is usually called a trace.

This section deals with this idea of iteration by de�ning, for any interaction

system w on S, new interaction systems w∗ and w∞ on S for which actions are

\sequences" of actions and reactions are \sequences" of reactions.

2.3.1 Sequential Composition

The �rst step is to de�ne a notion of sequential composition w1 ;w2 for interaction

systems. The idea is simply that an interaction pair (action/reaction) in w1 ;w2 will

be a pair of interactions (a1/d1, a2/d2) where a2/d2 follows a1/d1:

. Definition 2.3.1: suppose w1 and w2 are interaction systems respectively

from S1 to S2 and from S2 to S3; de�ne w1 ; w2 to be the following in-

teraction system, from S1 to S3:

� (w1 ;w2).A(s1) ,
(
Σa1εA1(s1)

) (
Πd1εD1(s1, a1)

)
A2(s1[a1/d1]);

� (w1 ;w2).D
(
s1, (a1, k)

)
,
(
Σd1εD1(s1, a1)

)
D2
(
s1[a1/d1], k(d1)

)
;

� (w1 ;w2).n
(
s1, (a1, k), (d1, d2)

)
, s1[a1/d1][k(d1)/d2].

The interaction system w1 ; w2 is called the sequential composition of w1
and w2.
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This de�nition certainly looks frightening but is in fact quite natural: recall that Σ

and Π respectively denote pairs and functions,

� an action from state s1 in w1 ;w2 is given by:

- an action a1 in A1(s1),

- together with a continuation k mapping any reaction d1 to a1 to a new

action a2 from state s1[a1/d1] (a \conditional" action in w2);

� a reaction to such a pair is given by:

- a reaction d1 to the �rst action a1,

- and a reaction d2 to the action obtained from the continuation k(d1),

� the resulting state is simply s1[a1/d1][k(d1)/d2].

Thus, a single move for the Angel in w1 ; w2 is a strategy to play one move in w1
followed by one move in w2.

This operation is naturally associative but de�nitely not commutative. For any

set S, there is an interaction system skipS which is neutral on both sides:

skipS ;w ≈ w where w : S→ F2(S′)

w ; skipS ≈ w where w : S′ → F2(S) ,

where skipS is the following interaction system on S:

skip : A(s) , {∗}
D(s, ∗) , {∗}
n(s, ∗, ∗) , s .

This small section can be summarized by saying that we have a category where objects

are sets and morphisms interaction systems.

2.3.2 Factorization of Interaction Systems

The very notion of interaction system is sequential: the Demon's reactions follow the

Angel's actions. As we will show, it is possible to see any interaction system as the

sequential composition of two simple interaction systems: one for the Angel and one

for the Demon.

§ Angelic and Demonic Updates. First, let's see how we can lift a transition system

to an interaction system:

. Definition 2.3.2: suppose v = (A,n) is a transition system from S1 to S2;

de�ne the Angelic update 〈v〉 of v to be the following interaction system

from S1 to S2:

〈v〉.A(s1) , A(s1)

〈v〉.D(s1, a1) , {∗}
〈v〉.n(s1, a1, ∗) , n(s1, a1) .

Dually, de�ne the Demonic update [v] of v to be the following interaction

system from S1 to S2:

[v].A(s1) , {∗}
[v].D(s1, ∗) , A(s1)

[v].n(s1, ∗, a1) , n(s1, a1) .
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An \update" of a transition system amounts to giving a name (Angel or Demon) to

the player choosing the transitions.

§ Factorization. We just saw how to lift a transition system to an interaction system,

and we saw that there were two ways to do so. We now do the converse and show

how to dismantle an interaction system into two transition systems. If w = (A,D,n)

is an interaction system from S1 to S2, de�ne:

� a transition system wA from S1 to (Σs1εS1)A(s1):

wA.A(s1) , A(s1)

wA.n(s1, a1) , (s1, a1) ;

� and a transition system wD from (Σs1εS1)A(s1) to S2:

wD.A
(
(s1, a1)

)
, D(s1, a1)

wD.n
(
(s1, a1), d1

)
, n(s1, a1, d1) .

This operation of \surgery" is somewhat right inverse to the previous lifting opera-

tions:

� Proposition 2.3.3: for any homogeneous interaction system w,

we have w ≈ 〈wA〉 ; [wD].

proof: since the set of states of w and 〈wA〉 ; [wD] are the same, it is enough to show

that the sets of actions and reactions are isomorphic, in a way that is compatible

with the next state functions: for the actions,

(〈wA〉 ; [wD]).A(s) =
(
Σaε〈wA〉.A(s)

)(
dε〈wA〉.D(a)

)
→ [wD].A

(
wA.n(s, a, d)

)
=

(
ΣaεA(s)

)
{∗} → {∗}

= A(s)×
(
{∗} → {∗}

)
' A(s)

for the reaction,

(〈wA〉 ; [wD]).D(s, (a, k)) =
(
Σdε〈wA〉.D(s)

)
[wD].D

(
wA.n(s, a, d), k(d)

)
=

(
Σ ε{∗}

)
[wD].D

(
wA.n(s, a, ∗), k(∗)

)
= {∗} × [wD].D

(
(s, a), ∗

)
= {∗} ×D(s, a)

' D(s, a)

and the next state functions

(〈wa〉 ; [wD]).n
(
s, (a, k), (∗, d)

)
= [wD].n

(
〈wA〉.n(s, a, ∗), k(∗), d

)
= [wD].n

(
(s, a), ∗, d

)
= wD.n

(
(s, a), d

)
= n(s, a, d) .

This concludes the proof.

�X
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2.3.3 Reflexive and Transitive Closure: Angelic Iteration

If we can compose interaction systems (when the codomain of the �rst one coincide

with the domain of the second one), it is possible to compose a homogeneous system

with itself, many times in a row if needed: this corresponds to doing a sequence of

interactions. However, the iterated composition w ; . . . ;w su�ers from a big drawback:

all traces of interaction have the same length. The next de�nition is an answer to

this problem:

. Definition 2.3.4: let w = (A,D,n) be an interaction system on S; de�ne the

re
exive transitive closure of w, written w∗, on S as:

A∗ , (µX : S→ Set) (λs ε S)

data Exit

Call(a, k) where a ε A(s)

k ε
(
ΠdεD(s, a)

)
X(s[a/d])

D∗(s,Exit) , data Nil

D∗(s,Call(a, k)
)
, data Cons(d, d′) where d ε D(s, a)

d′ ε D∗(s[a/d], k(d))
and

n∗(s,Exit,Nil) , s

n∗
(
s,Call(a, k),Cons(d, d′)

)
, n∗

(
s[a/d], k(d), d′

)
.

This interaction system is also called the Angelic iteration of w.

A single move in w∗ is thus a strategy to play in w, until the Angel decides she doesn't

want to continue. A response to such a strategy is simply a sequence of reactions to

the consecutive moves given by the strategy.

Here is how these de�nitions would be written in the Agda system:

RTCA (s::S) :: Set

= data Exit | Call (a::A s) (k::(d::D s a) -> RTCA (n s a d))

RTCD (s::S) (a’:: RTCA s) :: Set

= case a’ of

(Exit) -> data Nil

(Call a k) -> data Cons (d::D s a) (d’::RTCD (n s a d) (k d))

RTCn (s::S) (a’:: RTCA s) (d’:: RTCD s a) :: S

= case a’ of

(Exit) -> s

(Call a k) -> RTCn (n s a d’.fst) (k d’.fst) d’.snd

where \d’.fst" denotes the projection of d’ on the �rst coordinate.

This interaction system will play an important rôle in sections 2.5.5, 2.6.2 and 4.2.

2.3.4 Demonic Iteration

Angelic iteration is concerned with well-founded interaction where the Angel decides

when to stop. There is a dual notion of potentially in�nite plays for the Angel, where

termination is decided by the Demon. This notion of Demonic iteration uses a de�-

nition by greatest �xpoint over S→ Set similar to the previous generalized inductive
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de�nition. We start by recalling the full rules for such coinductive de�nitions as they

are described in [46].

§ \State Dependent" Coinductive De�nitions. Usual coinductive de�nitions allow

to de�ne greatest �xpoints for functors Set → Set; \state dependent" coinductive

de�nitions will allow to de�ne greatest �xpoints for a restricted class of functors

from (S→ Set) to (S→ Set) (i.e. from P(S) to P(S)). For predicativity reasons, it is

not possible to justify the introduction of such greatest �xpoints for arbitrary func-

tors. Instead, we use the notion of interaction system to de�ne so called \set-based

predicate transformers".2 The interest of interaction systems as representations for

endofunctors on P(S) will be discussed in section 2.5.

For any interaction system w = (A,D,n) on S, de�ne the following operator

on subsets:

w◦ : P(S)→ P(S)

U 7→
{
sεS |

(
∃aεA(s)

)(
∀dεD(s, a)

)
s[a/d] ε U

}
;

or, to use type theoretic notation:

w◦ : (S→ Set)→ (S→ Set)

w◦ , (λU:S→ Set)(λsεS)
(
ΣaεA(s)

)(
ΠdεD(s, a)

)
U(s[a/d]) .

It is quite trivial to check that w◦ is a functor. Formally, this means that w◦ is a

monotonic operator from P(S) to P(S).

In words, s ε w◦(U) means that the Angel has a foolproof way to reach U in

exactly one interaction (provided the Demon does react to her action). An element

of the set s ε w◦(U) is simply a pair (a, k) where a is an action and k(d) provides a

proof that s[a/d] ε U for any reaction d.

We now de�ne νX.w
◦(X), the greatest �xpoint of the operator just given. The

intuition is that s ε νX.w
◦(X) if, from state s, there is an in�nite strategy choosing

actions for the Angel.

�
w = (A,D,n) interaction system on S

νX.w
◦(X) : S→ Set

;

�
X : S→ Set C ε (sεS)→ X(s)→ w◦(X)(s) s ε S x ε X(s)

coiter(X,C, s, x) ε νX.w
◦(X)(s)

;

�
s ε S p ε νX.w

◦(X)(s)

elim(p, s) ε w◦(νX.w
◦(X))(s)

.

The reduction rule is:

elim
(
coiter(X,C, s, x)

)
=

(
a ,
(
λdεD(s, a)

)
. coiter

(
X,C, s[a/d], g(d)

))
where C(s, x) = (a, g) .

(With \C(s, x) = (a, g)" denoting a pattern matching: C(s, x) is a pair, because it is in a sigma type.)

Thus, if p ε νX.w
◦(X), elim(p) is of the form (a, k), where a is an action in A(s) and k

is a continuation sending any d ε D(s, a) to a new in�nite strategy from state s[a/d].

2: The same restriction also applies to least �xpoints.
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§ Demonic Iteration. We now have all the tools to de�ne Demonic iteration:

. Definition 2.3.5: let w = (A,D,n) be an interaction on S; de�ne a new inter-

action system w∞ = (A∞, D∞, n∞) on S with:

A∞ , νX.w
◦(X) (see above)

D∞ ,
(
µX : (sεS)→ A∞(s)→ Set

) (
λs ε S) (λp ε A∞(s)

)
data Nil

Cons(d, d′) where (a, k) = elim(p)

d ε D(s, a)

d′ ε X
(
s[a/d], k(d)

)
and

n∞(s, p,Nil) , s

n∞
(
s, p,Cons(d, d′)

)
, n∞

(
s[a/d], k(d), d′

)
where (a, k) = elim(p)

This interaction system is called the Demonic iteration of w.

So, when choosing an action in w∞, the Angel needs to decide on a potentially in�nite

strategy to play in w and the Demon reacts by a �nite sequence of counter moves.

Plays are still �nite, but the Angel doesn't know when interaction will stop. This kind

of situation is very common in computer science when dealing with server programs.

We will come back to this example in section 2.6.3. Also note that a an element

of A∞(s) is a deadlock avoiding strategy: no matter what happens, provided the

Demons reacts, the Angel always has a move to play.

2.4 Simulations

We now, at last, come to the notion of morphisms between interaction systems. This

notion generalizes the natural notion of simulation between transition systems and

was �rst formalized in the context of interaction systems by Anton Setzer and Peter

Hancock. It will of course be compatible with the notion of structural isomorphism

de�ned on page 37.

2.4.1 The Case of Transition Systems

The usual notion of simulation relation between labeled transition systems can be

written as:

if −→1 and −→2 are LTS on sets S1 and S2, with labels in L, a

relation R on S1 × S2 is a simulation if the following holds:
a ε L

s1
a−→1 s′1

(s1, s2) ε R

⇒ s2
a−→2 s′2 for some s′2 s.t. (s′1, s

′
2) ε R .

In our case, where the set of labels is local to each interaction system (and is even

local to each state), we modify this de�nition into:
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let v1 = (A1, n1) and v2 = (A2, n2) be transition systems on S1
and S2; a relation R : Rel(S1, S2) is called a simulation if the following

holds for all s1 ε S1 and s2 ε S2:

(s1, s2) ε R ⇒
(
∀a1 ε A1(s1)

)(
∃a2 ε A2(s2)

)(
s1[a1], s2[a2]

)
ε R .

This de�nition shows that we are mainly concerned about how the states are linked

and not so much about the actual transition names between them.

2.4.2 The General Case

It is quite straightforward to extend the above de�nition to take into account the

presence of reactions:

. Definition 2.4.1: let w1 = (A1, d1, n1) and w2 = (A2, D2, n2) be interaction

systems on S1 and S2; a relation R : Rel(S1, S2) is a linear simulation relation

(or simply a simulation) from w1 to w2 if the following holds:

for all s1 ε S1 and s2 ε S2,

(s1, s2) ε R ⇒
(
∀a1 ε A1(s1)

)(
∃a2 ε A2(s2)

)(
∀d2 ε D2(s2, a2)

)(
∃d1 ε D1(s1, a1)

)(
s1[a1/d1], s2[a2/d2]

)
ε R .

To be really pedantic, the actual de�nition of the collection of simulations from w1
to w2 is of the form:(

ΣR : Rel(S1 × S2)
)

(∀s1εS1)(∀s2εS2) (s1, s2) ε R ⇒
(
∀a1εA1(s1)

)(
∃a2εA2(s2)

)
. . .

i.e. a simulation is a pair (R, p) where p is a proof that R is a simulation.

The intended meaning is that if R is a simulation fromw1 tow2 and (s1, s2) ε R,

then we can simulate s1 (in w1) from s2 (in w2). There is one subtlety in the order

of quanti�ers which allows to get a 
ow of interaction coherent with the intuition of

simulations: a \black-box" allows to simulate a state s1 ε S1 by a state s2 ε S2 if:

� when given an action a1 ε A1(s1) (action to simulate),

� it can send a command a2 ε A2(s2) to the environment (simulating command);

� and once the environment responds to a2 with some d2 ε D2(s2, a2),

� it can translate this reaction to a reaction d1 in D1(s1, a1).

2.4.3 The Category of Interfaces

We are now ready to de�ne the \category of interaction systems".
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. Definition 2.4.2: an interface is given by a set S together with an interaction

system w on S. We call the collection of interfaces Int. We sometimes omit

the set of states S and refer to the interface (S,w) as w.

This proper type, with the notion of simulation just de�ned forms a category:

� the (relational) composition of simulations is a simulations;

� the identity is a simulation from any (S,w) to itself.

We will omit the proof that the identity (if available) is always a simulation from an

interface to itself: this is just the usual \copycat" strategy which copies actions from

left to right, and reactions from right to left.

Let's quickly check that the relational composition of two simulations is a

simulation. Let R be a simulation from w1 to w2 and R′ be a simulation from w2
to w3; suppose that (s1, s3) ε R

′ · R:

1) we know that (s1, s2) ε R and (s2, s3) ε R
′ for some s2 ε S2;

2) suppose we are given an action a1 ε A1(s1) to simulate:

a) since (s1, s2) ε R, we can simulate a1 by some a2 ε A2(s2),

b) since (s2, s3) ε R
′, we can now simulate a2 by some a3 ε A3(s3),

3) we produce the action a3 to simulate a1;

4) suppose we are given a reaction d3 ε D3(s3, a3) to translate back:

a) because a2 is simulated by a3 (via R′), we can translate d3 back into a

reaction d2 in D2(s2, a2),

b) similarly, since a1 is simulated by a2, we can translate d2 back into a reac-

tion d1 in D1(s1, a1),

5) we produce reaction d1;

6) we have indeed that (s1[a1/d1], s3[a3/d3]) ε R
′ · R because there is a mediating

element: (s1[a1/d1], s2[a2/d2]) ε R and (s2[a2/d2], s3[a3/d3]) ε R
′.

Thus:

◦ Lemma 2.4.3: the proper type Int with simulations forms a category.

This category inherits some of the structure of the simpler category of sets and

relations: in particular, it is order enriched. This simply means that each collec-

tion Int(w1, w2) is equipped with a partial order (inclusion) and that composition is

monotonic in both its arguments. This is trivial.

There is another property which deserves some comments: simulations are

closed under arbitrary unions: the veri�cation is direct. Since composition of relation

commutes with unions on the left and on the right, we can conclude:

� Proposition 2.4.4: Int is a category enriched over complete sup-

lattices.

In particular, the empty relation (the empty union) is always a simulation. (In the

condition for simulation, we have a vacuous left hand side in the implication...) In

practice, one uses initialized interaction systems and requires the initial states to be

related: this prevents this bug, but most of part II will not work in this context.
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2.5 Interaction Systems and Predicate Transformers

We now look at the predicate (rather than family) version of interaction systems:

just like transition systems are concrete representations for relations, interaction sys-

tems are concrete representations for predicate transformers. We recall some of the

traditional theory of predicate transformers (see [8]) and link that to the previous

sections.

A predicate transformer is simply an operator on subsets:

. Definition 2.5.1: if S1 and S2 are sets, a predicate transformer from S1 to S2
is a function from P(S1) to P(S2). A predicate transformer is monotonic if

it is monotonic w.r.t. inclusion.

Inclusion and equality of predicate transformers is de�ned pointwise. (It is

an instance of Π11 quanti�cation.)

Predicate transformers are implicitly assumed to be monotonic with respect

to inclusion.

Predicate transformers were introduced by E. W. Dijkstra ([28]) in order to develop

a compositional semantics for sequential programs. Each program was interpreted

by a predicate transformer taking �nal states to initial states with the following

interpretations:

� wp-calculus: the meaning of \s ε P(U)" is: \if the program is started in state s,

then execution will terminate and the �nal state will be in U". Thus, P(U) is the

set of initial states from which we can guarantee termination in U. \wp" stands

for Weakest Precondition;

� wlp-calculus: we weaken the meaning of s ε P(U) to \if the program is started in

state s, and if execution terminates, then the �nal state will be in U". Thus, we

do not guarantee termination. \wlp" stands for Weakest Liberal Precondition.

This idea of using predicate transformers to model programs was later extended in

order to deal with speci�cations as well: a speci�cation usually takes the form:

if execution is started from a state satisfying ψ, then execution

should terminate, and the �nal state should satisfy ϕ.

Just like above, we may weaken such a speci�cation and prefer conditional termina-

tion. Such a speci�cation can be identi�ed with the predicate transformer:

P : P(Sf)→ P(Si)

ϕ 7→ \biggest such ψ" .

One interesting point about this semantics is that programs and speci�cations belong

to the same semantical domain: predicate transformers. The �eld of the re�nement

calculus ([8]) is a systematic exploration of the relation between programs and speci-

�cations in this framework. One of its interesting features is the ability to start with

a speci�cation, i.e. a monotonic predicate transformer, and mechanically transform

it into a well-behaved predicate transformer3 representing the semantics of an actual

program. This program can then be extracted from the predicate transformer!

3: typically a predicate transformer commuting with arbitrary unions and directed intersections
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2.5.1 Representing Predicate Transformers by Interaction Systems

An equivalent way to see predicate transformers is through the isomorphism:4

P(S1)→ P(S2) = P(S1)→ (S2 → Set)

'
(
P(S1)× S2

)
→ Set

'
(
S2 × P(S1)

)
→ Set

' S2 →
(
P(S1)→ Set

)
= S2 → P2(S1)

which make predicate transformers look pretty much like interaction systems (modulo

the di�erence between P( ) and F( )). Our intuition is that an interaction system

from S1 to S2 is a concrete representation for a monotonic predicate transformer

from S2 to S1. However, the translation from an interaction system to a predicate

transformer is subtler than the translation from a transition system to a relation since

we cannot apply the operation ◦ from page 25 on proper types. Instead, we use the

following:

. Definition 2.5.2: If w = (A,D,n) is an interaction system from S1 to S2,

de�ne the monotonic predicate transformer w◦ from S2 to S1 (note the

swap) as:

s ε w◦(U) ⇔
(
∃a ε A(s)

)(
∀d ε D(s, a)

)
s[a/d] ε U .

Dually, de�ne the monotonic predicate transformer w• as:

s ε w•(U) ⇔
(
∀a ε A(s)

)(
∃d ε D(s, a)

)
s[a/d] ε U .

It is easy to show that we only get in this way monotonic predicate transformers. It

should also be noted that as opposed to the translation from transition systems to

relations, this translation doesn't use equality.

The predicate transformer w◦ is concerned with the reachability of a subset

of states by the Angel, in a single interaction; the predicate transformer w• is con-

cerned with reachability for the Demon. Surprisingly, the predicate transformer w•

is de�nable in terms of ◦:

. Definition 2.5.3: if w = (A,D,n) is an interaction system from S1 to S2,

de�ne w⊥ = (A⊥, D⊥, n⊥), an interaction system from S1 to S2 as:

A⊥(s1) ,
(
a ε A(s1)

)
→ D(s1, a)

D⊥(s1, f) , A(s1)

n⊥(s1, f, a) , s1[a/f(a)] .

Thus, an action for the Angel in w⊥ is a conditional reaction for the Demon in w, and

a reaction for the Demon in w⊥ is a an action for the Angel in w. An interesting point

is that the set of reactions D⊥(s1, f) doesn't depend on the action f. This operation

will play a crucial role in the interpretation of linear logic developed in Part II. For

the moment, we only note the following:

◦ Lemma 2.5.4: for any interaction system, w• = (w⊥)◦.

4: This works also with the traditional notion of subset: replace Set by B , {True,False}.



52 2 Interaction Systems

proof: suppose U : P(S2) and s ε S1, we need to show that s ε w•(U) i� s ε (w⊥)◦(U):

s ε w•(U) ⇔
(
∀a ε A(s)

)(
∃d ε D(s, a)

)
s[a/d] ε U

⇔ { AC, page 30 }

s ε w⊥◦(U) ⇔
(
∃f ε (aεA(s))→ D(s, a)

)(
∀a ε A(s)

)
s[a/f(a)] ε U .

This proof has a strong \Dialectica" feeling: it somehow shows that formulas of

the form (∃F)(∀f)ϕ(F, f) are closed under negation.

�X

# Remark 13: classically, we also have the converse, i.e. w◦ = (w⊥)•, but
this requires the use of the contraposition of the axiom of choice (CtrAC,
page 30) which doesn't hold constructively.

The property of being of the form w◦ appears in Peter Aczel's work under the name

set-based predicate transformer: from [6]

Call a monotone operation f : P(A) → P(A) set-based if there is a

subset B of P(A) such that whenever a ε f(X), with X : P(A), then

there is Y ε B such that Y ⊆ X and a ε f(Y). We call B a baseset

for f.

The important point in this de�nition is that B needs to be a subset, i.e. it needs to

be indexed by a set: we cannot take B , P(A). It is easy to show that for an operator

from P(S) to itself, being set-indexed and being of the form w◦ are equivalent:

� if f is set indexed, let {Ub | b ε B} be the baseset, de�ne

- A(s) , {b ε B | s ε f(Ub)}
- D(s, b) = {s ε S | s ε Ub}
- n(s, b, s′) , s′;

� for w◦, de�ne the baseset to be {U(s, a) | s ε S, a ε A(s)} where the U(s, a)'s

are de�ned as U(s, a) , {s[a/d] | d ε D(s, a)}.

All the structure of P(S) lifts pointwise to predicate transformers, so that the

collection of predicate transformers from S1 to S2 forms a complete Heyting algebra.

Moreover, predicate transformers are obviously closed under composition, and this

corresponds exactly to the sequential composition of interaction systems:

◦ Lemma 2.5.5: for all interaction systems w1 from S1 to S2 and w2
from S2 to S3, we have

(w1 ;w2)
◦ = w◦

1 ·w◦
2 .

proof: suppose s1 ε S1 and U : P(S3):

s1 ε (w1 ;w2)
◦(U)

⇔ { de�nition of ◦ }(
∃a ε (w1 ;w2).A(s1)

)(
∀d ε (w1 ;w2).D(s1, a)

)
(w1 ;w2).n(s1, a, d) ε U

⇔ { de�nition of ; }(
∃a1εA1(s1)

)(
∃kε

(
d1εD1(s1, a1)

)
→ A2(s1[a1/d1])

)(
∀d1εD1(s1, a1)

)(
∀d2εA2

(
s2, k(d1)

))
s1[a1/d1][k(d1)/d2] ε U



2.5 Interaction Systems and Predicate Transformers 53

⇔ { axiom of choice on \∃k∀d1" }(
∃a1εA1(s1)

)(
∀d1εD1(s1, a1)

)(
∃a2εA2(s1[a1/d1])

)(
∀d2εA2

(
s2, a2)

))
s1[a1/d1][a2/d2] ε U

⇔ { de�nition of w◦
2 }(

∃a1εA1(s1)
)(
∀d1εD1(s1, a1)

)
s1[a1/d1] ε w

◦
2(U)

⇔ { de�nition of w◦
1 }

s1 ε w
◦
1

(
w◦
2(U)

)
�X

2.5.2 Angelic and Demonic Updates

There is an increase of complexity between the following notions of morphisms be-

tween sets: S1 → S2, S1 → P(S2) and P(S1) → P(S2). The link between those is

explained in [35]. For us, the important remark is that we can lift operations from one

level to the next. For functions, we can de�ne (in the presence of equality) its graph

relation gr(f) : Rel(S1, S2) as {(s1, s2) | f(s1) = s2}. Lifting a relation to a predicate

transformer can be done is two dual ways:

. Definition 2.5.6: let R : Rel(S1, S2) be a relation from S1 to S2; de�ne the

Angelic update 〈R〉 to be the following predicate transformer from S2 to S1
(note the swap):

s1 ε 〈R〉(U) ⇔ (∃s2εS2) (s1, s2) ε R ∧ s2 ε U .

We de�ne the direct image along R to be the predicate transformer 〈R∼〉 and

we usually write it simply R. Since R(s1) is equal to 〈R∼〉({s1}), there is no

danger of confusion.

Dually, de�ne the Demonic update [R] to be the predicate transformer

from S2 to S1:

s1 ε [R](U) ⇔ (∀s2εS2) (s1, s2) ε R⇒ s2 ε U .

The choice of notation is not innocent (refer to de�nitions 2.3.2 and 1.1.8 for the

actions of 〈 〉, [ ] and ◦ on transition systems): we have

◦ Lemma 2.5.7: for any transition system v from S1 to S2,

� 〈v◦〉 = 〈v〉◦;
� and [v◦] = [v]◦.

proof: let's only show the �rst one, let U : P(S2) and s1 ε S1,

s1 ε 〈v◦〉(U)

⇔ { de�nition of 〈 〉 }
(∃s2εS2) (s1, s2) ε v

◦ ∧ s2 ε U
⇔ { de�nition of v◦ }

(∃s2εS2)
(
∃aεA(s1)

)
s1[a] = s2 ∧ s2 ε U

⇔ { logic }(
∃aεA(s1)

)(
∀ ε{∗}

)
s1[a] ε U

⇔ { de�nition of 〈v〉 }
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(
∃aε〈v〉.A(s1)

)(
∀dε〈v〉.D(s, a)

)
s1[a/d] ε U

⇔ { de�nition of ◦ }
s1 ε 〈v〉◦(U)

�X

Note that while the de�nitions of 〈v◦〉 and [v◦] use equality, the de�nitions or 〈v〉◦
and [v]◦ don't, which makes them preferable.

Those two predicate transformers satisfy the following well-known facts:

� Proposition 2.5.8: for any relation R, we have:

� 〈R〉 commutes with arbitrary unions;

� [R] commutes with arbitrary intersections.

Moreover, suppose F is a predicate transformer:

� with equality, if F commutes with arbitrary unions, then it

is of the form 〈R〉 for some relation R;

� impredicatively, if F commutes with arbitrary intersections,

then it is of the form [R] for some relation R.

proof: the proofs that 〈R〉 and [R] respectively commute with unions and intersections

are trivial.

For the second part, suppose F : P(S1)→ P(S2) commutes with arbitrary unions.

De�ne R : Rel(S2, S1) as

(s2, s1) ε R , s2 ε F
(
{s1}

)
.

(We need equality to use singleton subsets...)

That F = 〈R〉 follows directly from the fact that U =
⋃{
{s1} | s1 ε U

}
.

Suppose that F commutes with arbitrary intersections. De�ne R : Rel(S2, S1) as

(s2, s1) ε R ,
(
∀U : P(S1)

)
s2 ε F(U)⇒ s1 ε U .

(This is impredicative because of the quanti�cation over P(S1).)

Let U : P(S1) and s2 ε S2,

� suppose s2 ε F(U), let's show that s2 ε [R](U). Suppose that (s2, s1) ε R, i.e.

that s2 ε F(V) ⇒ s1 ε V for all V . We need to show that s1 ε U. We can

take V , U, and since s2 ε F(U) by hypothesis, we can conclude that s1 ε U.

� for the other direction, if s2 ε [R](U), let's show that s2 ε F(U). We obviously

have that s2 ε
⋂
{F(V) | s2 ε F(V)}, which implies, since F commutes with

intersections, that s2 ε F
(⋂
{V | s2 ε F(V)}

)
.

Now, it is easy to show that
⋂
{V | s2 ε F(V)} ⊆ U: this is exactly the

meaning of s2 ε [R](U). Thus, by monotonicity of F, we obtain that s2 ε F(U).

�X

2.5.3 Factorization of Monotonic Predicate Transformers

We now come to the predicate transformer version of proposition 2.3.3: any predicate

transformer can be seen as the sequential composition of a [R] followed by a 〈R′〉. In

this case however, the result is impredicative.
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� Proposition 2.5.9: (impredicative)

for any monotonic predicate transformer F from S1 to S2, there

is a type Z and two relations R : Rel(Z, S1) and R
′ : Rel(S2,Z)

such that F = 〈R′〉 · [R].

proof: de�ne the type Z , P(S1) and the two relations

� (V, s1) ε R i� s1 ε V ;

� and (s2, V) ε R′ i� s2 ε F(V).

Let U : P(S1) and s2 ε S2; we need to show that s2 ε F(U) i� s2 ε 〈R′〉 · [R](U):

s2 ε 〈R′〉 · [R](U)

⇔
(∃V) (s2, V) ε R′ ∧ V ε [R](U)

⇔
(∃V) s2 ε F(V) ∧ (∀s1) (V, s1) ε R⇒ s1 ε U

⇔
(∃V) s2 ε F(V) ∧ (∀s1) s1 ε V ⇒ s1 ε U

⇔
(∃V) s2 ε F(V) ∧ V ⊆ U
⇔ { by monotonicity }

s2 ε F(U).

�X

Note that this proof is impredicative because Z is not a set but a proper type. This

proof is constructive but its computational content is next to empty.

2.5.4 Interior and Closure Operators

Recall that:

. Definition 2.5.10: an interior operator on S is a monotonic predicate trans-

former F on S such that:

� F is contractive: F(U) ⊆ U for any U : P(S);

� F ⊆ F · F.
Dually, a closure operator is a monotonic predicate transformer F such that:

� F is expansive: U ⊆ F(U) for any U : P(S);

� F · F ⊆ F.

We have the following:

◦ Lemma 2.5.11: for any relation R ⊆ S1 × S2:
� 〈R〉 is left Galois connected to [R∼]: 〈R〉(U) ⊆ V ⇔ U ⊆ [R∼](V);

� 〈R〉 · [R∼] is an interior operator on S2;

� [R∼] · 〈R〉 is a closure operator on S1.

The second and third points are implied by the �rst one, which is immediate.

We have a representation theorem in the spirit of proposition 2.5.9. However, while

proposition 2.5.9 is well-known, the next lemma doesn't appear anywhere in the

reference [8].

◦ Lemma 2.5.12: (impredicative) for any interior operator F on S, there is

a type Z and a relation R : Rel(Z, S) s.t. F = 〈R〉 · [R∼].
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proof: de�ne Z to be the collection of �xpoints of F. This is predicatively not a set,

but a proper type: Z , FixF ,
(
ΣV : P(S)

)
V = F(V). Put (V, s) ε R i� s ε V .

The proof relies on the following (impredicative) fact: if F is an interior operator,

then

F(U) =
⋃
{V ε FixF | V ⊆ U} for any U : P(S) . (2-1)

The proof is simple:

� F(U) ⊆
⋃
{V ε FixF | V ⊆ U}: we know that F(U) is itself a �xpoint of F

because F is an interior operator. This implies that F(U) appears in the RHS,

which yields the inclusion.

� F(U) ⊇
⋃
{V ε FixF | V ⊆ U}: suppose V is �xpoint of F such that V ⊆ U.

By monotonicity, we have that F(V) ⊆ F(U), i.e. that V ⊆ F(U).

Now, for the main part, suppose U : P(S) and s ε S:

s ε 〈R〉 · [R∼](U)

⇔ { de�nition of 〈 〉 }
(∃VεFixF) (V, s) ε R ∧ V ε [R∼](U)

⇔ { de�nition of [ ] }
(∃VεFixF) (V, s) ε R ∧ (∀s′) (V, s′) ε R⇒ s′ ε U

⇔ { de�nition of R }
(∃VεFixF) s ε V ∧ (∀s′) s′ ε V ⇒ s′ ε U

⇔
(∃VεFixF) s ε V ∧ V ⊆ U
⇔

s ε
⋃
{VεFixF | V ⊆ U}
⇔ { fact (2-1) }

s ε F(U).

�X

# Remark 14: apparently however, there is no constructive version of this
theorem for closure operators! What we can do is factorize (impredica-
tively) any closure operator as bR e · bR∼e, where bR e is the antitonic
predicate transformer

s2 ε bR e(U) ⇔ (∀s1εS1) s1 ε U ⇒ (s1, s2) ε R .

The proof is very similar to that of lemma 2.5.12.

This is an example of non trivial resolution for an interior/closure opera-
tor. In a categorical setting, a resolution is a factorization of a (co)monad
as the composition of two adjoint functors. There are always two trivial
resolutions given by the Kleisli and monad algebra constructions: they
correspond to factorizing F as \F · Id" or as \Id · F".

2.5.5 Angelic and Demonic Iterations

We now come to the less trivial operations of iteration. We know by impredicative

reasoning (Knaster-Tarski theorem) that any monotonic operator F on P(S) has a least

�xpoint and a greatest �xpoint, respectively called µF and νF. We are interested only

in two forms of �xpoints which, anticipating on proposition 2.5.18, we call F∗ and F∞:

F∗(U) ,
(
µX : P(S)

)
U ∪ F(X) ;
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F∞(U) ,
(
νX : P(S)

)
U ∩ F(X) .

They obey the rules:

�
F : P(S)→ P(S) monotonic

F∗, F∞ : P(S)→ P(S)
formation;

�
U ∪ F · F∗(U) ⊆ F∗(U)

pre-�xpoint, and
U ∪ F(X) ⊆ X
F∗(U) ⊆ X

least;

�
F∞(U) ⊆ U ∩ F · F∞(U)

post-�xpoint, and
X ⊆ U ∩ F(X)

X ⊆ F∞(U)
greatest.

Such �xpoints cannot be predicatively justi�ed. As we'll see in proposition 2.5.18,

it is however possible to de�ne them inductively if we restrict to set-based predicate

transformers. Those operators enjoy another �xpoint property:

◦ Lemma 2.5.13: for any predicate transformer F, we have:

F∗ = (µP) . Id ∪ F · P
F∞ = (νP) . Id ∩ F · P .

proof: easy.

�X

Let's look at some properties of F∗ and F∞:

◦ Lemma 2.5.14: for any predicate transformer F,

� F∗ is a closure operator;

� F∞ is an interior operator.

proof: let's check that F∗ is a closure operator:

� F∗ is contractive: U ⊆ F∗(U). This follows directly from the \pre-�xpoint"

rule: Id ∪ F · F∗ ⊆ F∗.
� F∗ · F∗ ⊆ F∗: by the \pre-�xpoint" rule, we have F∗(U) ∪ F · F∗(U) ⊆ F∗(U).

By applying the \least" rule for X , F∗(U), we get F∗
(
F∗(U)

)
⊆ F∗(U).

The proof that F∞ is an interior operator is completely dual...

�X

Those predicate transformers are also linked with the notions of invariant and

saturated predicates:

. Definition 2.5.15: if F is a predicate transformer on S,

� an F-invariant predicate is a post-�xpoint of F, i.e. a predicate U such

that U ⊆ F(U);

� an F-saturated predicate is a pre-�xpoint of F, i.e. a predicate U such

that F(U) ⊆ U.

The notion of invariant predicate will be particularly important in the sequel, where

invariant predicates (or, as we also call them, \safety properties") will be interpreta-

tions for proofs and λ-terms. (See section 7.1, proposition 7.1.17.) We have:

◦ Lemma 2.5.16: if F is a predicate transformer on S, for any U : P(S),

� F∗(U) is the least F-saturated subset containing U;

� F∞(U) is the greatest F-invariant contained in U.
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proof: easy.

�X

As all the previous lemmas show, the predicate transformers F∗ and F∞ enjoy dual

properties. This duality can be made very precise through the following statement,

which only holds classically:

◦ Lemma 2.5.17: (classically) for any predicate transformer F on S:

({ · F · {)∗ = { · F∞ · {
({ · F · {)∞ = { · F∗ · { . (where { represents complementation w.r.t. S)

proof: easy if one looks at the characterizations of F∗/F∞ in terms of least/greatest

pre-�xpoint/post-�xpoint.

�X

This (classical) notion of duality will be of great importance in the second part of

this work (sections 7 and 8).

We now state the main result of this section:

� Proposition 2.5.18: for any interaction system w on S, we have:

w∗◦ = w◦∗ ;

w∞◦ = w◦∞ .

A visual way to see this proposition is through the following

∃a∗∀d∗ ⇔ ∃a1∀d1 ∃a2∀d2 . . . ∃an
∃a∞∀d∞ ⇔ ∃a1∀d1 ∃a2∀d2 . . . ∃an∀dn

with the additional remark that length of interaction n may depend on the trace of

interaction (a1/d1, a2/d2, . . .). The left hand sides correspond respectively to w∗◦

and w∞◦ while the right hand sides correspond to w◦∗ and w◦∞.

proof:

K \w∗◦(U) ⊆ w◦∗(U)": suppose we have s ε w∗◦(U), i.e. that(
∃a′εA∗(s)

)(
∀d′εD∗(s, a′)

)
s[a′/d′] ε U . (2-2)

We proceed by induction on a′:

� if a′ = Exit, (2-2) gives
(
∀d′ ε {Nil}

)
s[Exit/d′] ε U, i.e. s ε U. This implies

that s ε w◦∗(U) by the \pre-�xpoint" rule;

� if a′ = Call(a, k), (2-2) gives(
∀dεD(s, a)

)(
∀d′εD∗(s[a/d], k(d))) n∗(s[a/d][k(d)/d′]) ε U .

This implies that, for all d ε D(s, a), s[a/d] ε w∗◦(U). By induction hypoth-

esis, this implies that whenever d ε D(s, a), we have s[a/d] ε w◦∗(U), i.e.

that s ε w◦ ·w◦∗(U). By the \pre-�xpoint" rule, this yields s ε w◦∗(U).
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K \w◦∗(U) ⊆ w∗◦(U)": by using the \least" rule for X , w∗◦(U), we only need to

show U ∪w◦ ·w∗◦(U) ⊆ w∗◦(U).

� We have trivially that U ⊆ w∗◦(U) by taking the Exit action: if s ε U,

then
(
∀d′εD∗(s,Exit)

)
s[Exit/d′] ε U.

� Suppose now that s ε w◦ ·w∗◦(U), i.e. that there is an action a ε A(s) such

that
(
∀dεD(s, a)

)
s ε w∗◦(U). By de�nition this means:(

∀dεD(s, a)
) (
∃a′εA∗(s[a/d])

)(
∀d′εD∗(s[a/d], a′)

)
n∗(s[a/d], a′, d′) ε U .

Using the axiom of choice on ∀d∃a′, we get(
∃k ε

(
dεD(s, a)

)
→ A∗

(
s[a/d]

))
(
∀dεD(s, a)

)(
∀d′εD∗(s[a/d], k(d))) n∗(s[a/d], k(d), d′) ε U ;

we can thus take Call(a, k) ε A∗(s) and we have(
∀d′ ε D∗(s,Call(a, k)

))
n∗(s,Call(a, k), d′) ε U

i.e. s ε w∗◦(U).

This �nishes the proof that w◦ ·w∗◦ ⊆ w∗◦, and thus that w◦∗ ⊆ w∗◦.

K \w∞◦(U) ⊆ w◦∞(U)": by using the \greatest" rule de�ning F∞ for X , w∞◦(U),

it is enough to show that w∞◦(U) is a post-�xpoint for U ∩ w◦( ): suppose

that s ε w∞◦(U), i.e.(
∃a′ ε A∞(s)

)(
∀d′ ε D∞(s, a′)

)
n∞(s, a′, d′) ε U . (2-3)

We need to show that s ε U ∩w◦ ·w∞◦(U):

� for d′ , Nil, we have that n∞(s, a′,Nil) ε U, i.e. that s ε U;

� we have that elim(a′) is an element of w◦(A∞)(s), i.e. is of the form (a, k)

where a ε A(s) and k ε
(
dεD(s, a)

)
→ A∞(s[a/d]).

We claim that (∀dεD(s, a)) s[a/d] ε w∞◦(U). For any d ε D(s, a), take the

action k(d) ε A∞(s[a/d]). We need to show that(
∀d′′εD∞(s[a/d], k(d))) n∞(s[a/d], k(d), d′′) ε U .

Let d′′ ε D∞(s[a/d], k(d)), we can construct Cons(d, d′′) ε D∞(s, a′) and by

formula (2-3), we know that n∞
(
s, a′,Cons(d, d′)

)
ε U.

Since n∞
(
s, a′,Cons(d, d′′)

)
= n∞(s[a/d], k(d), d′′), we get the result.

This �nishes the proof that w∞◦(U) is a post-�xpoint for U∩w◦( ), and thus the

proof that w∞◦(U) ⊆ w◦∞(U).

K \w◦∞(U) ⊆ w∞◦(U)": suppose s ε w◦∞(U), we need to �nd an action a′ ε A∞(s)

such that(
∀d′ ε D∞(s, a′)

)
n∞(s, a′, d′) ε U . (2-4)

By the introduction rule for A∞, we need a coalgebra (X,C) where X : S → Set

and C ε (sεS)→ X(s)→ w◦(X, s).
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Take X , w◦∞(U); by the \post-�xpoint" rule for w◦∞, we know that X ⊆ w◦(X):

this de�nes C. This allows to construct a′ , coiter(X,C, s, x) where x is the proof

that s ε w◦∞(U).

Instead of proving directly (2-4), we will prove something slightly more general:

de�ne a′(s, x) , coiter(X,C, s, x) ε A∞(s). We claim

(∀sεS)
(
∀xεX(s)

)(
∀d′εD∞(s, a′(s, x))) n∞(s, a′(s, x), d′) ε U .

This implies (2-4) by specializing s and x as above...

Let s ε S, x ε X(s) (i.e. x is an element of \s ε w◦∞(U)") and d′ ε D∞(s, a′). We

proceed by induction on d′:

� if d′ = Nil, then n∞(s, a′(s, x), d′) ε U becomes \s ε U". This holds be-

cause s ε w◦∞(U).

� if d′ = Cons(d, d′′) then, by de�nition, n∞(s, a′(s, x), d′) ε U is equivalent

to n∞(s[a/d], k(d), d′′) ε U where elim
(
a′(s, x)

)
= (a, k).

But since a′(s, x) = coiter(X,C, s, x), this implies, by the computation rule,

that elim
(
a′(s, x)

)
is of the form(

a , (λd) . coiter
(
X,C, s[a/d], g(d)

))
where C(s, x) = (a, g). This means that a is a witness for s ε w◦(U) (by

de�nition of C).

So, we have that k(d) is in fact coiter
(
X,C, s[a/d], g(d)

)
, i.e. a′

(
s[a/d], g(d)

)
.

We can thus apply the induction hypothesis to conclude that

n∞
(
s[a/d], a′

(
s[a/d], g(d)

)
, d′′
)
ε U .

This �nishes the proof that w◦∞(U) ⊆ w∞◦(U) and concludes the proof of propo-

sition 2.5.18.

�X

As a corollary to proposition 2.5.18 and lemma 2.5.14, we get:

◦ Lemma 2.5.19: for any interaction system w, w∗◦ is a closure operator

and w∞◦ is an interior operator.

This proof uses impredicative reasoning in the de�nition of w◦∗ and w◦∞. It is

however not di�cult to show directly, using only predicative reasoning, that w∗

and w∞ are respectively closure and interior operators. The proof can in fact be

extracted from the directions \w◦∗ ⊆ w∗◦" and \w∞◦ ⊆ w◦∞" in the proof of

proposition 2.5.18.

2.5.6 An Equivalence of Categories

Homogeneous predicate transformers have their own notion of morphism, called data-

re�nements: (see [9])

. Definition 2.5.20: if F1 and F2 are predicate transformers on S1 and S2, a

predicate transformer P : P(S1) → P(S2) is said to be a data-re�nement

from F1 to F2 if: P · F1 ⊆ F2 · P.
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A data-re�nement is said to be a forward data-re�nement if it commutes with

arbitrary unions; it is said to be a backward data-re�nement if it commutes

with arbitrary intersections.

It is trivial to show that homogeneous predicate transformers with data-re�nements

form a category and that predicate transformers with forward/backward re�nements

form two \subcategories".5 By proposition 2.5.8, we know that forward and backward

data-re�nements are in fact given by relations. In particular, a relation R : Rel(S1×S2)
is a forward data-re�nement from F1 to F2 i� R · F1 ⊆ F2 · R.6

What is rather surprising is that this notion of forward data-re�nement corre-

sponds exactly to the notion of simulation:

◦ Lemma 2.5.21: for all interfaces w1 and w2, a relation R : Rel(S1, S2) is

a simulation from w1 to w2 i� it is a forward data-re�nement from w◦
1

to w◦
2. In other words, R is a simulation i� R ·w◦

1 ⊆ w◦
2 · R.

The \⇐" direction uses equality.

proof:

K suppose �rst that R is a simulation; let's show that R ·w◦
1 ⊆ w◦

2 · R.

s2 ε R ·w◦
1(U)

⇒ { de�nition of 〈R∼〉: for some s1 }

(s1, s2) ε R ∧ s1 ε w◦
1(U)

⇒ { de�nition of w◦
1: there is an a1 ε A1(s1) }

(s1, s2) ε R ∧
(
∀d1εD1(s1, a1)

)
s1[a1/d1] ε U

⇒ { since R is a simulation, there is an a2 ε A2(s2) simulating a1 }
{ moreover, for any d2, there is a d1 s.t. (s1[a1/d1], s2[a2/d2]) ε R }(

∃a2εA2(s2)
)(
∀d2εD2(s2, a2)

)(
∃d1εD1(s1, a1)

)
(s1[a1/d1], s2[a2, d2]) ε R ∧ s1[a1/d1] ε U

⇒ { take s′1 to be s1[a1/d1] }(
∃a2εA2(s2)

)(
∀d2εD2(s2, a2)

)
(∃s′1εS1) (s′1, s2[a2, d2]) ε R ∧ s′1 ε U

⇔ { de�nition }

s2 ε w
◦
2 · R(U)

K For the other direction, let R ·w◦
1 ⊆ w◦

2 · R, (s1, s2) ε R and a1 ε A1(s1), we want

to show that(
∃a2εA2(s2)

)(
∀d2εD2(s2, a2)

)(
∃d1εD1(s1, a1)

)
(s1[a1/d1], s2[a2/d2]) ε R .

By de�nition, this is equivalent to

s2 ε w
◦
2

( ⋃
d1εD1(s1,a1)

R(s1[a1/d1])

)
.

5: Precisely, the identity is a faithful functor from the category of predicate transformers with for-
ward (backward) data-re�nements to the category of predicate transformers with data-re�nements.

6: Recall that we also write R for the predicate transformer 〈R∼〉. . .
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Since the predicate transformer R (which is in fact 〈R∼〉) commutes with unions,

this is equivalent to

s2 ε w
◦
2 · R

( ⋃
d1εD1(s1,a1)

{s1[a1/d1]}

)
.

Since by hypothesis R ·w1 ⊆ w2 · R, it is su�cient to show

s2 ε R ·w◦
1

( ⋃
d1εD1(s1,a1)

{s1[a1/d1]}

)
.

We trivially have that s1 ε w
◦
1

(⋃
d1
{s1[a1/d1]}

)
, and since (s1, s2) ε R, we can

conclude.

Notice that we need equality to be able to form the singleton predicates.

�X

An important corollary to this is that

w◦
1 ⊆ w◦

2 ⇔ Id is a simulation from w1 to w2 .

In other words, when dealing with the lattice of set-based predicate transformers, we

are fully predicative: the order is not given by a Π11 formula, but by a proposition.

The moral of this section is the following:

� Proposition 2.5.22: the operation w 7→ w◦ is a full and faithful

functor from Int to the category of predicate transformers with

forward-data re�nements.

The category Int can be seen as the \predicative core" of predicate transformers,

and as shown in the previous sections, this category is closed under all the relevant

operations on predicate transformers.

Predicatively speaking, not all predicate transformers are set-based: de�ne the

predicate transformer P : P(B)→ P(B) with: (where B = {False,True})

U 7→ U��

where b ε U� i� (∀b′εU) b′ � b and � is the standard boolean order: False � True. It

is shown in [27](section 4.6) that this operator cannot be represented by an interaction

system.

Impredicatively however, it is quite easy to �nd an interaction system to repre-

sent any predicate transformer: if F is a (monotonic) predicate transformer, de�ne wF
as follows:

wF.A(s) ,
(
ΣU:P(S)

)
s ε F(U)

wF.D
(
s, (U, )

)
, (Σs′εS) s′ ε U

wF.n
(
s, (U, ), (s′, )

)
, s′ ;

or, if we want to use traditional mathematic notations:

wF.A(s) , {U : P(S) | s ε F(U)}
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wF.D(s,U) , U

wF.n(s,U, s′) , s′ .

It is easy to check that F = (wF)
◦, which essentially means that the full and faithful

functor w 7→ w◦ is surjective. Moreover, we leave it as an exercise to check that we

have EqS : w ' ww◦ which proves that:

� Proposition 2.5.23: (impredicative)

the categories Int of interaction systems with simulations and

the category of homogeneous predicate transformers with for-

ward data-re�nements are equivalent. Moreover, this equiva-

lence is a retract from interaction systems to predicate trans-

formers.7

2.6 A Model for Component based Programming

We gave several interpretations for interaction systems in section 2.1.2. The main idea

is that an interaction system is a contract between two entities (the Angel and the

Demon) describing possible interactions. This is just what programming is about...

2.6.1 Interfaces

In object oriented programming, an interface is given by a collection of types for di�er-

ent methods an object is supposed to provide. As a basic example, the object Stack

consisting of stacks of booleans is speci�ed by the following interface:

pop ε B

push ε B→ ()

with the following meaning:

� you can apply the method \pop" (on a stack) to obtain a boolean (type B);

� you can apply the method \push", which needs one argument of type boolean,

which will \do something".

What those commands actually do is only speci�ed in the documentation and is not

available from the interface.

Interaction systems can serve as much more expressive interfaces which contains

also the speci�cation of the commands. For the example of Stack, we could have an

interface like:

S , List(B)

A(l) , case l of Nil⇒ {push(b) | bεB}
⇒ {push(b) | bεB} ∪ {pop}

D
(
l,push(b)

)
, {akn}

D(l,pop) , {akn}

7: This equivalence is a retract in the sense that the functors satisfy F 7→ (wF)◦ = Id while we only

have w 7→ ww◦ ' Id.
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n
(
l,push(b)

)
, Cons(b, l)

n
(
Cons(b, l),pop

)
, l

with the meaning:

� an object of type Stack has the possible states described by lists of booleans;

� if the state is not empty, we can either do a pop or a push; if the state is empty,

we can only do a push;

� in both cases, the environment can only acknowledge the command;

� performing a pop removes the �rst element of the state; performing a push puts

an element at the beginning of the state.

The only thing that is still missing from this speci�cation is the fact that a pop

command will actually produce a boolean which is given by the �rst element of the

state. Dealing with that is possible in concrete setting, but requires the introduction

of interaction systems with \side-e�ects", which lies outside the scope of this thesis.

In a way, this interaction system only speci�es how a stack can be legally used.

In order to get less trivial speci�cations, it is possible to add the possibility of

errors from the environment (the Demon): the set D(s, a) would then be something

like {akn, error}. Any textbook on process calculus would contain many examples

of vending machines and other automata which can be adequately described using

interaction systems. In most cases, the environment is not \deterministic" in the

sense that the set of reactions to a command is not a singleton.

A speci�cation also comes with a subset of states, from which it is supposed

to work. This justi�es the following:

. Definition 2.6.1: an initialized interface is given by a set of states S, an inter-

action w on S and a predicate Init : P(S) of initial states.

The intuition is that the initial state predicate represents states from which the Angel

may be asked to start interaction. For initialized interface (w, Init), interaction goes

as follows:

0) the Demon starts by choosing a state s0 ε Init;

1) the Angel chooses an action a0 ε A0(s0);

2) the Demon chooses a reaction d0 ε D0(s0, a0);

3) the Angel chooses an action a1 ε A(s0[a0/d0]);

-) . . .

2.6.2 Components: Refinements

A programmer is hired to program: he is given a description of the program he is

supposed to write, together with a description of the libraries he is allowed to use.

In our context, descriptions are simply interfaces; we call the former \high-level"

and the latter \low-level". Implementing a particular high-level command amounts

to producing a sequence of low-level commands and show that this sequence behaves

according to the high-level speci�cation. This program is called a component between

the high-level and the low-level. This justi�es the following de�nition:

. Definition 2.6.2: let (wh, Inith) and (wl, Initl) be two initialized interfaces; a

re�nement, or a component from (wh, Inith) to (wl, Initl) is a simulation R

from wh to w∗
l s.t. Inith ⊆ R(Initl).
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With this de�nition, one can identify the activity of programming with the act of

proving that a carefully crafted relation is a re�nement from a high-level speci�cation

(which we want implemented) to a low-level speci�cation (which is already imple-

mented).

It is trivial to see that the identity on S (if available) is a re�nement from

any speci�cation to itself. As we'll see in section 3.3.1, we can also prove that the

relational composition of two re�nements is a re�nement: this is due to the fact

that ∗ is a monad in the category Int. For now, we can simply rely on the intuition

we have about re�nement and assert:

◦ Lemma 2.6.3: initialized interfaces with re�nements form a category.

We will slightly re�ne this category in section 2.6.5 by giving an appropriate de�nition

of equality between re�nements.

2.6.3 Clients and Servers

We saw that interaction systems can be seen as \contracts", or \protocols" describing

interaction between two entities. The two mains kinds of programs obeying such

contracts are given by the notions of server programs and client programs.

Before looking at the details, let's introduce the following notation: for any

interaction systems w,

� s Cw U for s ε w∗◦(U);

� U Cw V for U ⊆ w∗◦(V);

� s nw U for s ε w⊥∞◦(U);

� U nw V for U Gw⊥∞◦(V).

The symbol C is read \covered by" and the symbol n is read \restricted by". The

intuition behind covering is that s C U means \provided the Demon reacts, the Angel

has a way to reach U from s". For restriction, the intuition is slightly subtler: we

have

s n V
⇔ { by de�nition of n, proposition 2.5.18 and lemma 2.5.4 }

s ε w•∞(V)

⇒ { by the rule \post-�xpoint }
s ε V ∩w•(w•∞(V))

⇔
s ε V and (∀aεA(s))(∃dεD(s, a)) s[a/d] n V
The meaning of s n V is thus \no matter what the Angel does, the Demon has a way

to remain in V".

§ Server Programs. A server program is simply a program which \runs forever".

The perfect example of server is given by the \environment" in which we run other

programs: the environment simply waits for a request, and sends back some response.

In the Unix terminology, such programs are called \daemon programs". The goal of

a server program is to make sure something always holds: it is strongly related to the

notion of invariant predicates.

A server speci�cation for the initialized interface (S,A,D,n, Init) is given by

an invariant Inv : P(S) which can be maintained by the Demon. To make sure the

server can be started, we also require the invariant to intersect the initial predicate.
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� That Inv is a Demon invariant means that from Inv, the Demon can always

respond in such a way as to remain in Inv:

s ε Inv ⇒
(
∀a ε A(s)

)(
∃d ε D(s, a)

)
s[a/d] ε Inv (2-5)

i.e. that Inv ⊆ w•(Inv);

� that Inv intersects Init is simply a way to ensure that the Demon will be able

to launch the server program from some initial state:

Init G Inv . (2-6)

By lemma 2.5.16 and proposition 2.5.18, we know that (2-5) is equivalent to saying

that Inv = w•∞(V) for some V . Using the notation de�ned earlier, we thus have

that (2-5) and (2-6) are equivalent to

Init nw V (2-7)

where V is a predicate on S. A server program satisfying speci�cation (2-7) is nothing

more than a constructive proof of (2-7).

§ Client Programs. The notion of client server is dual to that of server program: a

client interacts with a server by sending requests, and waiting for the server's response.

A client has something in mind, a goal she wants to achieve. The simplest example

takes the form of a predicate Goal on states which the client wants to reach. This

means that, whatever the initial state of the interface is, she will have a way to choose

actions in such a way as to reach Goal after a �nite amount of interaction. Such a

server program in entirely described by a constructive proof that

Init Cw Goal . (2-8)

The duality with the notion of server program is obvious: in (2-7), we are dealing

with a Demon in�nite strategy while in (2-8) we are dealing with a well-founded

Angel strategy.

2.6.4 The Execution Formula

Suppose we are given both a client program and a server program on the same speci-

�cation (w, Init). It is natural to look at the result of \connecting" the client to the

server. If the client is given by a proof that si C Goal and the server by a proof

that si n V , then we can conduct interaction and obtain a �nal state sf ε S s.t.

� the client has reached her goal, i.e. sf ε Goal;

� the server can accept new connections and continue to maintain V , i.e. sf n V .

Suppose that we have a proof that si Cw Goal; in (weak head) normal form, this

proof has the shape (p, g) where

p ε A∗(si)

g ε
(
d′εD∗(si, p)

)
→ Goal(si[p/d

′]) .

In other words, this proof is either of the form (Exit, g) where g(Nil) ε Goal(si),

or
(
Call(a, f), g

)
where:

a ε A(si)
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f ε
(
d ε D(si, a)

)
→ A∗(si[a/d])

g ε
(
(d, d′) ε D∗(si,Call(a, k)

))
→ Goal

(
si[a/d][f(d)/d

′]
)

.

For the server program, a proof of si nw V in (weak head) normal form looks like (q, l)

where q ε A⊥∞(si) and l ε
(
a′ ε D⊥∞(si, q)

)
→ V(si[q/a

′]). Applying \elim" on q

yields a tuple (r, k) where:

r ε A⊥(si) =
(
a ε A(si)

)
→ D(si, a)

k ε
(
a ε D⊥(si, r)

)
→ A⊥∞(si[r/a]) =

(
a ε A(si)

)
→ A⊥∞

(
si[a/r(a)]

)
.

We can now de�ne the function \exec". In the environment where Goal, V ⊆ S, we

have: (recall that U G U′ is de�ned as (ΣsεS) U(s)×U′(s) so that an element of U G U′ is a triple)

exec
(
(s, P,Q) ε w∗(Goal) Gw⊥∞(V)

)
ε Goal Gw⊥∞(V)

i.e. P is a proof that s C Goal and Q is a proof that s n V .

exec
(
s, (Exit, g), (q, l)

)
,

(
s, g(Nil), (q, l)

)
exec

(
s,
(
Call(a, f), g

)
, (q, l)

)
, exec

(
s[a/d], (p′, g′), (q′, l′)

)
where (r, k) = elim(q)

d , r(a)

p′ , f(d)

g′ , λd′ . g
(
Cons(d, d′)

)
q′ , k(a)

l′ , λa′ . l
(
Cons(a, a′)

)
In the case of servers and clients described by interfaces as above, we can

summarize this execution function in the following rule:

Init Cw Goal Init nw V
Goal nw V

execution .

As will be explained in section 4.2, this rule is exactly what is known as the \com-

patibility formula" required to hold in Giovanni Sambin's basic topologies.

An important feature is missing from the present model of client/server inter-

action: it is often the case that there may be several clients connecting to a single

server. The server then needs to deal with several requests simultaneously. Being able

to simulate such concurrent interaction in a sequential manner is important. This

will be the subject of section 4.3.2.

2.6.5 Saturation of Refinements

The intuition we have about re�nements is that a (proof of a) re�nement is a pro-

cess simulating high-level commands by sequences of low-level commands. Exten-

sional equality of the underlying relation predicates is certainly too crude a notion

for identifying re�nements. We develop a notion of \saturation", which will take a

re�nement into a \biggest" re�nements having the same simulating potential. The

idea is to identify two re�nements when they are extensionally equal, up to internal

interaction.
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. Definition 2.6.4: if R is a re�nement from wh to wl, we call saturation of R

the following relation:

(sh, sl) ε R , sl Cwl
R(sh)

i.e. R , w∗
l · R.

Thus, sh and sl are related via the saturation of R if there is a low-level Angel strategy

going from sl to states which are related to sh via R.

◦ Lemma 2.6.5: if R is a re�nement from wh to wl, then R is also a

re�nement from wh to wl.

proof (checked in Agda): by lemma 3.3.4, we need to show, for any ah ε Ah(sh), that

R(sh) Cwl

⋃
dhεDh(sh,ah)

R(sh[ah/dh]) . (2-9)

By this same lemma 3.3.4, because R is a re�nement, we know that

R(sh) Cwl

⋃
dhεDh(sh,ah)

R(sh[ah/dh]) .

Since w∗
l is a closure operator (lemma 2.5.19), we can conclude that

w∗
l · R(sh) = R(sh) Cwl

⋃
dhεDh(sh,ah)

R(sh[ah/dh]) . (2-10)

Since we always have R(sh[ah/dh]) ⊆ w∗
l · R(sh[ah/dh]), we also know that

R(sh[ah/dh]) Cwl
w∗
l · R(sh[ah/dh]) = R(sh[ah/dh])

and thus ⋃
dhεDh(sh,ah)

R(sh[ah/dh]) Cwl

⋃
dhεDh(sh,ah)

R(sh[ah/dh]) (2-11)

By transitivity applied to (2-10) and (2-11), we obtain (2-9). This concludes the

proof.

�X

This provides a better way to compare two re�nements: compare their saturation.

. Definition 2.6.6: if R1 and R2 are two re�nements from wh to wl, we say:

� that R2 is stronger than R1 if R1 ⊆ R2 , we write R1 v R2;
� that R1 and R2 are equivalent if R1 v R2 and R2 v R1, we write R1 ≈ R2.

The following is quite easy:

◦ Lemma 2.6.7:

� v is a preorder on Ref(wh, wl);

� ≈ is an equivalence relation on Ref(wh, wl);

� R 7→ R is a closure operation;

� R is the largest relation in the equivalence class of R.

Finally:

� Proposition 2.6.8: (Ref,v) is an order enriched category.
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proof (checked in Agda): the only remaining thing to check is that composition is

monotonic w.r.t. v on the right and on the left.

Let R1, R2 be two simulations from wh to wm and Q1, Q2 two simulations

from wm to wl such that R1 v R2 and Q1 v Q2. Suppose moreover that sh ε Sh;

we need to show that Q1 · R1 (sh) ⊆ Q2 · R2 (sh):

Because R1 v R2, we have

R1 (sh) ⊆ R2 (sh) .

We also claim that

Q1 · R1 (sh) Cl Q2 · R2 (sh) . (2-12)

Let sl ε Q1 · R1 (sh), i.e. (sm, sl) ε Q1 for some sm s.t. (sh, sm) ε R1 . We will

show that sl Cl Q2 · R2 (sh):

� Q2(sm) ⊆ Q2 · R2 (sh) since sm ε R1 (sh) ⊆ R2 (sh);

� sl ε w∗
l ·Q2(sm) because Q1 v Q2 and sl ε Q1 (sm); (since sl ε Q1(sm))

� so by monotonicity, sl ε w
∗
l ·Q2 · R2 (sh).

From (2-12), we get

w∗
l ·Q1 · R1 (sh) ⊆ w∗

l ·Q2 · R2 (sh) . (2-13)

Now, for any simulation R : Int(w,w′∗), we have w′∗ · R ·w∗(U) = w′∗ · R(U):

� \⊆": because R ·w∗(U) ⊆ w′∗ · R(U) and w′∗ is a closure operator;

� \⊇": skip ⊆ w∗ ⇒ w′∗ · R ⊆ w′∗ · R ·w∗.

Applying this remark to (2-13), we can conclude:

Q1 · R1 (sh) = w∗
l ·Q1 · R1(sh) ⊆ w∗

l ·Q2 · R2(sh) = Q2 · R2 (sh) .

�X

This allows to make the following de�nition:

. Definition 2.6.9: re�nements modulo ≈ form a sound notion of morphisms

between interaction systems. We call the resulting category Ref≈.





3 Categorical Structure

3.1 A Few Words about Categories

§ Universal Constructions in a Predicative Setting. As we'll see in this chapter, and

later in section 6.1, this category enjoys many algebraic properties. However, we

haven't said anything about the way to formalize categories in predicative type the-

ory: a category C is obviously given by a collection of objects and for each pair of

objects A and B, a collection C(A,B) with a notion of equality. In our case, equality

of simulations is simply extensional equality of the underlying relations. We also need

a notion of composition and identities with the obvious requirements.

In order to make sense of universal constructions, which use heavily quanti�ca-

tion on morphisms, we need to introduce speci�c constructions, and prove that they

satisfy the universal properties (which involves only Π11 quanti�cation). Let's look at

the example of the cartesian product in C:

� we should construct the object A× B with the projections πAA,B and πBA,B;

� we should construct the pairing 〈f, g〉 for any pair of morphisms;

� those should satisfy:

(∀A,B,C)
(
∀f : C(C,A)

)(
∀g : C(C,B)

)
πAA,B · 〈f, g〉 = f ∧ πBA,B · 〈f, g〉 = g

∧
(
∀h : C(C,A× B)

)
πAA,B · h = f ∧ πBA,B · h = g⇒ h = 〈f, g〉 .

This is an instance of Π11 quanti�cation and it does make sense in a predicative

setting.

§ The Category of Relations. At the core of the category of interaction systems is the

category of sets and relations: it is de�ned in the obvious way:

. Definition 3.1.1: the objects of the category Rel are sets and its morphisms are

relations. The identity is the equality relation and composition is de�ned as

the usual composition of relations.
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We do not prove all the results about Rel: they belong to the folklore of categories.

There is an obvious faithful \forgetful" functor | | from Int to Rel de�ned by

w =
(
S, (A,D,n)

)
7→ |w| = S .

As a result, we can lift some universality results from Rel to Int: if we can show

that a universal construction from Rel is admissible in Int (i.e. the relations are in

fact simulations for the corresponding interaction systems), then the construction is

universal in Int as well.

Since we do not really accept the idea of an identity for all sets, the structure

of Rel might be more adequately described by a weaker structure:

. Definition 3.1.2: a precategory is given by a collection (type) of objects C,

together with, for each pairA, B of objects, a collection C(A,B) of morphisms

equipped with a notion of equality.1 The structure also needs an associative

notion of composition:

compA,B,C : C(A,B)→ C(B,C)→ C(A,C) for all objects A B C.

Depending on the framework, we may downgrade the traditional category Rel to a

precategory in order to make sense of constructions without relying on a general

equality type.

3.2 Some Easy Properties

3.2.1 Constants

§ The Initial/Terminal Object. null is the only interaction system available on the

empty set of states. Since Rel(∅, S) = P(∅) ' {∗}, there is at most one simulation

from null to any other interaction system: the empty relation. Since, as we have

seen on page 49, the empty relation is always a simulation; we can conclude that for

any interface (S,w), there is exactly one simulation from null to (S,w). The same

argument applies to simulations from (S,w) to null.

◦ Lemma 3.2.1: in Int, the object null is a zero object: it is both initial

and terminal.

As a corollary, we can directly conclude that Int is not cartesian closed:

• Corollary 3.2.2: Int is not cartesian closed.

proof: folklore.

�X

1: i.e. there is an equivalence relation on each C(A, B).
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§ \abort" and \magic". Computationally speaking, the null interaction system doesn't

make sense: its set of states is empty! That it is terminal and initial is thus irrelevant.

However, the objects magic and abort can almost play the rôle of terminal and initial:

◦ Lemma 3.2.3: for any interaction system w, all relations from {∗} to S

are simulation from abort to w. Dually, all relations from S to {∗}
are simulations from w to magic.

More generally, the functor | | : Int → Rel has a right-adjoint and a

left-adjoint abort( ) ` | | ` magic( ).

proof: let (S,w) be an interface, and let R be a relation from {∗} to S. It is trivial to

show that R is a simulation from abort to (S,w): suppose (∗, s) ε R, we need to

show that(
∀a ε abort.A(∗)

)
(∃ . . .)(∀ . . .)(∃ . . .) . . .

Since abort.A(∗) is the empty set, this is always true!

The dual statement for magic is similar.

For the adjunction, de�ne magic(S) and abort(S), two interaction systems on S as:

abort(S).A(x) , ∅ magic(S).A(x) , {∗}
. . . magic(S).D(x, ∗) , ∅

. . .

It is easy to check that both are functors and that we have the natural isomorphism

Int
(
abort(S), w

)
' Rel(S, |w|) and Int

(
w,magic(S)

)
' Rel(|w|, S) .

�X

§ \skip" and Invariant Predicates. There is one more constant which will be of great

importance in Part II: skip. It enjoys a very strong categorical property (see sec-

tion 3.5) which unfortunately only holds classically. For the moment, we will only

note the connection between skip and invariant predicates. Remark �rst that any

relation from S to {∗} can be identi�ed with a predicate on S, so that the following

lemma is well-formed:

◦ Lemma 3.2.4: let (S,w) be an interface, and U : P(S), we have

� U is a simulation from skip to w i� U ⊆ w◦(U);

� U is a simulation from w to skip i� U ⊆ w•(U).

3.2.2 Product and Coproduct

Let's now come to the �rst operation de�ned on page 40: the sum operation \ ⊕ "

on interaction systems. The intuition of \disjoint sum" turns out to be exact:

◦ Lemma 3.2.5: \ ⊕ " is a bifunctor on Int, it is the coproduct.
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proof: since disjoint union is the coproduct in the category Rel, it is enough to check

that the constructions on Rel yield simulations when applied to simulations.

For the \injections" from any w1 and w2 to w1 ⊕w2, de�ne:

Rl ,
{(
s1, inl(s′1)

)
| s1 =S1

s′1
}

Rr ,
{(
s2, inr(s′2)

)
| s2 =S2

s′2
}

i.e. those simulations require equality... It is trivial to check that they are indeed

simulations from w1 to w1 ⊕w2 and from w2 to w1 ⊕w2 respectively.

For \copairing", if R1 is a simulation from w1 to w and R2 is a simulation from w2
to w, the copairing [R1, R2] : Rel(S1 + S2, S) is de�ned as:

[R1, R2] ,
{(

inl(s1), s
)
| (s1, s) ε R1

}
∪

{(
inr(s2), s

)
| (s2, s) ε R2

}
which is trivially seen to be a simulation. That w1 ⊕w2 with copairing satis�es

the appropriate universal property follows from the fact that they do so in Rel...

�X

Just like null is both initial and terminal, so is ⊕ both a coproduct and a

product! This is not surprising since the situation is the same in the category Rel.

◦ Lemma 3.2.6: \ ⊕ " is the cartesian product on Int.

proof: this is exactly the converse of the previous lemma:

� projections are the converse of injections;

� pairing is the converse of copairing.

�X

The fact that the product and the coproduct are the same could have been

deduced in section 2.4.3, since for any category enriched over commutative monoids,2

�nite products and �nite coproducts coincide (if they exist).

3.3 Iteration

3.3.1 Angelic Iteration: a Monad

The operation of Angelic iteration (page 45) enjoys a strong algebraic property in the

category of interfaces:

� Proposition 3.3.1: in the category Int, \ ∗" is a monad.

Using the well-known Kleisli construction, this will justify the notion of re�nement

de�ned in section 2.6.

proof (checked in Agda): we postpone the proof of this fact after the next paragraph,

when an appropriate de�nition of monad has been given.

�X

2: Sup-lattice enrichment entails monoid enrichment in an obvious way: addition is given by binary
sups...
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§ An Appropriate De�nition of Monad. A monad on a category C is an endofunctor M

together with two natural transformations η : → M( ) and µ : MM( ) → M( )

satisfying, for all objects A:

1) µA · µM(A) = µA ·MµA;

2) µA · ηM(A) = µA ·MηA = IdM(A).

The aim of this section is to show that the following makes ∗ into a monad on Int:

ηw , EqS and µw , EqS .

The above equations trivially hold, so that the only di�culty is proving that they are

indeed natural transformations.

However, since we are trying to avoid the use of equality, this de�nition is

not entirely appropriate. In particular, equality is not needed for the application of

section 2.6. We will thus use an alternate de�nition: recall that a monad in \triple

form" is given by an operation M on objects, with a morphism ηA : C
(
A,M(A)

)
for

any object A and for any morphism f : C
(
A,M(B)

)
, a morphism f\ : C

(
M(A),M(B)

)
such that:

1) f\ · ηA = f for all f : C
(
A,M(B)

)
;

2) η
\
A = IdM(A) for all object A;

3) (g\ · f)\ = g\ · f\ for all f : C
(
A,M(B)

)
and g : C

(
B,M(C)

)
.

With this de�nition, we can remove one occurrence of the identity and use:

ηw , EqS and R\ , R .

We can do a little better and patch the de�nition of a monad in triple form in the

following ad-hoc way:

. Definition 3.3.2: a premonad on a precategory C is given by an operation M

on objects of C, together with:

� for any morphism f : C
(
A,M(B)

)
, a morphism f\ : C

(
M(A),M(B)

)
;

� and for any morphism g : C
(
M(A),M(B)

)
, a morphism g\ : C

(
A,M(B)

)
satisfying:

1) (f\)\ = f for all f : C
(
A,M(B)

)
;

2) (g\ · f)\ = g\ · f\ for all f : C
(
A,M(B)

)
and g : C

(
B,M(C)

)
;

3) (g\ · f)\ = g\ · f\. for all f : C
(
M(A),M(B)

)
and g : C

(
B,M(C)

)
.

This de�nition is justi�ed by:

◦ Lemma 3.3.3: for a real category, a premonad M is a monad i� it

satis�es
(
IdM(A)\

)\
= IdM(A) for all objects A.

proof: just notice that one can go from a monad in triple form to a premonad by

de�ning f\ , η · f and vice and versa by de�ning ηA , (IdM(A))\. The rest is

obvious.

�X

The interest of this notion, as far as we are concerned is that we can now de�ne all

the data for the premonad: the next paragraph will show that we can take:

R\ , R and R\ , R

to make ∗ into a premonad. Since we do have
(
R\

)\
= R for all relations R, we will

have in particular (Id\)
\ = Id when we allow identities.
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The concept of premonad seems appropriate if one works in a precategory (def-

inition 3.1.2). One problem with this concept is that when there are no identities, we

cannot de�ne the action of M on morphisms! In other words, a premonad M is not

necessarily functorial.

§ Proof of Proposition 3.3.1. We need to show two things:

� if R : Int(w1, w
∗
2), then R\ , R it is also a simulation from w∗

1 to w∗
2;

� if R : Int(w∗
1, w

∗
2), then R\ , R it is also a simulation from w1 to w∗

2.

This has been checked in Agda.

The second point is quite easy: it even holds if we replace w∗
2 by an arbitrary w.

Suppose that R is simulation from w∗
1 to w, i.e.

(s1, s) ε R ⇒
(
∀a′1 ε A∗1(s1)

)(
∃a ε A(s)

)(
∀d ε D(s, a)

)(
∃d′1 ε D∗

1(s1, a
′
1)
)(

s1[a
′
1/d

′
1], s[a/d]

)
ε R .

In particular, for any a1 ε A(s1), we can de�ne a′1 , Call
(
a1, (λd1).Exit

)
, the

strategy which plays a1 and stops. In this case, D∗
1(s1, a

′
1) = D1(s1, a1) × {∗},

and n∗1
(
s1, a

′
1, (d1, ∗)

)
= n1(s1, a1, d1), so that we get

(s1, s) ε R ⇒
(
∀a1 ε A1(s1)

)(
∃a ε A(s)

)(
∀d ε D(s, a)

)(
∃d1 ε D1(s1, a1)

)(
s1[a1/d1], s[a/d]

)
ε R

i.e. that R is a simulation from w1 to w.

For the other point, we start by proving a variant of lemma 2.5.21 which doesn't

involve equality:

◦ Lemma 3.3.4: if w1 and w2 are interfaces, a relation R from S1 to S2
is a simulation from w1 to w2 i�, for all s1 in S1 and a1 ε A1(s1),

we have

R(s1) ⊆ w◦
2

( ⋃
d1εD1(s1,a1)

R
(
s1[a1/d1]

))
.

proof (checked in Agda): this is a simple rewriting of the actual de�nition of simulation:

(∀s1)(∀s2) (s1, s2) ε R⇒ (∀a1)(∃a2)(∀d2)(∃d1)
(
s1[a1/d1], s2[a2/d2]

)
ε R

⇔ { logic }
(∀s1)(∀s2)(∀a1) s2 ε R(s1)⇒ (∃a2)(∀d2)(∃d1) s2[a2/d2] ε R(s1[a1/d1])

⇔ { de�nition of w◦
2 }

(∀s1)(∀a1)(∀s2) s2 ε R(s1)⇒ s2 ε w
◦
2

(⋃
d1
R(s1[a1/d1])

)
⇔

(∀s1)(∀a1) R(s1) ⊆ w◦
2

(⋃
d1
R(s1[a1/d1])

)
.

�X

If we apply this lemma to a simulation from w1 to w∗
2 (i.e. a re�nement), we obtain,

using the notation from page 65: R is a re�nement i�

R(s1) Cw2

⋃
d1εD1(s1,a1)

R
(
s1[a1/d1]

)
for all s1 ε S1 and a1 ε A1(s1). We will now show that:



3.3 Iteration 77

◦ Lemma 3.3.5: suppose that R is a simulation from w1 to w∗
2, then

R(s1) Cw2

⋃
d′

1
εD∗

1
(s1,a1)

R
(
s1[a

′
1/d

′
1]
)

for all s1 ε S1 and a′1 ε A
∗(s1). This implies that if R is a simula-

tion from w1 to w∗
2, then it is also a simulation from w∗

1 to w∗
2 (by

lemma 3.3.4).

proof (checked in Agda): let R be a simulation from w1 to w∗
2, and suppose that s1 ε S1

and a′1 ε A
∗(s1).

Let s2 ε R(s1), we need to show that s2 C
⋃{

R
(
s1[a

′
1/d

′
1]
)
| d′1 ε D∗

1(s1, a
′
1)

}
.

We proceed by induction on a′1 ε A
∗(s1):

K if a′1 = Exit, the result is trivial: the RHS simpli�es into
⋃{

R(s1) | dε{∗}
}

which is equal to R(s1). We have that s2 ε R(s1) by hypothesis.

K if a′1 = Call(a1, k), by lemma 3.3.4, we have

s2 Cw2

⋃
d1εD1(s1,a1)

R
(
s1[a1/d1]

)
. (3-1)

For any d1 ε D(s1, a1), we can use the induction hypothesis on s′1 , s1[a1/d1]
and k(d1) to get

R(s′1) Cw2

⋃
d′′

1
εD∗(s′

1
,k(d1))

R
(
s′1[k(d1)/d

′′
1]
)

.

The RHS is included in
⋃
d′

1
R
(
s1[a

′
1/d

′
1]
)
, so that we get, by monotonicity:

R
(
s1[a1/d1]

)
Cw2

⋃
d′

1
εD∗

1
(s1,a′1)

R
(
s1[a

′
1/d

′
1]
)

.

Since the above is true for any d1 ε D1(s1, a1), we can conclude that⋃
d1εD1(s1,a1)

R
(
s1[a1/d1]

)
Cw2

⋃
d′

1
εD∗

1
(s1,a′1)

R
(
s1[a

′
1/d

′
1]
)

.

By transitivity with (3-1), this �nishes the proof that s2 C
⋃
d′

1
R
(
s1[a

′
1/d

′
1]
)
.

�X

Putting everything back together, we have shown that R is a simulation from w1
to w∗

2 i� it is a simulation from w∗
1 to w∗

2. This concludes the proof proposition 3.3.1.

◦ Lemma 3.3.6: the operation \ ∗" is functorial, with the following ac-

tion on simulations:

R 7→ R∗ , R .

proof: if one accepts the identity relation, this makes Rel into a category rather than

a precategory, and a premonad M is functorial by putting M(f) ,
(
(IdM(B))\ · f

)\
for any morphism f from A to B.

It is also possible to make a direct proof of this fact by proving that if R is a

simulation from w1 to w2, then R is also a simulation from w∗
1 to w∗

2.

�X
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3.3.2 Refinements

Since ∗ is a monad, we can construct its Kleisli category Ref: objects are objects

in Int, i.e. interfaces; and a morphism from w1 to w2 in Ref is given by a morphism

from w1 to w∗
2 in Int, or as we called them in section 2.6, a re�nement from w1 to w2.

That we have a monad guarantees that composition is well de�ned: in general, to

compose f and g in a Kleisli category, take f\ · g (or µ ·Mf · g depending on the

presentation of the monad). In this case, this is very simple since R\ is R. We thus

compose relations as usual...

Note that the Kleisli construction works as well for precategories.

3.3.3 Demonic Iteration: a Comonad

Since Demonic iteration is dual to Angelic iteration, it is not surprising to have the

dual statement to proposition 3.3.1 and lemma 3.3.6:

� Proposition 3.3.7: in the category Int, \ ∞" is functorial; it is a

comonad.

proof: we start by checking that ∞ is functorial: let R be a simulation from w1
to w2.

3 We will show that R is also a simulation from w∞
1 to w∞

2 .

Suppose (s1, s2) ε R, let a′1 ε A
∞(s1). We will �rst de�ne an action in A∞2 (s2)

simulating a′1. To this aim, de�ne the following coalgebra for w2:

� for any s2 ε S2, put X(s2) , (Σs1εS1)
(
ΣrεR(s1, s2)

)
A∞1 (s1);

� and C ε (s2εS2) → X(s2) → w2(X, s2): if s2 ε X, we have (s1, s2) ε R for

some s1 ε S1 and that we moreover have an action a′1 ε A
∞
1 (s1). If elim(a′1)

is of the form (a1, k1), we can �nd some a2 ε A2(s2) simulating a1 by R, i.e.(
∀d2 ε D2(s2, a2)

)(
∃d1 ε D1(s1, a1)

) (
s1[a1/d1], s2[a2/d2]

)
ε R .

This implies that for all d2 ε D2(s2, a2), we can �nd a d1 ε D1(s1, a1).

Thus, k1(d1) ε A
∞
1 (s1[a1/d1]) and this implies that for all d2, we have

that s2[a2/d2] ε X. This allows to de�ne C: put

C
(
s2, (s1, r, a

′
1)
)
,

(
a2, (λd2) .

(
s′1, r

′, k(d1)
))

where a2 is the action simulating a1 and for any reaction d2 ε D2(s2, a2),

if d1 is the reaction corresponding to d2 by the simulation, s′1 is the new

state s1[a1/d1], and r′ the proof that the new states s2[a2/d2] and s′1 are

related.

In this coalgebra, we have: (we abbreviate coiter(X, C) by coiter)

elim
(

coiter
(
s2, (s1, r, a

′
1)
))

=
(
a2, (λd2).coiter

(
s2[a2/d2], (s

′
1, r

′, k(d1))
))

where, by construction, a2 simulates a1.

3: This proof is meant to be implemented in a proof system, not so much for reading!
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For any s1, s2, r and a′1 as above, we de�ne a′2 , coiter
(
X,C, s2, (s1, r, a

′
1)
)
. We

need to show that that this construction does simulate a′1 ε A
∞
1 (s1):

(∀s1, s2)
(
∀r ε R(s1, s2)

)(
∀a′1 ε A∞1 (s1)

)(
∀d′2 ε D∞

2

(
s2, coiter

(
s2, (s1, r, a

′
1)
)))(
∃d′1 ε D∞

1 (s1, a
′
1)
)(

s1[a
′
1/d

′
1], s2

[
coiter

(
s2, (s1, r, a

′
1)
)
/d′2

])
ε R . (3-2)

We proceed by induction on d′2:

K if d′2 = Nil, then the result is obvious: take d′1 , Nil. We have that s1[a
′
1/Nil] = s1

and s2[coiter(. . .)/Nil] = s2 and the result holds by hypothesis.

K if d′2 is of the form Cons(d2, d
′′
2): we have by de�nition that d2 ε A2(s2, a2) and

that d′′2 ε A
∞
2

(
s2[a2/d2], k(d2)

)
where k(d2) = coiter

(
s2[a2/d2], (s

′
1, r

′, k1(d1))
)

as above: a2 simulates a1, and if d1 is the image of d2 by the simulation, s′1 is in

fact s1[a1/d1].

By induction hypothesis applied to:

� s′1 , s1[a1/d1],
� s′2 , s2[a2/d2],
� the proof r′ that (s′1, s

′
2) ε R,

� k1(d1),
� and d′′2 which is indeed an element of D∞

2

(
s′2, coiter

(
s′2, (s

′
1, r

′, k1(d1))
))

;

we obtain a reaction d′′1 to k1(d1) which satis�es(
s′1[k(d1)/d

′′
1], s

′
2[coiter(. . .)/d′′2]

)
ε R .

It is straightforward to see that taking d′1 , Cons(d1, d
′′
1) makes (3-2) true.

This completes the proof that R is a simulation from w∞
1 to w∞

2 and thus that ∞

is functorial.

We now need to show that this endofunctor is indeed a comonad. We do

not repeat what was done in the previous section for monads and the problem of

identities; we only note that it will be enough for us to show that a relation is a

simulation from w∞
1 to w2 i� it is a simulation from w∞

1 to w∞
2 .

K let R be a simulation from w∞
1 to w∞

2 ; let's show that R is also a simulation

from w∞
1 to w2: if (s1, s2) ε R and a′1 ε A

∞(s1), we need to �nd an a2 ε A2(s2)

simulating a′1.

By hypothesis, we can �nd an action a′2 ε A
∞
2 (s2) simulating a′1. If elim(a′2) is of

the form (a2, k2), take the action a2 to simulate a′1: we only need to show that(
∀d2 ε D2(s2, a2)

)(
∃d′1 ε A∞1 (s1, a

′
1)
)(
s1[a

′
1/d

′
1], s2[a2/d2]

)
ε R .

For d2 ε A2(s2, a2), the reaction Cons(d2,Nil) is an element of A∞2 (s2, a
′
2) and it

thus has a corresponding reaction d′1 ε A
∞
1 (s1, a

′
1). This particular d′1 does work

because s2[a
′
2/Cons(d2,Nil)] = s2[a2/d2].

K for the other direction, suppose R is a simulation from w∞
1 to w2; we need to

show that is it also a simulation from w∞
1 to w∞

2 . The construction is very

similar to the proof of functoriality of ∞. We only sketch it: given (s1, s2) ε R
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and an action a′1 ε A
∞
1 (s1), we construct the coalgebra (X,C) as above. The only

di�erence is that in the de�nition of C, we do not simulate the �rst action of a′1 in

order to get an action in A2(s2), but use the simulation to simulate the whole a′1.

The rest can be copied almost word for word.

�X

3.4 A Right-Adjoint for the Tensor

We already saw in corollary 3.2.2 that Int is not cartesian closed: we cannot hope

to have an exponential object w2
w1 in the usual categorical sense. The category Int

enjoys however a weaker property which still allows to speak about \the object of

simulations from w1 to w2": it is symmetric monoidal closed.

. Definition 3.4.1: if w1 and w2 are interfaces, de�ne w1 ( w2 to be the

interaction system on S1 × S2 with components (A(, D(, n():

A(
(
(s1, s2)

)
,

(
Σ f ε A1(s1)→ A2(s2)

)(
Π a1 ε A1(s1)

)
D2
(
s2, f(a1)

)
→ D1(s1, a1)

D(
(
(s1, s2), (f,G)

)
,

(
Σ a1 ε A1(s1)

)
D2
(
s2, f(a1)

)
n(

(
(s1, s2), (f,G), (a1, d2)

)
,

(
s1
[
a1/Ga1

(d2)
]
, s2

[
f(a1)/d2

])
.

The de�nition of ( may look very complex, but is a posteriori rather natural:

� An action in state (s1, s2) is given by:

1) a function f translating actions from s1 into actions from s2;

2) for any a1, a function Ga1
translating reactions to f(a1) into reactions to a1.

� A reaction to such a \translating mechanism" is given by:

1) an action a1 in A1(s1) (which we want to simulate);

2) and a reaction d2 in D2(s2, f(a1)) (which we want to translate back).

� Given such a reaction, we can simulate a1 by a2 ε A2(s2) obtained by applying f

to a1, and translate back d2 into d1 ε D1(s1, a1) by applying Ga1
to d2. The

next state is just the pair of states s1[a1/d1] and s2[a2/d2].

That this operation is indeed an object of simulations is justi�ed by the following:

� Proposition 3.4.2: for any interface w, \w( " is right adjoint

to \ ⊗w". In other words, there is a natural isomorphism

Int(w1, w2( w3) ' Int(w1 ⊗w2, w3) .

proof: to emphasize the part of the formula being manipulated, we underline it.

That R is a simulation from w1 ⊗w2 to w3 takes the form4

(s1, s2, s3) ε R ⇒
(
∀a1 ε A1(s1)

)(
∀a2 ε A2(s2)

)(
∃a3 ε A3(s3)

)
4: modulo associativity (S1 × S2)× S3 ' S1 × (S2 × S3) ' S1 × S2 × S3...
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(
∀d3 ε D3(s3, a3)

)(
∃d1 ε D1(s1, a1)

)(
∃d2 ε D2(s2, a2)

)(
s1[a1/d1], s2[a2/d2], s3[a3/d3]

)
ε R .

Using AC on the ∀a2∃a3, we obtain:

(s1, s2, s3) ε R ⇒
(
∀a1 ε A1(s1)

)(
∃f ε A2(s2)→ A3(s3)

)(
∀a2 ε A2(s2)

)(
∀d3 ε D3(s3, f(a2))

)(
∃d1 ε D1(s1, a1)

)(
∃d2 ε D2(s2, a2)

)(
s1[a1/d1], s2[a2/d2], s3[f(a2)/d3]

)
ε R .

By �rst swapping the last two existential quanti�ers, we can apply AC on ∀d3∃d2:

(s1, s2, s3) ε R ⇒
(
∀a1 ε A1(s1)

)(
∃f ε A2(s2)→ A3(s3)

)(
∀a2 ε A2(s2)

)(
∃g ε D3(s3, f(a2))→ D2(s2, a2)

)(
∀d3 ε D3(s3, f(a2))

)(
∃d1 ε D1(s1, d1)

)(
s1[a1/d1], s2[a2/g(d3)], s3[f(a2)/d3]

)
ε R

and applying AC one more time on ∀a2∃g to obtain:

(s1, s2, s3) ε R ⇒
(
∀a1 ε A1(s1)

)(
∃f ε A2(s2)→ A3(s3)

)(
∃G ε

(
a2εA2(s2)

)
→ D3

(
s3, f(a2)

)
→ D2(s2, a2)

)(
∀a2 ε A2(s2)

)(
∀d3 ε D3(s3, f(a2))

)(
∃d1 ε D1(s1, d1)

)(
s1[a1/d1], s2[a2/Ga2

(d3)], s3[f(a2)/d3]
)
ε R

which is equivalent to

(s1, s2, s3) ε R ⇒
(
∀a1 ε A1(s1)

)(
∃(f,G) ε

(
ΣfεA2(s2)→ A3(s3)

)(
Πa2εA2(s2)

)
D3(s3, f(a2))→ D2(s2, a2)

)
(
∀(a2, d3) ε (Σa2εA2(s2)) D3(s3, f(a2))

)(
∃d1 ε D1(s1, d1)

)(
s1[a1/d1], s2[a2/Ga2

(d3)], s3[f(a2)/d3]
)
ε R .

By de�nition, this means that R is a simulation from w1 to w2( w3.

Naturality is trivial as the isomorphism is given by S1× (S2×S3) ' (S1×S2)×S3
(set isomorphism).

�X
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In particular, since skip is neutral for the tensor, we have

Int(skip⊗w1, w2) ' Int(w1, w2) ' Int(skip, w1( w2)

which allows us to see simulations from w1 to w2 as an invariant predicate for the

Angel in the interaction system w1( w2, see lemma 3.2.4.

3.5 A Dualizing Object

Some SMCC are equipped with an internal duality, which makes them particularly

well-behaved: ?-autonomous categories ([13]). In addition to the closed structure,

they require the existence of a dualizing object:

. Definition 3.5.1: a dualizing object in a symmetric monoidal closed category C

is an object ⊥ such that, for every object A, the canonical morphism from A

to (A( ⊥)( ⊥ is an isomorphism.

The canonical morphism comes from the equivalence

C
(
A, (A( ⊥)( ⊥

)
' C

(
A⊗ (A( ⊥),⊥

)
' C

(
(A( ⊥)⊗A,⊥

)
' C

(
A( ⊥, A( ⊥

)
.

Specialized to our case, we have that

R : Int
(
w1, (w1( w2)( w2

)
R ,

{(
s1, (s

′
1, s2, s

′
2)
)
| s1 =S1

s′1 ∧ s2 =S2
s′2

}
is the canonical morphism from any w1 to (w1( w2)( w2. (This uses equality.)

The notion of dualizing object has a very classical feeling (double negation); it

is thus not very surprising (??) that the following holds only classically:

� Proposition 3.5.2: (classically) in Int, the object skip is dualizing.

proof: the canonical morphism from w to (w( skip)( skip takes the form

ND ,
{(
s,
(
(s′, ∗), ∗

))
| s =S s

′} .

This relation is invertible in Rel, with inverse: (where DN stands for \Double Negation")

DN ,
{((

(s, ∗), ∗
)
, s′
)
| s =S s

′} .

Thus, to show that skip is dualizing, we only need to show that DN is a simulation

from any (w( skip)( skip to w. It is just an application of the de�nition from

page 80 that w⊥ is structurally isomorphic to w( skip. Thus, we need to show

that EqS ' DN is a simulation from w⊥⊥ to w.

Here are the components of w⊥⊥:

A⊥⊥(s) =
((
aεA(s)

)
→ D(s, a)

)
→ A(s)

D⊥⊥(s, F) =
((
aεA(s)

)
→ D(s, a)

)
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n⊥⊥(s, F, g) = s
[
F(g)/g

(
F(g)

)]
.

That EqS is a simulation from w⊥⊥ to w takes the form:

(∀s ε S)
(
∀F ε A⊥⊥(s)

)(
∃a ε A(s)

)(
∀d ε D(s, a)

)(
∃g ε D⊥⊥(s, F)

)
s[a/d] =S s

[
F(g)/g

(
F(g)

)]
.

By applying the contraposition of the axiom of choice (page 31) on ∃a∀d, this is

equivalent to

(∀s ε S)
(
∀F ε A⊥⊥(s)

)(
∀f ε

(
aεA(s)

)
→ D(s, a)

)(
∃a ε A(s)

)(
∃g ε D⊥⊥(s, F)

)
s[a/d] =S s

[
F(g)/g

(
F(g)

)]
.

We can swap quanti�ers and obtain, by the de�nitions of A⊥, D⊥ and A⊥⊥,

(∀s ε S)
(
∀f ε A⊥(s)

)(
∀F ε A⊥(s)→ D⊥(s, )

)(
∃g ε D⊥⊥(s, F)

)(
∃a ε D⊥(s, f)

)
s[a/f(a)] =S s

[
F(g)/g

(
F(g)

)]
.

We can now apply the contraposition of the axiom of choice on ∀F∃g to get the

equivalent formulation

(∀s ε S)
(
∀f ε A⊥(s)

)(
∃g ε D⊥⊥(s, F)

)(
∀b ε D⊥(s, g)

)(
∃a ε D⊥(s, f)

)
s[a/f(a)] =S s[b/g(b)] .

Since D⊥⊥ is equal to A⊥, this is obviously true.

Thus, we can conclude that Eq is a simulation from w⊥⊥ to w and thus

that DN is a simulation from (w( skip)( skip to w. This concludes the proof

that skip is a dualizing object in Int.

�X

This proposition has a very disturbing corollary: call an interaction system simple

when the sets of reactions w.D(s, a) do not depend on a ε w.A(s);

• Corollary 3.5.3: (classically) any interaction system is isomorphic to a

simple interaction system.

proof: just take w′ , w⊥⊥.

�X

We will latter see more properties of this duality in a classical setting. For

now, we just mention that:

◦ Lemma 3.5.4: for all interfaces w1 and w2, we have

1) ( � )⊥ ≈ ⊥ � ⊥ (structural isomorphism);

2) classically:( � )⊥ ' ⊥ � ⊥ (isomorphism).





4 Interaction Systems and Topology

4.1 Constructive Sup-Lattices

In [6], Peter Aczel gives a description of constructive sup-lattices in CZF. We review

those notions and show how interaction systems can be seen as a type theoretic

reformulation of the notion of \set-presented sup-lattice".

Note: in this chapter, we assume equality in the underlying type theory.

4.1.1 Classical Notions

Recall that classically:

. Definition 4.1.1: a partial order (S,�) with binary suprema s∨ s′ and a least

element is called a sup-lattice. It is complete if it has arbitrary suprema
∨
U

for all U : P(S).

A partial order (S,�) is a lattice if it is both a sup-lattice and an inf-lattice.

And a simple lemma:

◦ Lemma 4.1.2: let S be a set and � a partial order on S, the following

are equivalent:

1) (S,�) is a complete sup-lattice;

2) (S,�) is a complete lattice.

proof: de�ne
∧
U ,

∨
{s ε S | s is a lower bound of U}. It is easy to check that this

is the in�mum operation. The rest is trivial.

�X

4.1.2 Constructive Sup-Lattices

Predicatively, the above de�nition is not adequate: we would like to consider partial

orders de�ned on a proper type S. In such a case, it is not possible to state that an

element A is the lowest upper bound of a predicate U: the expression

(∀B:S) A � B ⇔
(
(∀C:S) C ε U⇒ C � B

)
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is not a set because the second quanti�cation over the S brings us beyond Π11 quan-

ti�cation. It is however easy to say that A : S is the lub of the family (Bi)iεI
(where I : Set):

(∀C:S) A � C ⇔
(
(∀iεI) Bi � C

)
which is an instance of Π11 quanti�cation. We thus put:

. Definition 4.1.3: a partial order (S,�) is a complete sup-lattice if for any

(set-indexed) family (Ai)iεI, there is an element
∨
iεIAi such that:

B : S `
∨
iεI

Ai � B ⇔
(
(∀iεI) Ai � B

)
.

Lemma 4.1.2 doesn't hold anymore because the predicate {B | B is a lub of U} is

usually not set-based.

§ Set-Generated Sup-Lattices. In order to get a predicatively friendlier theory, it is

traditional to restrict one's attention to sup-lattice having a set-indexed \basis":

. Definition 4.1.4: (adapted from [6])

a partial order (S,�) with set-indexed lubs is set-generated if there is a

set-indexed predicate G ⊆ S s.t.

� for all A : S the predicate A↓G , {g ε G | g � A} is set-indexed;

� for any A : S, we have
∨
A↓G = A.

We call {Gi | iεI} a generating family.

The interest of this notion is that any set-generated sup-lattice is isomorphic to the

collection of (pre) �xpoints for a closure operator on P(G). The idea is to de-

�ne F(U) = {gεG | g �
∨
U}. (This is possible because as a predicate over G, U

is set-indexed.) The details can be found in [6], theorem 6.3.

Type theoretically, any interaction system gives rise to a set-generated sup-

lattice in the following way: if w is an interaction system on S, de�ne the proper

type

Ow , {U : P(S) | w∗(U) ⊆ U}

and take inclusion as a partial order.

§ Set-Presented Sup-Lattices. We saw, on page 62, an example of predicate trans-

former which couldn't be represented by an interaction system. It is easy to check

that this predicate transformer U 7→ U�� is a closure operator, so that it is equal to

its re
exive transitive closure. This shows that not every set-generated sup-lattice

arises as some Ow. The next notion gives what is missing:

. Definition 4.1.5: a presentation for a sup-lattice (S,�) with generating set G

is a set-indexed relation C between G and P(G) s.t.

g �
∨
U ⇔ (∃U′ ⊆ U) g C U′

for any g ε G and X ⊆ G.

Notice that the RHS quanti�cation \∃Y" is predicative because we quantify over a

set-indexed relation.

In [6], Peter Aczel proves that
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� Proposition 4.1.6: every set-generated sup-lattice arises from a

closure operator on a P(S) for some set S.

Moreover, the sup-lattice is set presented i� the corresponding

closure operator is set based.

The �rst point is just the remark from the previous paragraph. The second point

shows that a sup-lattice is set-presented i� it is isomorphic to some Ow for some

interaction system w.

Let's check the interesting direction:

◦ Lemma 4.1.7: for any interaction system w in S, (Ow,⊆) is a set-

presented sup-lattice.

proof: for any family {Ui | i ε I} of �xpoints of w∗, de�ne

∨
iεI

Ui , w∗

(⋃
iεI

Ui

)
.

Let's check that this de�nes a sup-lattice structure for Ow: suppose Ui ⊆ V for

all i ε I. We need to check that
∨
iUi ⊆ V : we trivially have that

⋃
iUi ⊆ V ,

which by monotonicity implies that w∗(⋃
iUi

)
⊆ w∗(V). However, since V : Ow,

we know that V = w∗(V), so that we obtain
∨
iUi ⊆ V .

The sup-lattice Ow is set-generated by using {w∗{s} | s ε S} as a generat-

ing family. It is set-presented by using the relation:

Jw =


(
w∗(s),

⋃
dεD∗(s,a′)

w∗(s[a′/d′])

)
s ε S, a′ ε A∗(s)


which satis�es the condition. For the �rst direction, we have

(∃U ⊆ V) w∗(s)Jw U ⇒ w∗(s) ⊆ V

because w∗(s)Jw U implies s Cw U, which implies s Cw V and thus w∗(s) ⊆ V
(recall that V is open, i.e. V = w∗(V)). For the second direction,

w∗(s) ⊆ V ⇒ (∃U ⊆ V) w∗(s)Jw U ,

we have that w∗(s) ⊆ V implies s Cw V , which easily implies that w∗(s) Jw U
for some U ⊆ V .

�X

4.1.3 Morphisms

The notion of morphism between sup-lattices is the traditional one: morphisms are

maps commuting with lubs. Rather than looking at this condition in the context

of set-generated / set-presented sup-lattices, we postpone the discussion about mor-

phisms to section 4.2.2 where we look at a speci�c example of sup-lattice: collection

of open sets in a \basic topology". Analysis of sup-lattice morphisms between set-

generated sup-lattices can be extracted from [36].
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4.2 Interaction Systems and Topology

The most popular sup-lattices are probably the sup-lattices arising as collections of

open sets of a topological space. Let's start by recalling the main ideas of constructive

topology.

4.2.1 Constructive Topology

Abstract topology is a very classical domain, and both the principles of excluded

middle and the axiom of choice are used quite heavily. It is however possible to

develop non-trivial parts of topology in a constructive framework.

§ Pointfree Topology. The �rst observation is that many topological results can be

rephrased to mention open sets rather than actual points. Pointfree topology is a

systematic analysis of topology along this line. Working directly with open sets al-

lows in particular to remove many occurrences of the axiom of choice, giving a more

constructive theory. Examples of topological theorems having received a construc-

tive treatment include Tikhonov, Hahn-Banach and Heine-Borel theorems, Stone's

representation theorem or other representation theorems.

Pointfree topology can be seen as the study of the dual of the category of

frames (complete Heyting algebras). Taking the dual is just a technical artifact to

get morphisms in the \topological" direction: a continuous function from X1 to X2 is

a lub-preserving function from O(X2) to O(X1) where O(X) is the lattice of open sets

of the topology X. This category is called the category of locales. Further motivation

for \pointless" topology can be found in [56].

§ Formal Topology. However, the theory of locales is still impredicative. Formal

topology is the study of locales in a predicative setting. To achieve this goal, one

considers a topology as given by a base of open sets S. Any element of S is a basic

open. Together with this base is given a covering predicate: s C U (for some s ε S

and U : P(S)). It's intuitive meaning is that \the basic open s is covered by the basic

opens in U". As we saw in the previous section, formal topology is thus the study of

frames arising from set-generated sup-lattices.

In order for this relation to generate a distributive sup-lattice, it should satis�es

(among others):

s C U s C V

s C U ↓ V convergence

where U ↓ V , {
s ε S | (∃s′εU) s C {s′} ∧ (∃s′εV) s C {s′}

}
.

The convergence condition expresses that for any pair of coverings of S, it

is possible to �nd a covering re�ning both of them. Classically, we just take the

collection of binary intersections between the two coverings.

The last component of a formal topology is the positivity predicate Pos. The

intuitive meaning of Pos(s) is \the basic open s is not empty". It should in particular

satisfy:

s C U

s C U+
positivity
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where U+ , {sεU | Pos(s)}. This asserts that only positive basic opens are important.

An introduction to formal topology can be found in [76].

An interesting class of formal topologies is the class of \inductively generated"

formal topologies. For those, the rules of convergence and positivity can be under-

stood as \generating" rules rather than \admissible rules". Those are studied in

details in [27], and, as can be easily inferred from the previous section, coincide with

frames constructed from set-presented sup-lattices.

§ Basic Topology. In [79] and [36], Giovanni Sambin introduces a new structure for

topology. The di�erences with the traditional approach are:

� the unary predicate Pos is replaced by a binary predicate: n, dual to C;

� the notion of convergence is dropped;

� the positivity axiom is dropped.

The idea is to obtain a concise, completely symmetric core which can be extended at

will in order to approximate the classical theory.

Formally:

. Definition 4.2.1: let S be a set, a basic topology on S is a pair of operators A

and J on P(S) such that:

� A is a closure operator;

� J is an interior operator;

� A and J are related via the compatibility condition:

A(U) G J(V)

U G J(V)
compatibility .

The notation s C U is synonym to s ε A(U) and s n V is synonym to s ε J(V).

It can be enlightening to look at the de�nition of A and J in the case of a

traditional (classical) topological space: if S is a base for a topological space, and if U

is a collection of basic opens, we have:

� s ε A(U) i� s ⊆
⋃
U, or s is covered by U;

� s ε J(U) i� for some x ε s, all basic neighborhoods of x are members of U.

From such a basic topology, we can de�ne a lattice of open sets (predicates U

s.t. A(U) ⊆ U) and a lattice of closed sets (subsets V s.t. V ⊆ J(V)).1 Those lattices

are set-generated, but generally speaking not set-presented.

§ Basic Continuity. The main topological notion is probably the notion of continuous

function. How can we express the fact that a \function" from (S,A, J) to (S′,A′, J′) is

continuous? Classically, a continuous function is a function whose inverse image (the

angelic update of its graph) sends opens to opens. This implies that a continuous

function arises as a relation R between (basic) opens: the meaning of (s, s′) ε R is

\the open s is included in the inverse image of s′". Since in a basic topology, the

notions of closed and open sets are \independent", we also add a dual clause stating

that the inverse image of a closed set is a closed set:

1: The fact that open subsets are stable w.r.t. a closure operation and closed subsets are stable
w.r.t. an interior operator is justi�ed in [78].
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. Definition 4.2.2: ([36]) if (S1,A1, J1) and (S2,A2, J2) are basic topologies, a

relation R ⊆ S1 × S2 is continuous if the following two conditions hold:

1) 〈R〉 ·A2 ⊆ A1 · 〈R〉;
2) 〈R∼〉 · J1 ⊆ J2 · 〈R∼〉.

It should be noted that in general, the two conditions are independent.

The shape of condition 2 may look strange, but the reason is that the de�nition

makes 〈R∼〉 send open sets to open sets and [R∼] send closed set to closed sets.2 In

the traditional case where R comes from a real function, this is irrelevant as both the

Angelic and Demonic updates of a functional relation are equal.

One of the problems with this de�nition is that continuous relations are rela-

tions on bases for topological spaces. It is possible for two (extensionally) di�erent

relations to represent the same continuous function. In order to deal with this, we

need the following notion of equality:

. Definition 4.2.3: if R and T are two continuous relations from (S1,A1, J1)

to (S2,A2, J2), they are topologically equal, if A1 · 〈R〉(s2) = A1 · 〈T〉(s2) for

all s2 ε S2. We write R ≈ T .

This forms the category of basic topologies with continuous relations be-

tween them, which we call BTop.

We refer to [36] for the proof that this forms a category.

4.2.2 Topology and Interaction

§ Execution and Compatibility. We know from lemma 2.5.14 that w∗◦ and w⊥∞◦ are

respectively a closure and an interior operator on P(S). We also saw in section 2.6.4

that the relations Cw and nw are linked by the \execution formula":

Init Cw Goal Init nw V
Goal nw V

execution .

This expresses the soundness of interaction between a client program and a server

program. Specialized when Init is a singleton,3 we obtain the exact form of Sambin's

compatibility rule:

s Cw Goal s nw V
Goal nw V

i.e.
w∗◦(Goal) Gw⊥∞◦(V)

Goal Gw⊥∞◦(V)
.

It is thus natural to put:

. Definition 4.2.4: if w is an interaction system on S, de�ne:

� Aw : P(S)→ P(S) with Aw(U) , w∗◦(U);

� Jw : P(S)→ P(S) with Jw(U) , w⊥∞◦(U) = w•∞(U).

The previous remarks show that:

◦ Lemma 4.2.5: if w is an interaction system on S, then (S,Aw, Jw) is

a basic topology. Moreover, this basic topology is \set-presented", or

\(co)inductively generated".

2: condition 2 is easily seen to be equivalent to J1 · [R∼] ⊆ [R∼] · J2 using lemma 2.5.11.

3: Note however that equality is not needed to de�ne execution when Init is a singleton.
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§ Continuity and Interaction. Since interaction systems are nothing but representa-

tions for (co)inductively generated basic topologies, we may hope that the notion

of continuous relation corresponds to a notion of simulation. This is indeed the

case: continuous relations are exactly re�nements modulo saturation (sections 2.6.2

and 2.6.5).

◦ Lemma 4.2.6: if wh and wl are interaction systems and R a re�nement

from wh to wl (i.e. R is a simulation from wh to w∗
l ), then we have:

〈R〉 · Jl ⊆ Jh · 〈R〉 .

proof: suppose V ⊆ Sl, we need to show that 〈R〉·Jl(V) ⊆ Jh ·〈R〉(V). Since Jh ·〈R〉(V)

is a greatest �xpoint of the operator X 7→ 〈R〉(V) ∩w•(X), it is su�cient to show

that 〈R〉 · Jl(V) is a post-�xpoint for this same operator:

� 〈R〉 · Jl(V) ⊆ 〈R〉(V) because Jl(V) ⊆ V ;

� 〈R〉 ·Jl(V) ⊆ w•〈R〉 ·Jl(V): suppose sh ε 〈R〉 ·Jl(V), and let ah ε Ah(sh). We

need to �nd a dh ε Dh(sh, ah) s.t. sh[ah/dh] ε V . Because sh ε 〈R〉 · Jl(V),

we know that (sh, sl) ε R for some sl nl V . By lemma 3.3.4, we know

that sl Cl
⋃
dh
R(sh[ah/dh]) and by compatibility (since sl nl V), we can

�nd a \�nal" state s′l ε
⋃
dh
R(sh[ah/dh]) s.t. s′l nl V . This implies in

particular that there is a reaction dh ε Dh(sh, ah) s.t. s′l ε R(sh[ah/dh]).

We thus conclude that sh[ah/dh] ε 〈R〉 · Jl(V).

�X

This proof is not strictly speaking predicative, as it uses the de�nition of Jw as w•∞.

It is possible to prove lemma 4.2.6 directly by introducing an appropriate coalgebra

de�ning an action in A∞h (sh) and proving that everything works. After proposi-

tion 2.5.18 and 3.3.7, the reader probably doesn't want to read such a proof.

We thus obtain:

� Proposition 4.2.7: if wh and wl are interaction systems, then a

relation R ⊆ Sh × Sl is a re�nement from wh to wl i� it is a

continuous relation from (Sl,Al, Jl) to (Sh,Ah, Jh).

Moreover, topological equality coincide with equality of satu-

rations as de�ned in section 2.6.5.

proof: we �rst need to show that if R is a re�nement, we have 〈R∼〉 · Ah ⊆ Al · 〈R∼〉
and 〈R〉 · Jl ⊆ Jh · 〈R〉. The �rst point is given by lemma 3.3.5 and the second by

lemma 4.2.6. For the converse, use lemma 2.5.21 and the de�nition of re�nements.

That topological equality coincide with extensional equality of saturations

holds by de�nition.

�X

We can conclude by:

� Proposition 4.2.8: the operation w 7→ (S,Aw, Jw) is a full and

faithful functor from Refop≈ to BTop.
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4.2.3 More Basic Topologies

§ Positivity. The de�nition of basic topology puts very little constraint on the opera-

tors A and J. The operators Aw and Jw have a much stronger relationship: they are

dual to each other. Classically, by lemmas 2.5.17 and 2.5.18, we have

Aw = { · Jw · { . (4-1)

A direct consequence is that classically, any basic topology generated from an interac-

tion system will satisfy the positivity axiom. Recall that the positivity predicate Pos

found in formal topologies can be de�ned as J(S).

◦ Lemma 4.2.9: (classically) if w is an interaction system on S, then,

for any U : P(S), we have U Cw U ∩ Jw(S), i.e. U C U+ and the

positivity axiom holds.

proof: de�ne U+ , U ∩ Jw(S), let s ε S, let's show that s Cw {s}+:

� if s Cw ∅, then we have s Cw {s}+ by monotonicity;

� if not, then we have s ε {Aw(∅) = Jw(S) by the remark (4-1). This means

that s ε {s}+, and so s Cw {s}+.

This implies that for any U : P(S), U Cw U+.

�X

# Remark 15: for example, the basic topology on S (containing at least
one element) with A(U) = U and J(U) = ∅ cannot be generated from
an interaction system. No (S,Aw, Jw) can be a counter-example to the
positivity axiom.

§ Extending the Execution Formula. We will now see that it is possible to use the

machinery of interaction systems and re�nements in order to generate more basic

topologies. The idea is simple: use di�erent interaction systems to generate A and J.

◦ Lemma 4.2.10: let wh and wl be two interaction systems, suppose R

is a re�nement from wh to wl, then we have:

� 〈R〉 · Jl · [R∼] is an interior operator on Sh;

� Ah is compatible with 〈R〉 · Jl · [R∼].

In other words,
(
Sh,Ah, 〈R〉 · Jl · [R∼]

)
is a basic topology.

proof: let's �rst show that 〈R〉 · Jl · [R∼] is an interior operator:

� it is contractive:

〈R〉 · Jl · [R∼](U) ⊆ 〈R〉 · [R∼](U) ⊆ U

where the �rst inclusion follows from Jl being contractive and the second

from the fact that 〈R〉 · [R∼] is an interior operator (lemma 2.5.11).

� moreover, we have:

〈R〉 · Jl · [R∼] ⊆ 〈R〉 · Jl · Jl · [R∼] ⊆ 〈R〉 · Jl · [R∼] · 〈R〉 · Jl · [R∼]

where the �rst inclusion follows from Jl being an interior operator and the

second from [R∼] · 〈R〉 being a closure operator (lemma 2.5.11).
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To show that this operator is compatible with Ah, suppose that sh Ch U and

that sh ε 〈R〉 · Jl · [R∼](V), i.e. that sl nl [R∼](V) for some sl s.t. (sh, sl) ε R. We

need to show that U G 〈R〉 · Jl · [R∼](V).

By hypothesis, we have that sl ε R · Ah(U), so that, because R is a simulation

from w∗
h to w∗

l , sl ε Al · R(U) (lemma 2.5.21). We can then use compatibility

on sl nl [R∼](V) and sl Cl 〈R∼〉(U) to obtain a \�nal" state s′l ε 〈R∼〉(U)

and s′l nl [R∼](V). We have (s′h, s
′
l) ε R, with s′h ε U and s′l nl [R∼](V), which

implies:

� s′h ε U;

� s′h ε 〈R〉 · Jl · [R∼](V).

This concludes the proof.

�X

The interactive reading of this lemma is simple: a basic topology is given by

a way to specify servers (using J) and a way to specify clients (using A) on the same

set of states. Compatibility, or \execution" is just here to ensure that servers and

programs have a sound way to communicate (sections 2.6.3 and 2.6.4). Lemma 4.2.10

formalizes the following remark: if R is a re�nement from wh to wl, then a client

for wh and a server for wl can communicate \via" R: for related states,

1) a client request in wh can be translated into a (sequence of) request(s) in wl;

2) this request in wl can be answered to by the server, in wl;

3) this (sequence of) answer(s) can be translated back in wh.

The Demon can translate the client's requests and the client can translate the Demon's

responses: this is all that is necessary to conduct interaction.

Since 〈R〉 · J · [R∼] is an interior operator whenever J is, it is natural to ask

if we can weaken the condition of R being a re�nement. The answer is no, at least

classically speaking:

◦ Lemma 4.2.11: (classically) if wh and wl are interaction systems, and

if R is a relation between Sh and Sl s.t. 〈R〉 · Jl · [R∼] is compatible

with Ah, then R is a re�nement from wh to wl.

proof: suppose we have compatibility between Ah and 〈R〉 · Jl · [R∼]:

(sh, sl) ε R sh Ch U sl nl [R∼](V)

(∃s′h, s′l) (s′h, s
′
l) ε R ∧ s′h ε U ∧ s′l nl [R∼](V)

.

In order to show that R is a re�nement from wh to wl, it is su�cient to prove

that sh Ch U⇒ R(sh) Cl R(U) (lemma 3.3.5). Suppose sh Ch U and (sh, sl) ε R;

by contradiction, suppose sl Cl R(U) doesn't hold.

¬sh Cl R(U)

⇔
sh ε { ·Al · R(U)

⇔ { { · Al = Jl · { }
sh nl { · 〈R∼〉(U)

⇒ { compatibility applied to (sh, sl) ε R, sh C U and sh n { · 〈R∼〉(U): }
{ for some s′h and s′l, we have }

(s′h, s
′
l) ε R and s′h ε U and s′l nl { · 〈R∼〉(U)

⇒
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(s′h, s
′
l) ε R and s′h ε U and s′l ε { · 〈R∼〉(U)

⇔
(s′h, s

′
l) ε R and s′h ε U and s′l 6ε 〈R∼〉(U)

⇒
contradiction!

�X

4.3 Localization

The collection of open subsets corresponding to an interaction system forms a set-

presented sup-lattice with �nite glbs (given by intersection). The actual notion of

formal topology requires this lattice to be a frame. What is missing is in�nite dis-

tributivity:∨
iεI

(
V ∧Ui

)
= V ∧

(∨
iεI

Ui

)
.

In [27], the authors identify a restriction on axiom sets4 to generate formal (distribu-

tive) topologies. Since their notion of inductive generation corresponds exactly to our

re
exive and transitive closure, we can reuse their work.

Let (S,�) be a preordered set, an interaction system on S is localized

if the following holds:

s′ � s , a ε A(s) ⇒ s′ ε w◦

( ⋃
dεD(s,a)

{s[a/d]} ↓ {s′})

where U ↓ V , U↓ ∩ V↓ and U↓ , {s ε S | (∃s′ ε U) s � s′}.
By monotonicity, this implies in particular that the relation � is a simulation from w

to itself.

One result from [27] is that if (w,�) is localized and if we extend the rules

generating the re
exive and transitive closure of w with

s′ ε U s � s′

s C U
�-compat

(i.e. we take the \down transitive closure" rather than the re
exive transitive closure),

then the resulting sup-lattice of open sets will be distributive.

The preorder � aims at representing a priori the notion of inclusion between

basic opens: s � s′ intuitively means \s ⊆ s′". Note that we can always add such

a preorder a posteriori by considering s � s′ i� s C {s′}. This preorder is just

the saturation of the identity which appears implicitly in the convergence axiom on

page 88.

We now explore the meaning of localization in terms of interaction systems.

The goal is to understand this notion to give meaning to the notions of point and

continuous maps.

4: a notion equivalent to interaction system when equality is present



4.3 Localization 95

4.3.1 Localized Interaction Systems

§ Self-Simulations. The �rst step is to add a notion of preorder to the set of states.

This order should be well-behaved w.r.t. to the parent interaction system. The most

natural thing is to ask it to be a re�nement:

. Definition 4.3.1: an interaction system with self-simulation on S is given by

a pair (w,R) where:

� w is an interaction system on S;

� R is a re�nement from w to itself.

We have:

◦ Lemma 4.3.2: if R is a re�nement from w to itself, then so is the

re
exive and transitive closure of R.

proof: this is a consequence of the following facts: the identity is a re�nement, re�ne-

ments compose, and re�nements are closed under arbitrary unions.

�X

Thus, we can always assume that the self simulation is a preorder, and we call it \�".

The meaning of s � s′ is thus \s re�nes s′". We write U↓ for the down-closure of U,

i.e. U↓ , 〈�〉(U).

◦ Lemma 4.3.3: for any interaction system with self-simulation, we have

s Cw U ⇒ {s}↓ Cw U↓ .

proof: direct application of lemma 2.5.21 and the fact that � is a re�nement from w

to w i� � is a simulation from w∗ to w∗.

�X

# Remark 16: for any given interaction system on S, there is a whole range
of possible choices for the self simulation: the simplest one is the empty
relation, or its re
exive transitive closure (the equality relation). Since
re�nements are closed under arbitrary unions, we also know (impredica-
tively) that there is a largest self-re�nement from w to itself. This biggest
re�nement turns out to have a concise description: de�ne

Rw ,
`
Jw(S)× S

´
∪

`
S× Aw(∅)

´
.

Thus, (s1, s2) ε Rw i� the Angel can avoid deadlocks from s1 or the
Demon can deadlock the Angel from s2. It is quite easy to check that
this relation is indeed a re�nement. (Even if it is generally speaking not
a linear simulation.)

§ Localized Self-Simulations. We now add a strong condition on the self-simulations

in order to make the lattice of open sets distributive. We postpone the discussion

about the computational relevance of this notion to section 4.3.2. The de�nition we

use is a slight generalization of the notion of localization found in [27]:
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. Definition 4.3.4: let (w,�) be an interaction system with self-simulation; we

say that (w,�) is localized if the following holds:

s1 � s2 , a2 ε A(s2) ⇒ s1 Cw
⋃

d2εD(s2,a2)

{s2[a2/d2]} ↓ {s1} .

This is more general than the original de�nition appearing on page 94: the preorder �

needs not be a linear simulation, but only a re�nement. Note also that this notion

doesn't need the equality relation since {s}↓ = {s′ | s′ � s}.

◦ Lemma 4.3.5: suppose (w,�) is localized, then we have:

s1 � s2 , a
′
2 ε A

∗(s2) ⇒ s1 Cw
⋃

d′
2
εD∗(s2,a′2)

{s2[a′2/d′2]} ↓ {s1} .

This is reminiscent of lemma 3.3.5, and the proof is almost identical.

proof: let s1 � s2 and a′2 ε A
∗(s2); we proceed by induction on a′2:

K if a′2 = Exit, then the result is trivial: s1 C {s2} ↓ {s1} = {s1}↓.
K if a′2 is of the form Call(a2, k2), by localization, we know that

s1 C
⋃

d2εD(s2,a2)

{s2[a2/d2]} ↓ {s1} . (4-2)

Let s′1 ε
⋃
d2
{s2[a2/d2]} ↓ {s1}. This implies in particular, s′1 � s2[a2/d2] for

some d2 ε D(s2, a2). We can apply the induction hypothesis for s′1 � s2[a2/d2]

and k2(d2) ε A
∗(s2[a2/d2]) to get

s′1 C
⋃

d′
2
εD∗(s2[a2/d2],k2(d2))

{s2[a2/d2][k2(d2)/d′2]} ↓ {s′1} . (4-3)

It is easy to check that⋃
d′

2
εD∗(s2[a2/d2],k2(d2))

{s2[a2/d2][k2(d2)/d′2]} ⊆
⋃

d′
2
εD∗(s2,a′2))

{s2[a′2/d′2]}

and since {s′1}↓ ⊆ {s1}↓, we can conclude that the RHS side of (4-3) is included

in
⋃
d′

2
εD∗(s2,a′2)){s2[a′2/d′2]} ↓ {s1}. By monotonicity, from (4-3), we get

s′1 C
⋃

d′
2
εD∗(s2,a′2))

{s2[a′2/d′2]} ↓ {s1} .

Since this is true for any s1 ε
⋃
d2
{s2[a2/d2]} ↓ {s1}, we �nally get⋃

d2εD(s2,a2)

{s2[a2/d2]} ↓ {s1} C
⋃

d′
2
εD∗(s2,a′2))

{s2[a′2/d′2]} ↓ {s1} .

By transitivity with (4-2), we conclude that

s1 C
⋃

d′
2
εD∗(s2,a′2))

{s2[a′2/d′2]} ↓ {s1} .

�X

This allows to prove the following:
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◦ Lemma 4.3.6: if (w,�) is a localized interaction system, then s Cw U
implies s Cw U ↓ {s}. More generally, if U Cw V then U Cw U ↓ V .

proof: suppose s Cw U, i.e. there is some a′ ε A∗(s) s.t. whenever d′ ε D∗(s, a′), we

have s[a′/d′] ε U . Because � is re
exive, we can apply the preceding lemma and

get s Cw
⋃
d′{s[a′/d′]} ↓ {s}. By monotonicity, we obtain s Cw U ↓ {s}.

The second point follows easily from the �rst one.

�X

§ Convergence and Distributivity. We can now check that convergence is satis�ed for

localized interaction systems. The importance of this will be that convergence implies

in�nite distributivity of the binary ∧ over arbitrary
∨

(lemma 4.3.9).

◦ Lemma 4.3.7: if (w,�) is a localized interaction system, then

s Cw U , s Cw V ⇒ s Cw U ↓ V .

proof: by applying lemma 4.3.6, we know that s Cw U ↓ {s}. By lemma 4.3.3, we also

know that {s}↓ Cw V↓, which implies that U ↓ {s} Cw V↓. By the second point

of lemma 4.3.6 we can conclude that U ↓ {s} Cw (U ↓ {s}) ↓ V↓ = U ↓ V ↓ {s}.
We thus have the following sequence:

s Cw U ↓ {s} Cw U ↓ V ↓ {s} ⊆ U ↓ V
which allows to conclude.

�X

In order to get a distributive lattice of open sets, we need to make sure the preorder is

\compatible" with the covering by adding the �-compat rule (page 94). Equivalently,

. Definition 4.3.8: if (w,�) is an interaction system with self-simulation, we

write Aw� for the following predicate transformer:

U 7→ Aw(U↓) .

It is easy to check that Aw� is a closure operator,5 so that the collection of pre-

�xpoints for Aw� forms a complete sup-lattice, which is denoted by Ow�.

◦ Lemma 4.3.9: if (w,�) is a localized interaction system, then the sup-

lattice Ow� is distributive.

proof: the most important remark is that convergence is equivalent to

Aw�(U) ∩Aw�(V) = Aw�(U ↓ V) .

The actual proof is not di�cult and can be found in [79].

�X

# Remark 17: it is also possible to show that in this case, Ow is a Heyting
algebra in the sense that for any open predicate U, the operation U ∧
has a right adjoint U ⇒ : put U ⇒ V , λs.U(s) → V(s). This is the
same construction as in P(S), so that the only thing to do is show that
this predicate is open. This uses localization.

5: because Aw� = Aw · 〈�〉, with Aw and 〈�〉 both closure operators s.t. 〈�〉 · Aw ⊆ Aw · 〈�〉.
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4.3.2 Computational Interpretation

We already argued in sections 2.6 that the notion of re�nement does have a natural

interpretation as components, i.e. programs providing an interface (given by their

domain) relying on other interfaces (given by the codomain). Localization can be

seen as the following requirement on an interaction system: the Demon should be

able to answer concurrent requests. The situation where several clients (Angels)

want to connect to a single server (Demon) is very common. In such a case, the

server must �nd a way to answer all the clients concurrently, or at least simulate such

a concurrent interaction in a sequential way.

§ Localization. If we spell out the de�nition of localization in details, we get: a

preorder \�" is localized if

s′ � s ⇒
(
∀a ε A(s)

)(
∃a′ ε A∗(s′)

)
(4-4)(

∀d′ ε D∗(s′, a′)
)(

∃d ε D(s, a)
)

(4-5)

s′[a′/d′] � s[a/d] ∧ s′[a′/d′] � s′ .

That \�" is localized is thus a strengthening of \�" being a re�nement. It requires

that if s′ � s, then we can simulate any action from s by a sequence of actions from s′,

and guarantee that the �nal simulating state gets �ner.

In order to understand this from a computational point of view, consider the

following situation: let (w,�) be localized. We allow the Demon to have an internal,

or hidden state, di�erent from the external, or visible state. Think of the internal

state as the \real" state of the system. It is natural to require that the internal state

is �ner than the external state, so that the Demon can carry interaction from the

visible state using the internal state of the system.

Suppose now that the internal state is s′; suppose also that s′ n V , i.e. the

Demon can maintain an invariant from s′. Suppose that the visible state is s, i.e. we

have s′ � s. Interaction between the server and a client in state s can be conducted

in the following way:

� the visible state, as viewed by a client, is s; the server is internally in state s′.

� a client connects to the server and sends a request a ε A(s);

� the Demon (server) needs to answer this request by some d ε D(s, a), but he

needs to carry out internal interaction:

a) he �rst translates the request a ε A(s) into a (general) request a′ ε A∗(s′)

from his internal state according to (4-4);

b) because s′ nw V , the Demon can answer this (general) request by a (general)

response d′ ε D∗(s′, a′);

c) the Demon can now translate back this (general) request into a (single)

request d ε D(s, a) according to (4-5);

� the client receives response d ε D(s, a);

� the internal state of the Demon is now s′[a′/d′] and the visible state is s[a/d],

we have both s′[a′/d′] � s[a/d] (consistency between internal and visible states)

and s′[a′/d′] � s′.



4.3 Localization 99

The last point shows that if the client has more requests, she can ask them (be-

cause s′[a′/d′] � s[a/d]), but it also shows that the Demon can answer another

requests from visible initial state s (because s′[a′/d′] � s′ � s). This means that if

there originally was a second client wanting to connect in state s, the server can now

answer her request. In other words, the Demon can simulate concurrent interaction

in a sequential way.

We can summarize this by a \generalized execution formula":

s1 C U1 . . . sn C Un s � s1, . . . , sn s n V
(∃s′1, . . . , s′n, s′) s′1 ε U1 . . . s

′
n ε Un s′ � s′1, . . . , s

′
2 s′ n V

which can be written in a more concise way as:

A(U1) ↓ . . . ↓A(Un) G J(V)

U1 ↓ . . . ↓Un G J(V)
.

This is a rather direct consequence of the simple execution formula and convergence.

One di�erence between the simple execution formula and the generalized one

is that there is no canonical way to obtain the �nal state for interaction. Di�erent

strategies for interaction may yield di�erent traces of interaction and di�erent �nal

states. For example, the server may start interaction on the left and then proceed

on the right, or vice and versa; he may even interleave pieces of interaction on both

sides. (The same applies to the proof of lemma 4.3.7.)

The computational interpretation is thus that with a localized interaction sys-

tem, a server program can be turned into a \a concurrent virtual server" which can

simulate independent parallel interaction with several clients in a sequential way.

§ Points. Now that localization has been given a computational interpretation, it is

relatively easy to interpret the notion of formal point in terms of interaction.

. Definition 4.3.10: ([79]) if (w,�) is a localized interaction system, a formal

point in (w,�) is given by a subset α : P(S) s.t.

� α is not empty: S G α;

� α is closed: α = Jw(α) (or equivalently, α ⊆ Jw(α));

� α is convergent: if s1 ε α and s2 ε α then s1 ↓ s2 G α.

It is obvious that a subset α is closed i� it is of the form J(V) for some subset V ⊆ S.

As we saw in section 2.6.3, a non-empty closed subset can be seen as a speci�cation

for a server program where the initial state predicate is trivial (always true). We

saw above that in a localized interaction system, such a server program could be

changed into a \virtual concurrent server program", where by concurrent, we means

that the server can answer requests to several clients at the same time, provided the

clients' states are \compatible" with the server's state (see the generalized execution

formula). The additional condition of convergence can be seen as a strengthening of

that: it requires that for any �nite number of initial, independent requests, there is

a compatible server state. It makes it possible to conduct interaction as follows:

0) the server speci�cation is given by S n V ;

1) there are many clients waiting to connect to the server, their speci�cations are

given by s1 C Goal1, . . . , sn C Goaln;
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2) by convergence of the formal point, the server can choose a state s ε s1 ↓ . . . ↓ sn
s.t. s n V ;

3) interaction between the server and clients goes on as described in the previous

section, according to the generalized execution formula;

...) when this is �nished (or even before), new clients may connect to the server, but

they have to respect the server's state: when the server is in state s′, the client

speci�cation needs to be s C Goal with s′ � s.

Thus, a formal point is given by a speci�cation for a server which can respond to any

�nite number of initial requests and then go on forever as any other normal server

program.

§ Continuity. We now at look at the notion of continuous map between formal spaces.

We recall the de�nition that can be found for example in [36], and brie
y give a possi-

ble computational interpretation in terms of interaction. The situation is not entirely

clear, and more work is probably needed before reaching a satisfactory explanation.

. Definition 4.3.11: if (wh,�) and (wl,�) are localized interaction systems, a

re�nement from wh to wl is continuous if it is both:

� convergent: R(s1) ↓ R(s2) Cl R(s1 ↓ s2) for all s1, s2 ε Sh;

� and total: Sl Cl R(Sh).

This is just the de�nition of formal continuous map, with the arrows reversed.

Just like in the concrete interpretation of the condition of convergence for

formal points, a re�nement is convergent if it can re�ne several independent states

concurrently. This means that if a low-level state sl re�nes s1 and s2, it can also re�ne

(modulo low-level interaction) a state �ner than both s1 and s2. Using the generalized

execution formula outlined above, this means that it is possible to simulate s1 and s2
concurrently. This can be extended to any �nite number of concurrent independent

states.

The meaning of totality is subtle. Our current understanding is the following:

it means that from any low-level state, the Angel can always conduct a �nite low-level

interaction to reach \a high level state", or in other words, reach a low-level state

re�ning a high-level state. What is slightly disturbing is that this property will never

be used if we conduct interaction in the natural way, i.e. use the re�nement as a black

box between high-level and low-level (using the generalized execution formula). The

condition requires the re�nement to be strong enough so that in any situation, the

low-level Angel can prevent in�nite low-level interaction. It seems to be related to

some kind of productivity condition.

4.4 A non-Localized Example: Geometric Linear Logic

We now give an example of interaction system which is naturally non-localized. The

point of departure is an elegant topological completeness result for geometric theories.

If we replace the notion of geometric theory by an obvious notion of \linear geometric

theory", we obtain a non localized topological semantics.
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4.4.1 Geometric Logic

To start with, we recall the construction of [15] and [24], associating a localized

interaction system to any geometric theory. It is well-known that we can interpret

intuitionistic logic in any topological space.6 Since being true in this particular model

is equivalent to being provable, the construction of this localized interaction system

can be seen as an elementary proof of completeness with respect to this semantic. We

skip all the details about the general notion of topological model and only show how

to construct the particular interaction system.

§ Geometric Theories. Fix a �rst order language L. As usual, terms are constructed

from variables (x, x1, . . . ), parameters (constants, a, a1, . . . ) and function symbols.

Formulas are built as usual.

. Definition 4.4.1: a geometric formula is a formula of the form(
(∃~x) A11 ∧ · · · ∧A1n1

)
∨ · · · ∨

(
(∃~x) Ak1 ∧ · · · ∧Aknk

)
where all the Aji are atomic formulas.

A geometric theory is a (not necessarily �nite) set of implications between

geometric formulas.

The empty disjunction is written ⊥ and the empty conjunction is written >.

◦ Lemma 4.4.2: for every geometric theory, we can �nd an equivalent

geometric theory (in the sense that intuitionistic provability coincide

for both theories) where all axioms have the form:∧
l

Al →
∨
j

(∃~x)
∧
i

B
j
i

where the Ai's and Bji's are atomic.

proof: we only need to \expand" axioms according to the following:

� F1 ∨ F2 → G gives {F1 → G , F2 → G};
� (∃~x) F → G gives

{
F[~t/~x]→ G | t is a term

}
.

�X

An interesting case of geometric theory is given by any collection of Horn clauses,

where all axioms have the form A1 ∧ · · · ∧An → B and the LHS or the RHS can be

empty.

§ A Generic Topological model for Geometric Theories. To any geometric theory T,

we can associate an interaction system in the following way:

� states are given by �nite sets of closed atomic formulas (called facts);

� if F is such a set, then an action in that state, also called a question, is given by

a closed instance of an axiom of T with all its LHS formulas in F (i.e. an action

is a pair (σ,Ax ), where σ is a closed substitution);

6: More generally in any Heyting algebra.
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� a answer to such an action, also called an answer, is given by a vector ~u of terms,

together with a RHS disjunct (∃~x)
∧
i B
j0
i of Ax (where the length of ~u and ~x

have to match);

� the new state is then F ∪
{
B
j0
i [~u/~x] | i = 1, . . .

}
.

The intuition is straightforward:

� a state is a state of knowledge about the world: it contains the facts the Angel

knows to be true;

� an action is a question the Angel can ask: since (an instance of) the LHS is true,

then the RHS is bound to be true;

� the answer to this question is one (instance of) a RHS disjunct;

� the new state is obtained by adding the new knowledge she got from the answer.

Note that in the case of Horn clauses, the RHS is trivial (singleton); the interaction

system is thus of the form 〈v〉 for a transition system ν.

Consider the arti�cial example where we have (among others) the following

axiom: A∧ B→ (D∧ E)∨ F. From the state {A,B,C}, this is a possible question. It

can result in two di�erent new states:

� {A,B,C,D, E} if the answer is D ∧ E;

� {A,B,C, F} if the answer is F.

We can de�ne a \re�nement" order on states by putting F � G if G ⊆ F.

This means that F is �ner than G, or that F contains more knowledge that G. It is

quite easy to see that this order is localized (de�nition 4.3.4) because the next state

function is antitonic. The lattice OT,⊆ we obtain from the re
exive and transitive

closure of this interaction system gives rise to a formal topology.

This topology is interesting for the following reason:

� Proposition 4.4.3: if T is a geometric theory and if Γ is a �nite

set of atomic formulas, then we have

Γ `T
∨
j

∧
i

(∃~x Bji)

i�

Γ CT,�
⋃

~t closed

{ {
B
j
i[
~t/~x] | i = 1, . . .

}
| j = 1, . . .

}
.

This gives an elementary/predicative proof of completeness for geometric logic in the

following sense: we know that that for any formal topology, Γ `T F implies Γ CT F∗

where F∗ is the interpretation of F. (Soundness of the interpretation.) The interaction

system we have just de�ned shows completeness.

4.4.2 Linear Geometric Logic

The interaction system in the previous system was localized. The intuitive reason

was that states were states of knowledge. In particular, the state could only get �ner

as new knowledge is added to it. One of the guiding intuition about linear logic (refer

to section 5.1 for a more thorough introduction) is that it is a logic of resources rather

than a logic of truth. It is thus natural to look at the previous construction in a linear

setting.
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§ Linear Geometric Theories. Fix a �rst order language language L.

. Definition 4.4.4: a linear geometric formula is a formula of the form:(
(∃~x) A11 ⊗ · · · ⊗A1n1

)
⊕ · · · ⊕

(
(∃~x) Ak1 ⊗ · · · ⊗Aknk

)
where all the Aji's are atomic.

A linear geometric theory is a (non necessarily �nite) set of linear implica-

tions between linear geometric formulas.

We write 0 for the empty disjunction (⊕) and 1 for the empty conjunction (⊗).

Just like above, we have

◦ Lemma 4.4.5: any linear geometric theory is equivalent to a linear

geometric theory in which all the axioms have the form⊗
l

Al (
⊕
j

(∃~xj)
⊗
i

B
j
i .

The proof is similar to that of lemma 4.4.2.

§ Pretopologies and Intuitionistic Phase Spaces. If we want to extend the previous

section to deal with linear logic, we need to �nd a notion corresponding to topological

semantics. This has already been done under two di�erent names: pretopologies ([77])

and intuitionistic phase spaces ([69]). In traditional phase semantics, a formula is

interpreted by a fact, that is, a subset of a monoid equal to its biorthogonal (see [39]).

Since in the intuitionistic world we cannot rely on the biorthogonal, we replace it by

a closure operator satisfying some mild conditions. Since we want to keep some

topological intuition, we will adopt Sambin's terminology.

. Definition 4.4.6: a pretopology is given by

� a commutative monoid (S, ·, 1);
� a closure operator on P(S) satisfying A(U) ·A(V) ⊆ A(U · V).7

An open set in a pretopology is a subset U of S s.t. U = A(U). We write O

for the collection of open set of a pretopology.

Just like in the previous sections, we will write s C U as a synonym for s ε A(U). A

structure for a language L with respect to a pretopology (S, ·, 1,A) is given by:

� a set D

� if f is an n-ary function symbol, a function f∗:Dn → D;

� if A is an n-ary relation symbol, a function A∗:Dn → O.

For a valuation ρ, terms are interpreted by elements of D, and if F is a formula, its

interpretation F∗ρ is de�ned as:

� 1∗ρ , A({1}) and 0∗ρ , A(∅);
� A(t1, . . . , tn)∗ρ , A

∗(t1
∗
ρ, . . . , tn

∗
ρ) for atomic A;

� (F1 ⊗ F2)∗ρ , A(F1
∗
ρ · F2

∗
ρ);

� (F1 ⊕ F2)∗ρ , A(F1
∗
ρ ∪ F2

∗
ρ);

� (F1( F2)
∗
ρ ,

{
s | s · F1∗ρ ⊆ F2

∗
ρ

}
;

� and
(
(∃x)F

)∗
ρ
, A

(⋃
t F

∗
ρ,x=t

)
. (Not part of the original de�nition from [69].)

It is trivial to check that the interpretation of a formula is always an open set.

7: We extend the operation \·" on subsets in the traditional way: U · V = {s1 · s2 | s1εU, s2εV}.
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§ Soundness. Soundness w.r.t. this semantics states that (see [77] or [69]):

F1, . . . , Fn ` G ⇒ F1
∗
ρ · . . . · Fn

∗
ρ ⊆ G∗ρ

for any valuation ρ on any structure on any pretopology.

Since we are dealing with deduction w.r.t. a given theory, we need to modify this

slightly: if T is a theory, a T-structure w.r.t. to a pretopology (S, ·, 1,A) is a structure

for this pretopology satisfying the additional condition 1 C T∗ρ for all axioms T of T

and all valuations ρ. We can easily extend soundness:

F1, . . . , Fn `T G ⇒ F1
∗
ρ · . . . · Fn

∗
ρ ⊆ G∗ρ

for any valuation on any T-structure on any pretopology:

F1, . . . , Fn `T G
⇔ { for some T1, . . . , Tm of �nite multiplicity in T }

T1, . . . , Tm , F1, . . . , Fn ` G
⇒ { soundness }

T1
∗
ρ · . . . · Tm

∗
ρ · F1

∗
ρ · . . . · Fn

∗
ρ ⊆ G∗ρ for any valuation ρ

⇒ { 1 C Ti
∗
ρ, i.e. {1} ⊆ Ti

∗
ρ for all i = 1, . . . , m }

{1} · . . . · {1} · F1∗ρ · . . . · Fn
∗
ρ ⊆ G∗ρ for any valuation ρ

⇔ { 1 is neutral for \·" }
F1

∗
ρ · . . . · Fn

∗
ρ ⊆ G∗ρ for any valuation ρ

§ Completeness. In order to show completeness, one needs to �nd a particular modelM

satisfying \if Γ |= F then Γ ` F". We will construct, in an elementary way, a pre-

topology together with a T-structure satisfying this. One nice feature about this

pretopology is that it makes no direct reference to provability. It only depends on

the set of axioms of the theory!

Suppose T is a linear geometric theory; we construct an interaction system

inspired by the previous section:8

� a state is a �nite multiset9 of closed atomic formulas;

� an action in state Γ is a closed instance of an axiom Ax such that its LHS is

included10 in Γ (i.e. an action is a pair (σ,Ax ) where σ is a closed substitution

for free variables);

� a reaction to such an action is given by a vector ~u of closed terms and a RHS

disjunct (∃~x)
⊗
i B
j0
i of the axiom (the length of ~u and ~x have to match);

� the new state is given by Γ ∪
{
B
j0
i [~u/~x] | i = 1, . . .

}
\

{
Al(~t) | l = 1, . . .

}
.

The di�erence with the previous interaction system is typical of the intuitions of

linear logic (see \Lafont's menu" interpretation of the linear connectives):

� a state is a �nite set of resources the Angel has at her disposal;

� an action is an experiment she can conduct. In order to do so, she must have all

the necessary resources for the experiment (the LHS of the axiom);

8: the case of propositional linear geometric theory is much simpler and contains all the interesting
ideas. The reader is encouraged to forget about quanti�ers...

9: list modulo reindexing, or �nite set with �nite multiplicities

10: where inclusion takes multiplicities into accounts: [1, 1, 2] ⊆ [1, 1, 1, 2, 3] but [1, 1, 2] 6⊆ [1, 2, 3].
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� a reaction is given by a possible outcome of the experiment (a RHS disjunct);

� the new state is given by removing the resources used to conduct the experiment

and adding the results produced by the experiment.

Thus, an axiom of the form

A1 ⊗ · · · ⊗An →
(
B11 ⊗ · · · ⊗ B1n1

)
⊕ · · · ⊕

(
Bk1 ⊗ · · · ⊗ Bknk

)
is read as an experiment which uses resources Al's and produces the Bj0i 's for one

particular j0.

Even if reverse inclusion is a self-simulation, as opposed to the previous case,

it is not localized. It is very easy to �nd a linear geometric theory for which reverse

inclusion does not satisfy lemma 4.3.6. Take for example the theory consisting of

the single axiom A⊗A ( A. Moreover, if we want to model provability (as in

proposition 4.4.3), it doesn't make sense to close sets of states downward since this

amounts to allowing weakening (i.e. to use a�ne logic rather than linear logic).

We have the following easy result:

. Definition 4.4.7: if P is a closed geometric linear formula
⊕
j(∃~x)

⊗
A
j
i, de�ne

the set of states P̃ as

P̃ ,
⋃

~t closed

{ [
B
j
i[
~t/~x]ρ

]
i=1,...

| j = 1, . . .
}

where ρ is a closed valuation for the free variables of P.

◦ Lemma 4.4.8: if P is a closed linear geometric formula and if Γ is a

�nite multiset of closed atomic formulas, then we have

Γ CT P̃ ⇒ Γ `T P

where we write CT for the covering associated to the above interaction

system.

proof: simple induction on the proof that Γ CT P̃.

�X

We now need to show that this interaction system with its covering operator

corresponds to the semantics of a pretopology with a T-structure. The beginning is

easy: de�ne

� S de�ned as above;

� · is the sum of multisets and 1 is the empty multiset [];

� Γ ε A(U) is de�ned as Γ C U.

We have:

◦ Lemma 4.4.9: (S, ·, 1,A) is a pretopology.

proof: the only thing to prove is that A(U) ·A(V) ⊆ A(U · V). This is direct.

�X
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De�ning a structure for this pretopology is also very easy: take the domainD to be the

set of closed terms, and interpret function symbols as themselves. The interpretation

of relation symbols is given by:

A∗(t1, . . . , tn) , A
(
A(t1, . . . , tn)

)
.

This de�nition allows to prove:

◦ Lemma 4.4.10: the semantics from the previous paragraph and the

semantics associated to the above interaction system coincide: for any

atomic formulas A1, . . . , An and closed linear geometric formula F, we

have:

[A1, . . . , An] C F̃ i� [A1, . . . , An] ⊆ F∗

proof: Easy. . .

�X

The last things is to check that this intuitionistic phase space validates the axioms:

◦ Lemma 4.4.11: in the structure over (SL, ·,A) just de�ned, all the

axioms of T are validated.

Where by validated, we mean: F is validated if 1 CT F∗.
proof: we need to show 1 CT F∗. This is true as soon as 1 ε F∗. Since F is an axiom

of T, it is necessarily of the form A1 ⊗ · · · ⊗An(
⊕
j(∃~xj)

⊗
i B
j
i and thus

1 ε F∗i ⇔ 1 ·A∗1 · . . . ·A∗n ⊆
(⊕

j

(∃~xj)
⊗
i

B
j
i

)∗
⇔ A∗1 · . . . ·A∗n ⊆ A

(⋃
j,~t

A
(
(Bj1[

~t/~x])∗ · . . .
))

⇔ A∗1 · . . . ·A∗n ⊆ A

(⋃
j,~t

(Bj1[
~t/~x])∗ · . . .

)
⇔ A∗1 · . . . ·A∗n CT

⋃
j,~t

(Bj1[
~t/~x])∗ · . . .

which is easily seen to be true from the de�nition of CT.

�X

We can now �nish the proof of completeness as follows: if F is a geometric

formula which is true in all pretopological T-structures, then it is in particular true

for the pretopology associated to CT. By lemma 4.4.8 it is thus provable. The result is

in fact slightly more general than that, since it allows the presence of a �nite number

of (closed) atomic formulas as hypothesis.

# Remark 18: since F needs not be closed, we need to �rst replace F by
a closed instance where all free variables have been replaced by fresh
parameters...
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§ Completeness, more. A topos theoretic result (Barr's theorem) implies that higher

order classical reasoning with the axiom of choice coincides with �rst order intuition-

istic reasoning for geometric theories ([12], and [86] for a simpler reading). A similar

result holds for linear geometric theories, namely, higher order classical reasoning

coincides with �rst order intuitionistic reasoning.

� Proposition 4.4.12: if G is a geometric formula and Γ a �nite

multiset of atomic formulas, then we have

Γ `T G ⇒ γ CT G̃

where `T denotes higher order classical deduction.

proof: take a (classical) cut free proof of the sequent Γ `T G, i.e. a cut free-proof of

some !T0, Γ ` G.

Note that since all the formula on the RHS of the sequent are positive, the number

of formula on the RHS of the sequent cannot decrease. (Some RHS formula may

decompose into structurally simpler formula, but they cannot disappear.) In

particular, if the RHS contains 2 atomic formulas, then we cannot close it! This

means that all the sequents in the proof are actually intuitionistic sequents, and

so the proof is intuitionistic.

That this semantics is complete w.r.t. higher order reasoning follows from

cut elimination for higher order linear logic.

�X

§ Going Back to Traditional Geometric Theories. While getting the real exponentials

of linear logic seems di�cult,11 we can still encode weakening and contraction on

arbitrary formulas. This allows to get classical geometric theories from linear ones

via an appropriate encoding.

Here is how we can allow weakening on an occurrence of a formula F: we start

by adding a new relation symbol ωF, whose arity is the same as the arity of F; we

then replace the occurrence of F by ωF and add the following axioms:

ωF ( F

ωF ( 1 .

Adding contraction for F is similar: we add a symbol χF and the axioms

χF ( F

χF ( χF ⊗ χF .

This allows to get back the usual geometric theories in the following way: for each

relation symbol A, add the following axioms:

A ( 1

A ( A⊗A .

11: As expected, problems come from the promotion rule.
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It is quite easy to see that if we translate a classical formula F on L into a linear

formula F̃ on L by replacing ∧, ∨, → and ∃ respectively by ⊗, ⊕, ( and ∃, we have

that

Γ `i,T F i� Γ̃ `
i,eT F̃ .

Where deduction on the left is intuitionistic logic and deduction on the right is intuitionistic linear logic.
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5 Linear Logic and the Relational Model

This second part is concerned with denotational semantics of linear logic. We will

de�ne additional structure on the category Int to extend it to a model for full linear

logic. We start by introducing the syntax of linear logic and the corresponding notion

of denotational model. We then brie
y look at the simple category Rel of sets and

relations.

§ (New) Notation. After several unsuccessful attempts, I decided to give up consis-

tency of notation between the two parts of this thesis. Here is a list of the di�erences

with the previous part:

� we remove the distinction between sets and subsets, and use the symbol \ε" for

membership;

� the notion of \subset" is the classical one;

� sets are usually written with capital letters from the end of the alphabet (X,

Y,. . . and S);

� when dealing with subsets of states, we use small letters from the end of the

alphabet: x ⊆ S,. . .

� relations are denoted by small letters: r ⊆ S1 × S2.

5.1 An Introduction to Linear Logic

Linear logic ([39]) can be seen as a re�nement of traditional logic obtained by restrict-

ing the use of \structural rules" in the sequent calculus. Those structural rules are

implicit in most presentations of the proof calculus: they deal with repetitions and

erasing of formulas.

5.1.1 Intuitionistic Linear Logic

Intuitionistic linear formulas are constructed from the following grammar:

F1, F2 :: = X | ⊥ | 1 | F1 ⊗ F2 | F1( F2

| > | 0 | F1 ⊕ F2 | F1 & F2

| !F1

where X belongs to a set X of propositional variables.
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An intuitionistic sequent is of the form Γ ` F, where Γ is a list of formulas and F a

formula. Since we are only dealing with commutative linear logic, we allow shu�ing

the list transparently. The calculus is given by the following rules:

permutation:

�
Γ , G2 , G1 , ∆ ` F

Γ , G1 , G2 , ∆ ` F
this rule is applied transparently.

Axiom and cut:

� axiom:
X ` X

;

� cut:
Γ ` F1 ∆ , F1 ` F2

Γ , ∆ ` F2
.

Additive connectives:

� constants:
Γ ` >

and
Γ , 0 ` F

;

� \plus":

- right:
Γ ` F1

Γ ` F1 ⊕ F2
and

Γ ` F2

Γ ` F1 ⊕ F2
;

- left:
Γ , G1 ` F Γ , G2 ` F

Γ , G1 ⊕G2 ` F
;

� \with":

- right:
Γ ` F1 Γ ` F2

Γ ` F1 & F2
;

- left:
Γ , G1 ` F

Γ , G1 & G2 ` F
and

Γ , G2 ` F

Γ , G1 & G2 ` F
.

Multiplicative connectives:

� constants:
` 1

,
Γ ` F

Γ , 1 ` F
;

and
Γ `
Γ ` ⊥

,
⊥ `

; (in other words, ⊥ is a notation for an empty RHS)

� \tensor":

- right:
Γ ` F1 ∆ ` F2

Γ , ∆ ` F1 ⊗ F2
;

- left:
Γ , G1 , G2 ` F

Γ , G1 ⊗G2 ` F
;

� \linear arrow":

- right:
Γ , F1 ` F2

Γ ` F1( F2
;

- left:
Γ1 ` G1 Γ2 , G2 ` F

Γ1 , Γ2 , G1( G2 ` F
.

Exponentials:

� weakening:
Γ ` F

Γ , !G ` F
;

� dereliction:
Γ , G ` F

Γ , !G ` F
;
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� contraction:
Γ , !G , !G ` F

Γ , !G ` F
;

� promotion:
!Γ ` F

!Γ ` !F
(where !(G1, . . . , Gn) = !G1, . . . , !Gn).

5.1.2 Classical Linear Logic

One can get to classical logic from intuitionistic logic by adding the principle of double

negation: ¬¬F→ F. Classical linear logic is obtained in the same way by adding the

principle F⊥⊥ ( F. Just like traditional logic, because of the symmetries, there are

many equivalent ways to present the calculus. We choose the following:

� only atoms can be negated; full negation is obtained by de Morgan laws;

� we use single sided sequents.

Besides that, classical linear formulas are not very di�erent from intuitionistic ones:

F1, F2 :: = X | X⊥ | ⊥ | 1 | F1 ⊗ F2 | F1

&

F2

| > | 0 | F1 ⊕ F2 | F1 & F2

| !F1 | ?F1

where X belongs to a set X of propositional variables. Note the presence of negation

on atoms, that the connective \(" is replaced by \

&

" and the presence of a new

unary connective: \? ". A sequent is now of the form ` Γ where Γ is a �nite list of

formulas. We have the following sequent calculus:

Axiom and cut:

� axiom:
` X⊥ , X

;

� cut:
` Γ , F ` F⊥ , ∆

` Γ , ∆
.

Additive connectives:

� constants:
` Γ , >

and (no rule for 0);

� \plus":
` Γ , F1

` Γ , F1 ⊕ F2
and

` Γ , F2

` Γ , F1 ⊕ F2
;

� \with":
` Γ , F1 ` Γ , F2

` Γ , F1 & F2
.

Multiplicative connectives:

� constants:
` 1

and
` Γ
` Γ , ⊥

;

� \tensor":
` Γ , F1 ` ∆ , F2

` Γ , ∆ , F1 ⊗ F2
;

� \par":
` Γ , F1 , F2

` Γ , F1

&

F2
.

Exponentials:

� weakening:
` Γ
` Γ , ?F

;
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� dereliction:
` Γ , F

` Γ , ?F
;

� contraction:
` Γ , ?F , ?F

` Γ , ?F
;

� promotion:
` ?Γ , F

` ?Γ , !F
(where ?(G1, . . . , Gn) = ?G1, . . . , ?Gn).

We de�ne the linear negation F⊥ of a formula by the following de Morgan laws:

� X⊥⊥ , X;

� (F1 ⊕ F2)⊥ , F⊥1 & F⊥2 ;

� (F1 & F2)
⊥ , F⊥1 ⊕ F⊥2 ;

� (F1 ⊗ F2)⊥ , F⊥1

&

F⊥2 ;

� (F1

&

F2)
⊥ , F⊥1 ⊗ F⊥2 ;

� (!F)⊥ , ?(F⊥);

� (?F)⊥ , !(F⊥).

Moreover, the formula F1( F2 is de�ned as F⊥1

&

F2.

This system, like the previous one, enjoys cut elimination: there is a rewriting proce-

dure transforming any proof into a proof of the same sequent which doesn't use the

cut rule.

5.2 Categorical Models of Linear Logic

A naive approach to making a denotational model of classical logic is simply to take

a cartesian closed category (modeling the simply typed λ-calculus, i.e. intuitionistic

logic) and require negation to be involutive: ¬¬F ' F. However, such a category is

trivial: it is given by a partial order, i.e. a boolean algebra (see for example the short

note [75]). Linear logic brings some light on this and shows how to construct subtler,

non-trivial denotational models which can be used (via appropriate encodings) as

denotational models for classical logic. The key idea is to start with a category with

a weaker closure property than cartesian closure to interpret multiplicative linear

logic (MLL) and use a Kleisli construction over the exponentials to obtain a cartesian

closed category.

5.2.1 Multiplicative Additive Linear Logic

Our �rst aim is to get a denotational model for linear logic without exponentials.

Spelled out in details, we want a non trivial category C where:

� formulas are interpreted by objects;

� a proof of F1 ` F2 is interpreted by a morphism from F1 to F2.

§ Multiplicative Connectives. The easiest part of linear logic is \multiplicative intu-

itionistic linear logic": MILL. A model for MILL is simply a symmetric monoidal

closed category (C,⊗,(). By the rule for the tensor on the left, we can replace

sequents G1 , · · · , Gn ` F by sequents G1 ⊗ . . .⊗Gn ` F. With that in mind, all

the interpretation can be done inductively: we just replace the syntactical symbols by

their semantical counterpart. For proofs, we use the canonical morphisms and their

obvious compositions.
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What is worth noticing is that we can use any object C of C to interpret ⊥:

we interpret an empty left-hand side by 1 (the neutral element for ⊗) and an empty

right-hand side by C. Then, everything works \out of the box".

§ Additive Connectives. To be able to interpret the additive connectives, one needs the

additional property that C has �nite products and coproducts. For obvious reasons,

we write the product & (with terminal element >) and the coproduct ⊕ (with

initial element 0). Just like above, everything works: \out of the box".

§ Dualizing Object. Getting a model for classical linear logic is less trivial. The idea

is simple in itself, but has many consequences: we want a special object ⊥ which is

dualizing. Let's recall the de�nition from page 82

a dualizing object in an SMCC (C,⊗,() is an object ⊥ such that, for

every object A, the canonical morphism from A to (A( ⊥)( ⊥ is an

isomorphism.

With such a dualizing object, we can interpret classical multiplicative linear logic

(and additive if we have �nite products and coproducts). We de�ne X⊥ , F ( ⊥
and X

&

Y , X⊥ ( Y; it is easy to see that

&

de�nes a commutative tensor product

which is dual to ⊗:

(X⊗ Y)⊥ = (X⊗ Y)( ⊥
' X( (Y ( ⊥)

'
(
(X( ⊥)( ⊥

)
( (Y ( ⊥)

= X⊥

&

Y⊥ .

Showing all the other isomorphisms in a purely categorical setting is an (un)interesting

exercise in abstract nonsense.

5.2.2 Lafont’s Exponentials

The challenge lies in the interpretation of the exponentials. Before giving the abstract

de�nition, let's look at some of the properties we want for the objects !X.

1) for any morphism f : C(X, Y), there should be a morphism !f in C(!X, !Y) by

promotion / dereliction;

2) for any object X, there should be a morphism in C(!X, !X⊗ !X) by contraction /

axiom;

3) for any object X, there should be a morphism in C(!X, 1) by weakening;

4) for any object X, there should be a morphism in C(!X,X) by dereliction / axiom;

5) for any object X, there should be a morphism in C(!X, !!X) by promotion / axiom.

It is not di�cult to see that those simple rules allows to infer the more general

dereliction, contraction and weakening rules with appropriate compositions.

We generalize those observations to a categorical setting by requiring:

� ! is a functor (point 1);

� any !X is equipped with a ⊗-comonoid structure (points 2 and 3);

� ! is a comonad (points 4 and 5).

In the classical case, we can dualize everything for ? and ask it to be a monad sending

objects to

&

-monoids.
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This only takes into account the purely algebraic properties of ! and ? .

Surprisingly enough, the only real logical property needed to have an exponential

construction coherent with the logic is the following isomorphism (natural in X and Y):

!(X & Y) ' !X⊗ !Y .

This isomorphism will imply among others that the Kleisli category over the !

comonad is cartesian closed. De�ning the exponentials in full generality requires

a lot of bureaucracy: one needs to pay attention to small and subtle details. We refer

to the survey paper [63] and all the references given there.

Lafont's exponentials are obtained by taking !X to be the free ⊗-comonoid asso-

ciated to X. The advantage of this approach is that most of the technical details hold

automatically. The disadvantage is that it might neither be easy nor even possible to

construct this free exponential. More complex axiomatizations for exponentials are

possible. The basic idea is to split the exponential !X into two parts:

1) we send X to an object E(X) in the category CoMon(C,⊗) of ⊗-comonoids on C;

2) we then send E(X) back into C by applying a functor U : CoMon(C,⊗)→ C.

We ask that U and E are adjoint, which implies that U · E is a comonad. Lafont's

exponentials are the special case when U is the forgetful functor from CoMon(C,⊗)

to C.

5.3 The Relational Model

After this crash course on categorical models for linear logic, let's get back to a more

\concrete" situation: we recall the simplest (??) categorical model for linear logic,

the relational model.

The category Rel of sets and relations has already been introduced on page 71.

Recall some trivial results:

� disjoint union gives both product and coproduct, ∅ is both initial and terminal;

� cartesian product is a tensor product, with neutral object {∗};
� the singleton set {∗} is a dualizing object;

� the tensor (cartesian product of sets) is self-adjoint.

Checking those properties is quite direct and we omit the proofs.

5.3.1 Intuitionistic Multiplicative Additive Linear Logic

As the previous remarks showed, the category Rel can be made into a denotational

model of intuitionistic multiplicative additive linear logic. We will not detail the in-

terpretation of intuitionistic proofs, since it can easily be extracted from the following

section (relational interpretation of classical proofs). Let's only mention that a proof π

of a sequent G1 , . . . , Gn ` F is interpreted by a relation between |G1 ⊗ · · · ⊗ Gn|
and |F|, i.e. between |G1| × · · · × |Gn| and |F| (where |F| represent the relation inter-

pretation of the formula F).
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5.3.2 Classical Multiplicative Additive Linear Logic

Since the object {∗} is dualizing in Rel, we can extend the category of sets and

relations to a denotational model for classical MALL. Decide �rst on a valuation ρ

from propositional variables to sets and de�ne the interpretation |F| of a formula F to

be, as expected:

|X| , ρ(X) and |X⊥| , ρ(X)

|>| , ∅ and |0| , ∅
|⊥| , {∗} and |1| , {∗}
|F1 ⊕ F2| , |F1|+ |F2| and |F1 & F2| , |F1|+ |F2|
|F1

&

F2| , |F1| × |F2| and |F1 ⊗ F2| , |F1| × |F2|

This interpretation is a little boring since for any formula F, we have |F| = |F⊥|.
The interpretation of proofs comes directly from the categorical structure

of Rel, but it is interesting to spell it out in details. For any proof π of a se-

quent ` G1 , . . . , Gn (denoted by \π ` G1 , . . . , Gn"), de�ne its interpretation [[π]],

a subset of |G1| × . . .× |Gn|, inductively in the following manner:

� Axiom and cut:

- axiom: if
π ` X⊥ , X

, then [[π]] , Eqρ(X);

- cut: if
π1 ` Γ , F π2 ` F⊥ , ∆

π ` Γ , ∆
,

then [[π]] ,
{
(γ, δ) |

(
∃a ε |F|

)
(γ, a) ε [[π1]] ∧ (a, δ) ε [[π2]]

}
= [[π2]] · [[π1]].

� Additive connectives:

- constants: if
π ` Γ , >

, then [[π]] = ∅;

- \plus": if
π1 ` Γ , F1

π ` Γ , F1 ⊕ F2
, then [[π]] =

{(
γ, inl(a)

)
| (γ, a) ε [[π1]]

}
and similarly for

π2 ` Γ , F2

π ` Γ , F1 ⊕ F2
;

- \with": if
π1 ` Γ , F1 π2 ` Γ , F2

π ` Γ , F1 & F2

then [[π]] ,
{(
γ, inl(a1)

)
| (γ, a1) ε [[π1]]

}
∪

{(
γ, inr(a2)

)
| (γ, a2) ε [[π2]]

}
.

� Multiplicative connectives:

- constants: if
π ` 1

then [[π]] , {∗};

and if
π1 ` Γ
π ` Γ , ⊥

then [[π]] , {(γ, ∗) | γ ε [[π1]]};

- \tensor": if
π1 ` Γ , F1 π2 ` ∆ , F2

π ` Γ , ∆ , F1 ⊗ F2
then [[π]] ,

{(
γ, δ, (a1, a2)

)
| (γ, a1) ε [[π1]] ∧ (δ, a2) ε [[π2]]

}
;
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- \par": if
π1 ` Γ , F1 , F2

π ` Γ , F1

&

F2

then [[π]] ,
{(
γ, (a1, a2)

)
| (γ, a1, a2) ε [[π1]]

}
.

Thus, given a valuation from X to sets, we interpret a proof of ` Γ by a subset of |Γ |.

5.3.3 Exponentials

Interpreting the exponentials in the relational model amounts to looking for the free

×-monoid in Rel. It is not too di�cult to see that this construction is given by �nite

multisets, i.e. �nite tuples modulo reindexing:

. Definition 5.3.1: a �nite family over S is a family (si)iεI where the set I is

�nite. Two �nite families (si)iεI and (tj)jεJ are equivalent up to reindexing

if there is an isomorphism σ from I to J satisfying si = tσi for all i ε I.

A �nite multiset over S is an equivalence class of �nite lists modulo rein-

dexing. We write [si]iεI for the equivalence class containing (si)iεI. The

collection of �nite multisets over S is denoted by Mf(S).

Sum of multisets is de�ned as concatenation (see footnote 11 on page 24) of

the underlying families; it is written +.

The following is rather easy to check:

◦ Lemma 5.3.2:

� Mf( ) is both a monad and a comonad in Rel;

� for every set S, Mf(S) is the free ×-monoid over S;

� for every set S, Mf(S) is the free ×-comonoid over S;

� in Rel, we have the isomorphism (natural in X and Y)

Mf(X+ Y) ' Mf(X)×Mf(Y) .

Interpreting the logical rules is now straightforward, everything is bound by the

categorical structure of Rel, and no improvisation is possible:

� weakening: if
π1 ` Γ
π ` Γ , ?F

then [[π]] , {(γ, []) | γ ε [[π1]]};

� dereliction: if
π1 ` Γ , F

π ` Γ , ?F
then [[π]] , {(γ, [a]) | (γ, a) ε [[π1]]};

� contraction: if
π1 ` Γ , ?F , ?F

π ` Γ , ?F
then

[[π]] , {(γ, µ1 + µ2) | (γ, µ1, µ2) ε [[π1]]};

� promotion: if
π1 ` ?G1 , . . . , ?Gn , F

π ` ?G1 , . . . , ?Gn , !F
then

we de�ne
(
µ1, . . . , µn, [a1, . . . , ak]

)
ε [[π]] i� each µi is of the form µi,1+. . .+µi,k;

and each (µ1,j, . . . , µn,j, aj) ε [[π1]].

The case of intuitionistic linear logic is very similar, except for the fact that sequents

are two-sided.
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5.3.4 Cut Elimination

This model enjoys the additional property that the interpretation of proofs is invariant

under cut-elimination: if π reduces to π′ by cut-elimination, then [[π]] = [[π′]]:

� Proposition 5.3.3: suppose π is a proof of G1 , . . . , Gn ` F,

and suppose π′ is obtained from π by applying one step of the

cut-elimination procedure (see [39]), then [[π]] = [[π′]].

proof: the direct proof is at the same time easy and quite long; but it follows from

the fact that the category Rel is a categorical model for linear logic.

�X





6 A Refinement of the Relational Model

In Rel, the mathematical object interpreting a proof is simply a set (more precisely, a

subset of the interpretation of a formula); this is not very informative. There are two

degeneracies: the fact that interpretation is stable by negation (|F| = |F⊥|) and that

any subset of |F| is a candidate for a proof of F. We are thus as far from completeness

as we can be. There are several models \based" on the relational model which give

extra structure to the sets interpreting formulas and for which the interpretation of

proofs gives subsets satisfying various healthiness properties.

The way to make this intuition precise is to say that a categorical model C is

a re�nement of Rel if there is a faithful \forgetful" functor | | from C to Rel which

commutes with all the linear constructions, i.e.

� |F⊥| = |F|;
� |F1 & F2| = |F1|+ |F2|;
� |F1

&

F2| = |F1| × |F2|;
� |!F| = Mf(|F|).

If we look only at multiplicative additive linear logic (MALL), the very �rst model

of linear logic, coherent spaces can be seen as a re�nement of Rel: formulas are inter-

preted by adding a structure of graph to the relational model. In particular, the linear

negation is interpreted by taking the complement of the graph. This removes the �rst

degeneracy. Then, it is possible to show that the Rel-interpretation of a MALL proof

always gives a clique: a subset of vertices pairwise connected (complete subgraph).

# Remark 19: the exponentials from coherent spaces are not built on Rel:
the web (set of vertices) of !G is not the collection of �nite multisets over
the web of G but the collection of �nite cliques of G. We thus need the
graph structure of G to construct the web of !G. It is possible to de�ne a
\non-uniform" variant of coherent spaces which uses Rel as a basis. This
is what is done in [16], for the model of hypercoherences.

Another re�nement of Rel of interest is given by �niteness spaces ([31]). There, an

object is a set X together with a notion of \�niteness": a collection of subsets of X

which can be considered \�nite". Once again, linear negation is non-trivial and proofs

are interpreted by �nitary subsets.

We now show that Int is (not surprisingly after section 3.4 and 3.5) a categorical

model of linear logic, and that it is a re�nement of Rel.
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6.1 Exponential

We have already seen that Int is symmetric monoidal closed (proposition 3.4.2) and

that it has product and coproduct (lemmas 3.2.6 and 3.2.5). We can thus interpret

intuitionistic multiplicative additive linear logic in the category Int. We now turn our

attention to the exponential.

6.1.1 Multithreading

The connective ! is given, in the relational model, by taking �nite multisets. We

thus need an operation on interaction systems, taking w on S to !w on Mf(S). The

computational interpretation of this operation is linked with the notion of multi-

threading, i.e. the idea of executing several instances of a program in parallel. Since

we are dealing with a synchronous tensor, it is not surprising that we get a notion of

synchronous multithreading.

. Definition 6.1.1: if w = (A,D,n) is an interaction system on S, de�ne the

interaction system !w = (!A, !D, !n) on Mf(S) as follows:

!A(µ) ,
(
Σ(s1, . . . , sn) ε µ

)
A(s1)× · · · ×A(sn)

i.e. an action in state µ = [s1, . . . , sn] (�nite multiset of states) is given by

an ordering (sσ1, . . . , sσn) of µ, together with a parallel action (a1, . . . , an);

!D
(
,
(
(s1, . . .), (a1, . . . , an)

))
, D(s1, a1)× · · · ×D(sn, an)

i.e. a reaction to such an action is given by a parallel reaction for the ai;

!n
(
,
(
(s1, . . .), (a1, . . .)

)
, (d1, . . . , dn)

)
,

[
s1[a1/d1], . . . , sn[an/dn]

]
i.e. the new state is simply the tuple of new states, quotiented by renaming.

The interaction system !w is called \of course w!", and the operation is

called "synchronous multithreading".

This operation can be obtained in two steps by �rst taking  L(w) de�ned on List(S)

as follows:

 L(w).A
(
(s1, . . . , sn)

)
, A(s1)× · · · ×A(sn)

 L(w).D
(
(s1, . . .), (a1, . . . , an)

)
, D(s1, a1)× · · · ×D(sn, an)

 L(w).
(
(s1, . . .), (a1, . . .), (d1, . . . , dn)

)
,

(
s1[a1/d1], . . . , sn[an/dn]

)
and then noticing that this interaction system is compatible with the action of per-

mutations: if σ is a permutation in Sn, then we have:

σ ·  L(w).n
(
(s1, . . . , sn), (a1, . . . , an), (d1, . . . , dn)

)
=

 L(w).n
(
σ · (s1, . . . , sn), σ · (a1, . . . , an), σ · (d1, . . . , dn)

)
.

This allows to see  L(w) as acting on equivalence classes of lists, modulo reindexing.
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It is quite obvious that  L(w) can be seen as a multithreaded version of w.

It is just an arbitrary juxtaposition of several instances of w using the synchronous

product:

 L(w) =
⊕
nεN

wn⊗

where wn⊗ is an abbreviation for w⊗ · · · ⊗w. The actual !w is a little subtler. For

aesthetical reasons, we may write it as:

!w =
⊕
nεN

wn⊗

Sn

which is reminiscent of the Taylor expansion of ew (recall that the order of Sn is n!).

(This is quite informal but carries the appropriate intuition.)

That this operation is functorial is easy:

◦ Lemma 6.1.2: both ! and  L( ) can be extended to endofunctors.

Recall that the action of ! is de�ned on morphisms as:(
[s1, . . . , sn], [s′1, . . . , s

′
n]
)
ε !r i� (∃σεSn) (∀i = 1, . . . , n) (si, s

′
σi) ε r .

Notice also that there is an obvious bisimulation

 L(w)
σ−→←−
p

!w (6-1)

where σ is the \ε" relation between a tuple and its equivalence class and p its converse.

We have σ · p = Id, making this a retract.

6.1.2 Comonoid Structure

Each !w is canonically equipped with a commutative ⊗-comonoid structure:

e ε Int(!w, 1) and m ε Int(!w, !w⊗ !w)

e , {([], ∗)} m ,
{(
µ+ ν, (µ, ν)

)
| µ, ν εMf(S)

}
.

Checking that those relations e and m are indeed simulations is direct. That they

satisfy the appropriate commutative diagrams follows from the fact that they do so

in Rel. With this in mind, it is not too di�cult to show that !w is the free-comonoid

for ⊗:

◦ Lemma 6.1.3: if we view ! as a functor from Int to CoMon(Int,⊗),

then ! is right-adjoint to the forgetful \underlying object" functor

from CoMon(Int,⊗) to Int.

proof: we need to show that there is a natural isomorphism

CoMon(Int,⊗)(wc, !w) ' Int(wc, w) .

Going from left to right is easy:

CoMon(Int,⊗)(wc, !w) → Int(wc, w)

r 7→ {(sc, s) | (sc, [s]) ε r} .

Checking that this operation is well-de�ned (it sends a comonoid morphism to a

simulation) is direct.
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The other direction is more interesting. Letwc be a commutative comonoid.

This means we are given ec ε Int(wc, 1) and mc ε Int(wc, wc ⊗ wc), satisfying

additional commutativity and associativity conditions.

Suppose r is a simulation from wc to w. This is a relation with no condition

about the comonoid structure of wc. We construct a relation from wc to !w in

the following way:

� we start by extending comultiplication mc to mc : Int
(
wc,  L(wc)

)
;

� we then compose that with  L(r) : Int
(
 L(wc),  L(w)

)
;

� and �nally compose that with σ : Int
(
 L(w), !w

)
, see (6-1).

We then check that this simulation respects the comonoid structures of wc and !w.

De�ne mc ⊆ Sc × List(Sc) by the following clauses:(
s, ()

)
ε mc i� s ε ec(

s, s′
)
ε mc i� s = s′(

s, (s1, . . . , sn)
)
ε mc i�

(
s, (s1, s

′)
)
ε mc ∧

(
s′, (s2, . . . , sn)

)
ε mc

for some s′ ε Sc .

Using the fact that ec and mc are simulations, we can easily show (by induction)

that mc is a simulation from wc to  L(wc). We have:(
sc, (sc,1, . . . , sc,n+m)

)
ε m

⇔
(∃s1c, s2c ε Sc)

(
sc, (s

1
c, s

2
c)
)
ε mc ∧

(
s1c, (sc,1, . . . , sc,n)

)
ε mc

∧
(
s2c, (sc,n+1, . . . , sc,n+m)

)
ε mc

(6-2)

by transitivity and(
sc, (sc,1, . . . , sc,i, sc,i+1, . . . , sc,n)

)
ε m

⇔(
sc, (sc,1, . . . , sc,i+1, sc,i, . . . , sc,n)

)
ε m

(6-3)

by commutativity. (Both proofs are done by induction.)

We know that r̃ , σ ·  L(r) ·mc is a simulation from wc to !w. We need

to check that this simulation respects the comonoid structures of wc and !w, i.e.

that both

wc
r̃ - !w wc

c- wc ⊗wc

and

1

e
?e

c -
!w

r̃
?

m
- !w⊗ !w

r̃⊗ r̃
?

are commutative. The �rst diagram is easily shown to be commutative. For the

second one: suppose
(
sc, [s1, . . . , sn], [sn+1, . . . , sn+m]

)
ε m · r̃. This is equivalent

to saying that there are sc,1, . . . , sc,n+m in Sc s.t.

� (sc,i, si) ε r for all i = 1, . . . , n+m

� and
(
sc, (sc,1, . . . , sc,n+m)

)
ε m̃c.

That
(
sc, [s1, . . . , sn], [sn+1, . . . , sn+m]

)
is in r̃⊗r̃·cmeans that there are s1c and s2c

in Sc s.t.
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�
(
sc, (s

1
c, s

2
c)
)
ε mc

� and
(
s1c, [s1, . . . , sn]

)
ε r̃ and

(
s2c, [sn+1, . . . , sn+m]

)
ε r̃,

i.e. there are s1c and s2c in Sc, and sc,1, . . . , sc,n, sc,n+1, . . . , sc,n+m in Sc s.t.

�
(
sc, (s

1
c, s

2
c)
)
ε mc

�
(
s1c, (sc,1, . . . , sc,n)

)
ε mc

�
(
s2c, (sc,n+1, . . . , sc,n+m)

)
ε mc

� and (si, sc,i) ε r for all i = 1, . . . , n+m.

By using (6-2) and (6-3), it is trivial to show that the two conditions are in fact

equivalent. This proves that the second diagram is commutative.

Since this is the same construction as in Rel, we can directly deduce that

the operations just de�ned are inverse of each other.

�X

6.1.3 A Comonad

A direct consequence of lemma 6.1.3 is:

◦ Lemma 6.1.4: the functor \! " is a comonad on Int.

Let's look at the actual structure of this comonad:

� the unit of this comonad ε : ! → is given by:

εw =
{
([s], s) | s ε S

}
which is obtained by taking the image of the identity along the natural bijec-

tion CoMon(Int,⊗)(!w, !w) ∼→ Int(!w,w);

� and the comultiplication δ : ! → !! is given by

δw =

{(∑
iεI

µi, [µi]iεI

)
|
(
∀i ε I

)
µi εMf(S)

}

which is obtained by taking the image of the identity along the natural bijec-

tion Int(!w, !w) ∼→ CoMon(Int,⊗)(!w, !!w), and then along the forgetful func-

tor U : CoMon(Int,⊗)→ Int (whose action on morphism is the identity).

That those operations satisfy the appropriate commutativity properties follows from

the fact that they do so in Rel. That εw is a simulation in Int(!w,w) is obvious, and

that δw is a simulation in Int(!w, !!w) is not di�cult.

Moreover, this operation satis�es the canonical isomorphism of linear logic:

◦ Lemma 6.1.5: for any interaction systems w1 and w2, we have a nat-

ural isomorphism !(w1 & w2) ≈ !w1 ⊗ !w2.

proof: the direct proof that equality is a bisimulation is straightforward.

�X
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6.2 Intuitionistic Linear Logic

6.2.1 Interpretation of Formulas

. Definition 6.2.1: a valuation ρ is a pair of maps (|ρ|, ρ) where |ρ| assigns to

every propositional variable X a set |ρ|(X) and ρ assigns to any propositional

variable X an interaction system ρ(X) on the set |ρ|(X).

Fix, once and for all, a valuation ρ; this allows to de�ne the interpretation of linear

formulas as an interaction system in the following way:

. Definition 6.2.2: let ϕ be a linear formula; we de�ne ϕ∗, the interpretation

of ϕ by induction:

0∗ , (∅, null) and >∗ , (∅, null)

1∗ , ({∗}, skip) and ⊥∗ , ({∗}, skip)
X∗ ,

(
|ρ|(X), ρ(X)

)
(ϕ⊥)∗ , (ϕ∗)⊥

(ϕ1 ⊕ϕ2)∗ , ϕ∗1 ⊕ϕ∗2 and (ϕ1 & ϕ2)
∗ , ϕ∗1 & ϕ∗2

(ϕ1 ⊗ϕ2)∗ , ϕ∗1 ⊗ϕ∗2 and (ϕ1( ϕ2)
∗ , ϕ∗1( ϕ∗2

(!ϕ)∗ , !(ϕ∗) .

We usually denote ϕ∗ by (|ϕ|, ϕ), or even ϕ. The context is enough to

remove possible confusion.

Thus, ϕ∗ is an interaction system on the interpretation of ϕ in the relational model

(with valuation |ρ|).

6.2.2 Interpretation of Proofs

The relational interpretation [[π]] of a proof π of a sequent Γ ` ϕ is a relation be-

tween |Γ | and |ϕ|. What is surprising, is that this relation satis�es more than that:

even though [[π]] doesn't depend on the interaction systems interpreting the atoms,

we have:

� Proposition 6.2.3: if π is an intuitionistic proof of Γ ` ϕ, then

the relational interpretation [[π]] is a simulation from
⊗
Γ∗

to ϕ∗.

proof: it follows from the categorical structure of Int.

�X

Moreover, since the interpretation is \just" the relational one, we also have (see

proposition 5.3.3):

� Proposition 6.2.4: this denotational model is invariant under

cut-elimination.
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6.3 Classical Linear Logic

Since the category Int is ?-autonomous, it is not surprising that proposition 6.2.3

extends to classical linear logic. The computational meaning of the connective

&

is

however slightly subtler than ⊗.

6.3.1 The New Connectives

Classically, the multiplicative connective ( is replaced by the connective

&

. This is

the de Morgan dual of the tensor:

. Definition 6.3.1: if w1 and w2 are interaction systems, de�ne w1

&

w2 as:

w1

&

w2 ,
(
w⊥
1 ⊗w⊥

2

)⊥
.

We call

&

the \par", or the split synchronous tensor.

Before giving some intuition about this new interaction system, let's check that the

connective ( is redundant in a classical setting:

◦ Lemma 6.3.2: for any interaction systems w1 and w2, we have

w1( w2 ' (w1 ⊗w⊥
2 )

⊥ ' w⊥
1

&

w2 .

proof: we'll only show quickly the �rst isomorphism. The second follows from the

de�nition of

&

and involutivity of ⊥.

(w1 ⊗w⊥
2 )

⊥ ≈ (w1 ⊗w⊥
2 )( ⊥

' w1( (w⊥
2 ( ⊥)

≈ w1( (w⊥⊥
2 )

' w1( w2 .

�X

Unfolding naively the de�nition of

&

gives an unreadable interaction system:( (
a1εA1(s1)

)
→ D1(s1, a1)

×
(
a2εA2(s2)

)
→ D2(s2, a2)

)
→ A1(s1)

A
(
(s1, s2)

)
= × ( (

a1εA1(s1)
)
→ D1(s1, a1)

×
(
a2εA2(s2)

)
→ D2(s2, a2)

)
→ A2(s2)

D
(
(s1, s2), (F1, F2)

)
=

(
a1εA1(s1)

)
→ D1(s1, a1)

×
(
a2εA2(s2)

)
→ D2(s2, a2)

and

n
(
(s1, s2), (F1, F2), (f1, f2)

)
=

(
s1
[
F1(f1, f2)/f1 · F1(f1, f2)

]
,

s2
[
F2(f1, f2)/f2 · F2(f1, f2)

])
.

It is however possible to get an intuition about this interaction system: let's take

the point of view of the Demon. As de�nition 2.5.3 and lemma 2.5.4 show, this is
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achieved by looking at the dual interaction system. In our case, since ⊥⊥ ' Id, it

amounts to looking at the interaction system (w1

&

w2)
⊥ ' w⊥

1 ⊗w⊥
2 : we have, in

simpli�ed form

A
(
(s1, s2)

)
= (A1 → D1)× (A2 → D2)

D
(
(s1, s2), (f1, f2)

)
= A1 ×A2

n
(
(s1, s2), (f1, f2), (a1, a2)

)
=

(
s1[a1/f1(a1)] , s2[a2/f2(a2)]

)
i.e. a Demon's strategy in w1

&

w2, or equivalently an Angel move in (w1

&

w2)
⊥ is

given by a pair of strategies: one in w1 and one in w2. If we compare that with the

usual synchronous tensor, seen from the Demon's perspective ((w1 ⊗w2)⊥):

A
(
(s1, s2)

)
= (A1 ×A2 → D1)× (A1 ×A2 → D2)

D
(
(s1, s2), (f1, f2)

)
= A1 ×A2

n
(
(s1, s2), (f1, f2), (a1, a2)

)
=

(
s1[a1/f1(a1, a2)] , s2[a2/f2(a1, a2)]

)
we see that in the latter, the Demon's strategies take as arguments the two actions

in w1 and w2. This means that in a

&

, the Demon needs to make his choice of

reaction in wi independently of the action played by the Angel on wj (with i 6= j),

whereas in a ⊗ his choice of reaction may depend on both actions played by the

Angel.

Both \⊗" and \

&

" are thus operations of synchronous parallel composition.

The di�erence between them is: we put two pairs Angel/Demon in parallel and,

� in a ⊗, the Angels share a single channel of communication; both Demons receive

the actions from the two Angels and can make their choice of reaction accordingly;

� in a

&

, each Angel has her own channel of communication; the Demons must

react on their channel independently of the other channel.

In both cases, states are updated synchronously. Another metaphor is to think that

in a ⊗, there are two non-communicating Angels against a single Demon, while in

the

&

, there is a single Angel against two non-communicating Demons.

It is possible to do exactly the same thing for synchronous multithreading:

. Definition 6.3.3: if w is an interaction system on S, we de�ne ?w to be:

?w =
(
!(w⊥)

)⊥
.

The interaction system ?w is called \why not w?", and the operation is

called \split synchronous multithreading".

If !w is viewed as:

� several Angels send actions on a channel of communication;

� a single Demon responds to all of them;

� all the states are updated;

then ?w can be viewed as:

� a single Angel sends several actions on separate channels;

� on each channel, an independent Demon respond to his action;

� all the states are updated.
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6.3.2 The Model

Since classical logic is symmetric, we can use single sided sequents ` G1 , . . . , Gn.

Just like in the previous section, the interpretation of proofs is the relational one

(section 5.3). We start by interpreting formulas in the most obvious way: see def-

inition 6.2.2, but use the multiplicative connective

&

rather than (. Since all the

canonical isomorphisms do hold in the category Int, the model is not sensitive on the

way formulas are constructed: using two or one sided sequents, having linear nega-

tion as a primitive operation or as a de�ned one, etc. The categorical structure of Int

guarantees that the interpretation is correct in the following sense:

� Proposition 6.3.4: if π is a classical proof of ` G1 , . . . , Gn
then the relational interpretation [[π]] is an invariant property

for G∗1

&

· · ·

&

G∗n: for any valuation we have

[[π]] ⊆
(
G∗1

&

· · ·

&

G∗n
)◦

([[π]]) .

Moreover, this model is invariant under cut elimination.

6.3.3 Adding a Non-Commutative Connective

Non-commutative linear logic is a re�nement of linear logic where we also take into

account the reindexing of formulas in a sequent. We just mention the existence of

a non-commutative, multiplicative self-dual connective, similar to Christian Retor�e's

connective ([71] and [72]).

This connective, written \I", lies somewhere between \⊗" and \

&

":

� in \w1 ⊗w2", both Demons see the two Angels' actions;

� in \w1

&

w2", each Demon sees one Angel's action;

� in \w1 I w2", the Demon from w2 sees both actions, but the Demon from w1
only sees one action.

We take the Demon's point of view and look at actions in (w1⊗w2)⊥ and (w1

&

w2)
⊥,

i.e. at the Demon's strategies in w1 ⊗w2 and w1

&

w2:

⊗⊥ : (A1 ×A2)→ D1 × (A1 ×A2)→ D2

&

⊥ : A1 → D1 × A2 → D2 .

It is thus natural to put:

I⊥: (A1 → D1) × (A1 ×A2)→ D2

i.e. the Demon from w2 can chose his reaction with the knowledge of the Angel's

actions in w1 and w2. On the other hand, the Demon from w1 only sees the action

from the Angel in w1.

. Definition 6.3.5: if w1 and w2 are interfaces, de�ne w1 I⊥ w2 on S1 × S2 as:(
(a1εA1(s1))→ D1(s1, a1)

)
AI⊥

(
(s1, s2)

)
, ×(

a1εA1(s1)
)
→
(
a2εA2(s2)

)
→ D2(s2, a2)
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and

DI⊥

(
(s1, s2), (f1, f2)

)
, A1(s1)×A2(s2)

and

nI⊥

(
(s1, s2), (f1, f2), (a1, a2)

)
,

(
s1[a1/f1(a1)], s2[a2/f2(a1, a2)]

)
.

The interface w1 I w2 is de�ned as (w1 I⊥ w2)
⊥.

We have:

◦ Lemma 6.3.6: the connective I is self-dual:

(w1 I w2)
⊥ ' w⊥

1 I w⊥
2 .

proof: the complete formal proof is not very interesting and involves a lot of shu�ing

of quanti�ers using AC and CtrAC. To show the isomorphism, it su�ces to show

that:

(s1, s2) ε (w1 I w2)
⊥◦(r) ⇔

(
∀a1 ε A1(s1)

)(
∃d1 ε D1(s1, a1)

)(
∀a2 ε A2(s2)

)(
∃d2 ε D2(s2, a2)

)
(s1[a1/d1], s2[a2/d2]) ε r

⇔ (s1, s2) ε (w⊥
1 I w⊥

2 )◦(r)

for all s1 ε S1, s2 ε S2 and r ⊆ S1 × S2.
�X

Note that the predicate transformer (w1 I w2)
◦ is reminiscent of a kind of sequential

composition \w1 followed by w2":

(s1, s2) ε (w1 I w2)
◦(r) ⇔

(
∃a1 ε A1(s1)

)(
∀d1 ε D1(s1, a1)

)(
∃a2 ε A2(s2)

)(
∀d2 ε D2(s2, a2)

)(
s1[a1/d1], s2[a2/d2]

)
ε r .

6.4 Interpreting the Differential Lambda-calculus

We now give the details for interpreting the simply typed λ-calculus. This will also

allow to �nd a natural semantics counterpart to the fact that simulations are closed

under unions by showing that we can also interpret the di�erential λ-calculus of

Thomas Ehrhard and Laurent R�egnier ([32]).

6.4.1 Syntax

We start by giving a short introduction to the simply typed di�erential λ-calculus.

The grammar generating (untyped) terms is given by:

t, u :: = x | (t)u | (λx).t

| 0 | t+ u | D t · u .
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where we use Krivine's convention and write \(t)u" for the application of term t to u.

The de�nition of β reduction is the usual one:

(λx.t)u  β t[u/x]

where t[u/x] is extended in the obvious way:

x[u/x] , u

y[u/x] , y if y 6= x

(t)v [u/x] , (t[u/x])v[u/x]

λx.t [u/x] , λx.t

λy.t [u/x] , λy . t[u/x] if y 6= x

0[u/x] , 0

t1 + t2 [u/x] , t1[u/x] + t2[u/x]

D t · v [u/x] , D t[u/x] · v[u/x] .

Together with this reduction, we also have a notion of di�erential reduction. The

de�nition is driven by the following intuition: the term D t · u represents the term t

where exactly one occurrence of the �rst λ-bound variable has been replaced by u.

Since there may be many occurrences of this �rst variable, we take the sum of all the

possible terms resulting from replacing a single occurrence:

D(λx.t) · u  D λx .

(
∂t

∂x
· u
)

where ∂t/∂x · u represent the linear substitution of x by u in t:

∂x/∂x · u , u

∂y/∂x · u , 0 if y 6= x

∂(t)v/∂x · u , (∂t/∂x · u)v+
(

D t · (∂v/∂x · u)
)
v

∂λx.t/∂x · u , λx.t

∂λy.t/∂x · u , λy.(∂t/∂x · u) if y 6= x

∂0/∂x · u , 0

∂(t1 + t2)/∂x · u , ∂t1/∂x · u + ∂t2/∂x · u
∂(D t · v)/∂x · u , D(∂t/∂x · u) · v + D t · (∂v/∂x · u) .

§ Equations. Di�erential λ-terms are then quotiented by many equations, giving a real

\di�erential" 
avor to the theory. Dealing with those quotient in the syntax itself

can be cumbersome, but since we are dealing with semantics, we do not bother with

the details. The �rst equations deal with linearity conditions. We put:

� 0 = (t)0 = λx.0 = D 0 · t = D t · 0;
� (t1 + t2)u = (t1)u + (t2)u;

� λx.(t1 + t2) = λx.t1 + λx.t2;

� D(t1 + t2) · u = D t1 · u + D t2 · u;

� D t · (u1 + u2) = D t · u1 + D t · u2.
The most important equation is probably the last one:

D(D t · u) · v = D(D t · v) · u .
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§ Typing. We can extend the typing discipline for the λ-calculus to this new context

with the following typing rules:

1)
Γ ` x : τ

if x : τ appears in Γ ;

2)
Γ ` t : τ→ τ′ Γ ` u : τ

Γ ` (t)u : τ′
;

3)
Γ, x : τ ` t : τ′

Γ ` λx.t : τ→ τ′
;

4)
Γ ` 0 : τ

;

5)
Γ ` t1 : τ Γ ` t2 : τ

Γ ` t1 + t2 : τ
;

6)
Γ ` t : τ→ τ′ Γ ` u : τ

Γ ` D t · u : τ→ τ′
.

The only typing rules deserving some comment is rule 6 : if t is of type τ → τ′,

then D t · u is still of type τ → τ′. The reason is simply that there may still be free

occurrences of the �rst abstracted variable in D t · u. This is also consistent with the

di�erential calculus intuition, where we can see Dt as the function(al) giving, for each

point, the best linear approximation of t around it. Informally we have:

Dt : τ→ (τ( τ′)

i.e. for any point x, Dt(x) is a linear function approximating t around x. We can

swap the two arguments and obtain

D̃t : τ( (τ→ τ′) .

Our \D t · u" can be though of as the application D̃t to u.

This calculus enjoys many interesting properties, among which we �nd Church Rosser

and strong normalization. We refer to [32] and [33].

6.4.2 The Model

§ The Simply Typed λ-calculus. We start by recalling the standard way to encode the

simply type λ-calculus into intuitionistic multiplicative exponential linear logic:

� an atomic type ι is interpreted by an atomic linear formula ι∗;

� the type τ→ τ′ is interpreted by !(τ∗)( τ′∗;

� a context x1 : τ1, . . . , xn : τn is interpreted by the context x1 : !τ∗1, . . . , xn : !τ∗n.

The typing rules are translated as follows:

�
Γ ` x : τ

where x : τ appears in Γ , is replaced by an appropriate sequence of

weakening(s), a dereliction and an axiom;

�
Γ ` t : τ→ τ′ Γ ` u : τ

Γ ` (t)u : τ′
is replaced by a modus-ponens followed by

a generalized contraction on the context;
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� λ-abstraction is replaced by an instance of the (-right rule.

To interpret those rules, we start by �xing a valuation ρ going from atomic types to

interaction systems and interpret higher types as:

ι∗ , ρ(ι) if ι is atomic

(τ→ τ′)∗ , !(τ∗)( τ′∗ .

In particular, the sets of states corresponding to types are given by:

|ι| , |ρ(ι)| if ι is atomic

|τ→ τ′| ,
(
Mf|τ|

)
× |τ′| .

For the interpretation of typed terms, we work by induction on the typing inference:

if x1 : τ1, . . . , xn : τn ` t : τ, then [[t]] will be a relation between Mf|τ1| × · · ·×Mf|τn|
and |τ|. Equivalently, [[t]] is a function from Mf|τ1| × · · · × Mf|τn| to P|τ|. We

sometimes write γ = (µ1, . . . , µn) εMf|τ1| × · · · ×Mf|τn| as \x1 = µ1, . . . , xn = µn"

and use γ(x) for the projection on the appropriate coordinate.

� for the axiom
Γ ` x : τ

where x : τ appears in Γ ,

then [[x]]γ ,

{
{s} if γ(x) = [s] and γ(y) = [] whenever y 6= x

∅ otherwise ;

� for an application
Γ ` t : τ→ τ′ Γ ` u : τ

Γ ` (t)u : τ′
,

we put s ε [[(t)u]]γ i� (µ, s) ε [[t]]γ0
for some µ = [s1, . . . , sn] εMf|τ| s.t.

{ si ε [[u]]γi
for all i = 1, . . . , n,

{ and γ = γ0 + γ1 + · · ·+ γn;

� for an abstraction
Γ, x : τ ` t : τ′

Γ ` λx.t : τ→ τ′
,

we put (µ, s) ε [[λx.t]]γ i� s ε [[t]]γ,x=µ.

Two things are worth noticing: �rst we do not use the interaction system structure

of the atoms, but just the sets of states (we are still in the relational model); second,

the de�nition is really by induction on the structure of the term rather than on the

typing inference. That the term is typed is thus mostly irrelevant. Using a colimit

construction, it is possible to construct a re
exive object in the category Int to devise

a model for the untyped λ-calculus in the spirit of Engeler's model.

Since this is the interpretation of the proofs corresponding to the typing judg-

ments, we obtain, as a direct corollary to proposition 6.2.3:

� Proposition 6.4.1: suppose x1 : τ1, . . . , xn : τn ` t : τ is a cor-

rect typing judgment, then, for any valuation ρ for the atomic

types, we have that ε [[t]] is a simulation from !τ∗1⊗· · ·⊗!τ∗n
to τ∗.

In other words, s ε [[t]]γ implies that s (in τ) simulates γ (in !τ∗1 ⊗ · · · ⊗ !τn). The

direct proof can be found in [55].
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# Remark 20: note that since the typed λ-calculus can be translated into
intuitionistic MELL, the proof of this proposition is entirely constructive.
However, this result is not as such predicative: the exponential is not
a predicative operation since it uses equivalence classes. One way to
get a predicative version of this result would be to enrich the notion
of interaction system with a notion of internal equality on states. This
would be a notion of \interaction system on setoids".

Moreover, this interpretation is invariant under β-reduction:

� Proposition 6.4.2: the interpretation of λ-terms is invariant un-

der β-reduction:

[[(λx.t)u]]γ = [[t[u/x]]]γ .

proof: Direct consequence of the fact that Int is a categorical model of linear logic.

(So that the Kleisli category of ! is cartesian closed).

�X

§ The Di�erential λ-calculus. Since we know (proposition 2.4.4) that a union of simula-

tions is still a simulation, it is tempting to try to interpret the di�erential λ-calculus

which comes with a notion of sum of terms. Everything does works without any

problem. We extend the interpretation of terms in the following way:

� for
Γ ` 0 : τ

, we put [[0]]γ , ∅;

� for
Γ ` t1 : τ Γ ` t2 : τ

Γ ` t1 + t2 : τ
, we use [[t1 + t2]]γ , [[t1]]γ ∪ [[t2]]γ;

� for di�erentiation
Γ ` t : τ→ τ′ Γ ` u : τ

Γ ` D t · u : τ→ τ′
,

we use (µ, s′) ε [[D t·u]]γ i� (µ+[s], s′) ε [[t]]γ1
for some s ε [[u]]γ2

s.t. γ = γ1+γ2.

The �rst thing to check is that the interpretation is well-behaved as far as the equa-

tions are concerned:

◦ Lemma 6.4.3: we have:

� [[(0)t]]γ = [[λx.0]]γ = [[D 0 · t]]γ = [[D t · 0]]γ = [[0]]γ = ∅;
� [[(t1 + t2)u]]γ = [[(t1)u+ (t2)u]]γ = [[(t1)u]]γ ∪ [[(t2)u]]γ;

� [[λx.(t1 + t2)]]γ = [[(λx.t1) + (λx.t2)]]γ = [[λx.t1]]γ ∪ [[λx.t2]]γ;

� [[D(t1+ t2) ·u]]γ = [[D t1 ·u+D t2 ·u]]γ = [[D t1 ·u]]γ∪ [[D t2 ·u]]γ;

� [[D t ·(u1+u2)]]γ = [[D t ·u1+D t ·u2]]γ = [[D t ·u1]]γ∪ [[D t ·u2]]γ;

� [[D(D t · u) · v]]γ = [[D(D t · v) · u]]γ.

proof: the part about 0 is quite direct. For the rest: (in order to be less verbose, we

omit the \for some µ" appearing in the interpretation of an application)

K [[(t1 + t2)u]]γ = [[(t1)u+ (t2)u]]γ:

s ε [[(t1 + t2)u]]γ
⇔

(µ, s) ε [[t1 + t2]]γ0
and every µi ε [[u]]γi

with γ = γ0 + γ1 + · · ·
⇔

(µ, s) ε [[t1]]γ0
or (µ, s) ε [[t2]]γ0

and every µi ε [[u]]γi
with γ = γ0 + γ1 + · · ·
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⇔
s ε [[(t1)u]]γ or s ε [[(t2)u]]γ
⇔

s ε [[(t1)u+ (t2)u]]γ

K [[λx.(t1 + t2)]]γ = [[(λx.t1) + (λx.t2)]]γ:

(µ, s) ε [[λx.(t1 + t2)]]γ
⇔

s ε [[t1 + t2]]γ,x=µ

⇔
s ε [[t1]]γ,x=µ or s ε [[t2]]γ,x=µ

⇔
(µ, s) ε [[λx.t1]]γ or (µ, s) ε [[λx.t2]]γ
⇔

(µ, s) ε [[(λx.t2) + (λx.t2)]]γ

K [[D(t1 + t2) · u]]γ = [[D t1 · u+ D t2 · u]]γ:

(µ, s) ε [[D(t1 + t2) · u]]γ
⇔

(µ+ [s′], s) ε [[t1 + t2]]γ1
and s′ ε [[u]]γ2

with γ = γ1 + γ2
⇔

(µ+ [s′], s) ε [[t1]]γ1
or (µ+ [s′], s) ε [[t2]]γ1

and s′ ε [[u]]γ2
with γ = γ1 + γ2

⇔
(µ, s) ε [[D t1 · u]]γ or (µ, s) ε [[D t2 · u]]γ
⇔

(µ, s) ε [[D t1 · u+ D t2 · u]]γ

K [[D t · (u1 + u2)]]γ = [[D t · u1 + D t · u2]]γ:

(µ, s) ε [[D t · (u1 + u2)]]γ
⇔

(µ+ [s′], s) ε [[t]]γ1
for some s′ ε [[u1 + u2]]γ2

with γ = γ1 + γ2
⇔

(µ+ [s′], s) ε [[t]]γ1
for some s′ ε [[u1]]γ2

or s′ ε [[u2]]γ2
with γ = γ1 + γ2

⇔
(µ, s) ε [[D t · u1]]γ or (µ, s) ε [[D t · u2]]γ
⇔

(µ, s) ε [[D t · u1 + D t · u2]]γ

K [[D(D t · u) · v]]γ = [[D(D t · v) · u]]γ:

by de�nition, we have (µ, s′) ε [[D(D t · u) · v]]γ i�

there is s1 ε [[v]]γ1
and s2 ε [[u]]γ2

s.t. (µ+ [s1] + [s2], s
′) ε [[t]]γ0

with γ = γ0 + γ1 + γ2
By commutativity of \+", this is equivalent to (µ, s′) ε [[D(D t · v) · u]]γ.

�X

Now that we know the interpretation to be correct, it is quite easy to extend

proposition 6.4.1:
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� Proposition 6.4.4: suppose x1 : τ1, . . . , xn : τn ` t : τ is a

correct typing judgment in the di�erential λ-calculus. For any

valuation ρ for the atomic types, we have that ε [[t]] is a

simulation from !τ∗1 ⊗ · · · ⊗ !τ∗n to τ∗.

proof: since we already know that a union of simulations is a simulation and that

the empty set is always a simulation, we only need to check that [[D t · u]] is a

simulation whenever [[t]] and [[u]] are.

Suppose we have (µ, s′) ε [[D t · u]]γ, i.e. (µ + [s], s′) ε [[t]]γ1
for some s ε [[u]]γ2

,

with γ = γ1 + γ2. We need to show that (µ, s′) (in τ → τ′) simulates γ (in !Γ).

Since γ = γ1+γ2, it is enough to show that we can simulate (γ1, γ2) (in !Γ ⊗ !Γ).

By proposition 3.4.2, this is equivalent to showing that state s′ (in τ′) simulates

state (γ1, γ2, µ) (in !Γ ⊗ !Γ ⊗ !τ).

Let aγ1
ε !AΓ (γ1), aγ2

ε !AΓ (γ2) and aµ ε !Aτ(µ). We need to �nd an action

in Aτ′(s
′) to simulate (aγ1

, aγ2
, aµ):

1) by induction hypothesis, we know that s (in τ) simulates γ2 (in !Γ), so that

we can �nd an action a ε Aτ(s) simulating aγ2
;

2) by induction, we know that s′ (in τ′) simulates (γ1, µ + [s]) (in !Γ ⊗ !τ), so

that we can �nd an action a′ ε Aτ′(s
′) simulating

(
aγ1

, (aµ, a)
)
.

Since a simulates aγ2
, by composition, a′ simulates

(
aγ1

, (aµ, aγ2
)
)
. By

associativity and commutativity, it thus simulates (aγ1
, aγ2

, aµ).

To translate back a reaction d′ to a′ into a reaction (dγ1
, dγ2

, dµ), we proceed

similarly:

2) by induction, we can translate d′ into a reaction (dγ1
, dµ, d) to

(
aγ1

, (aµ, a)
)
;

1) by induction, we can also translate the reaction d (in Dτ(s, a)) into a reac-

tion dγ2
(in !DΓ (s, aγ2

)).

We thus obtain reactions dγ1
, dγ2

and dµ as desired. That the resulting next

states are still related is obvious.

�X

As before, this interpretation is invariant under reduction:

� Proposition 6.4.5: the interpretation of a di�erential λ-terms is

invariant under β-reduction and di�erential reduction:

[[(λx.t)u]]γ = [[t[u/x]]]γ

[[D(λx.t) · u]]γ = [[λx.(∂t/∂x) · u]]γ .

proof: this ought to be a consequence of the notion of categorical model for the dif-

ferential λ calculus. Since we haven't developped such a notion in full generality,

we check directly the result: see section 6.4.3.1

�X

1: Some work about a general notion of \di�erential" category has been done by Martin Hyland.
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6.4.3 Invariance under Reduction

Here is, for posterity, the complete direct proof that the relational model for the

di�erential λ-calculus is invariant under cut-elimination. This is the perfect example

of \folkloric" proof: it is at the same time long, boring, easy, error prone, and true!

In order to simplify, we use λ-terms satisfying the Barendregt condition: no

free variable is also bound in a term. By convention, if µ is a multiset, µi denotes an

element of µ while µi denotes a \sub-multiset" of µ.

◦ Lemma 6.4.6:

� if x is not free in t, then γ(x) 6= [] implies [[t]]γ = ∅;
� if x is not free in t, then [[t]]γ = [[t]]γ,x=[].

proof: simple induction.

�X

proof: (of proposition 6.4.5) just like in the proof of lemma 6.4.3, we omit the \for

some µ" appearing in the interpretation of an application.

first part: [[(λx.t)u]]γ = [[t[u/x]]]γ
Notice �rst the following equality:

s ε [[(λx.t)u]]γ
⇔

(µ, s) ε [[λx.t]]γ0 and every µi ε [[u]]γi with γ = γ0 + γ1 + · · ·
⇔

s ε [[t]]γ0,x=µ and every µi ε [[u]]γi with γ = γ0 + γ1 + · · ·

K variable: if t = x, then we need to show [[(λx.x)u]]γ = [[u]]γ.

s ε [[(λx.x)u]]γ
⇔

s ε [[x]]γ0,x=µ and every µi ε [[u]]γi with γ = γ0 + γ1 + · · ·
⇔

γ0 = ([], . . . , []) and µ = [s] and µ1 = s ε [[u]]γ1 and γ = [] + γ1

⇔
s ε [[u]]γ

K variable (bis): if t = y, then we need to show [[(λx.y)u]]γ = [[y]]γ.

s ε [[(λx.y)u]]γ
⇔

s ε [[y]]γ0,x=µ and every µi ε [[u]]γi with γ = γ0 + γ1 + · · ·
⇔

γ is \(y = [s])" and µ = [] and s ε [[y]]γ,x=[]

⇔
s ε [[y]]γ

K abstraction: if t = λy.t, then we need to show [[(λxy.t)u]]γ = [[λy.t[u/x]]]γ.

By induction, we know that [[t[u/x]]] = [[(λx.t)u]],

we thus need to show [[(λxy.t)u]]γ = [[λy.(λx.t)u]]γ.
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(ν, s) ε [[(λxy.t)u]]γ
⇔

(ν, s) ε [[λy.t]]γ0,x=µ and every µi ε [[u]]γi with γ = γ0 + · · ·
⇔

s ε [[t]]γ0,x=µ,y=ν and every µi ε [[u]]γi with γ = γ0 + · · ·

Similarly:

(ν, s) ε [[λy.(λx.t)u]]γ
⇔

s ε [[(λx.t)u]]γ,y=ν

⇔
(µ, s) ε [[(λx.t)]]γ0,y=ν0 and every µi ε [[u]]γi,y=νi

with γ = γ0 + · · · and ν = ν0 + · · ·.
⇔

s ε [[t]]γ0,y=ν0,x=µ and every µi ε [[u]]γi,y=νi

with γ = γ0 + · · · and ν = ν0 + · · ·. (6-4)

If ν = [], equality holds.

If not, since y is not free in u (by Barendregt condition), by lemma 6.4.6, we have

νi = [] for every i > 0 (since µi ε [[u]]γi,y=νi
). (6-4) simpli�es into:

s ε [[t]]γ0,y=ν0,x=µ and every µi ε [[u]]γi,y=[] with γ = γ0 + · · ·.
We thus have equality.

K application: if t = (t1)t2, we need to show [[(λx.(t1)t2)u]]γ = [[(t1[u/x])t2[u/x]]]γ.

By induction, we know that [[t1[u/x]]] = [[(λx.t1)u]],

we thus need to show [[(λx.(t1)t2)u]]γ = [[(λx.t1)u((λx.t2)u)]]γ.

s ε [[(λx.(t1)t2)u]]γ
⇔

s ε [[(t1)t2]]γ0,x=µ and every µi ε [[u]]µi
with γ = γ0 + · · ·

⇔
(ν, s) ε [[t1]]γ0,0,x=µ0 and every νj ε [[t2]]γ0,j,x=µj and every µi ε [[u]]γi

with γ = γ0 + · · · and γ0 = γ0,0 + γ0,1 + · · · and µ = µ0 + · · ·

Similarly:

s ε [[(λx.t1)u((λx.t2)u)]]γ
⇔

(ν, s) ε [[(λx.t1)u]]γ0 and every νj ε [[(λx.t2)u]]γj with γ = γ0 + · · ·
⇔

(ν, s) ε [[(λx.t1)u]]γ0 and every νj ε [[t2]]γj,0,x=µj and every µji ε [[u]]γj,i

with γ = γ0 + · · · and every γj = γj,0 + · · ·
⇔

(ν, s) ε [[t1]]γ0,0,x=ρ and every ρk ε [[u]]γ0,k and every νj ε [[t2]]γj,0,x=µj

and every µji ε [[u]]γj,i

with γ = γ0 + · · · and γ0 = γ0,0 + · · · and every γj = γj,0 + · · ·

In the last line, if one replaces ρ by the µ0, it is easy to see that we have equality.

(The only di�erence is that in the �rst case, the elements of µ are indexed by i,

while in the second case, they are indexed by i, j.)
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K zero: if t = 0, then we need to show that [[(λx.0)u]]γ = [[0[u/x]]]γ = [[0]]γ.

This holds trivially by lemma 6.4.3.

K If t = t1 + t2 then we need to show that [[(λx.t1 + t2)u]]γ = [[t1[u/x] + t2[u/x]]]γ.

By induction, we know that [[ti[u/x]]] = [[(λx.ti)u]],

we thus need to show [[(λx.t1r+ t2)u]]γ = [[(λx.t1)u+ (λx.t2)u]]γ.

This holds by lemma 6.4.3.

K di�erentiation: if t = D t1 · t2,
then we need to show that [[(λx.D t1 · t2)u]]γ = [[(D t1 · t2)[u/x]]]γ,

i.e. that [[(λx.D t1 · t2)u]]γ = [[D t1[u/x] · t2[u/x]]]γ.

By induction, it is enough to prove [[(λx.D t1 · t2)u]]γ = [[D(λx.t1)u · (λx.t2)u]]γ.

(ν, s) ε [[(λx.D t1 · t2)u]]γ
⇔

(ν, s) ε [[D t1 · t2]]γ0,x=µ and every µi ε [[u]]γi with γ = γ0 + · · ·
⇔

(ν+ [s′], s) ε [[t1]]γ0,1,x=µ1 and s′ ε [[t2]]γ0,2,x=µ2

and every µi ε [[u]]γi with γ = γ0,1 + γ0,2 + γ1 + · · ·

Similarly:

(ν, s) ε [[D(λx.t1)u · (λx.t2)u]]γ
⇔

(ν+ [s′], s) ε [[(λx.t2)u]]γ1 with s′ ε [[(λx.t2)u]]γ2 and γ = γ1 + γ2

⇔
(ν+ [s′], s) ε [[t1]]γ1,0,x=µ1 and every µ1i ε [[u]]γ1,i

and s′ ε [[t2]]γ2,0,x=µ2 and every µ2j ε [[u]]γ2,j

with γ = γ1,0 + · · ·+ γ2,0 + · · ·
It is easy to see that we have indeed equality.

second part: [[D(λx.t) · u]]γ = [[λx.(∂t/∂x) · u]]γ.

First notice the following equality:

(µ, s) ε [[D(λx.t) · u]]γ
⇔

(µ+ [s′], s) ε [[λx.t]]γ1 for some s′ ε [[u]]γ2 with γ = γ1 + γ2

⇔
s ε [[t]]γ1,x=µ+[s′] and s′ ε [[u]]γ2 with γ = γ1 + γ2

K variable: if t = x, then we need to show [[D(λx.x) · u]]γ = [[λx.(∂x/∂x) · u]]γ,

i.e. that [[D(λx.x) · u]]γ = [[λx.u]]γ.

(µ, s) ε [[D(λx.x) · u]]γ
⇔

s ε [[x]]γ1,x=µ+[s′] and s′ ε [[u]]γ2 with γ = γ1 + γ2

⇔
γ1 = [] and µ = [] and s′ = s and s ε [[u]]γ2 with γ = γ1 + γ2

⇔
s ε [[u]]γ
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On the other hand:

(µ, s) ε [[λx.u]]γ
⇔

s ε [[u]]γ,x=µ

⇔ { since x is not free in u (by Barendregt condition) }
s ε [[u]]γ

K variable (bis): if t = y, then we need to show [[D(λx.y) · u]]γ = [[λx.(∂y/∂x) · u]]γ,

i.e. that [[D(λx.y) · u]]γ = [[0]]γ.

(ν, s) ε [[D(λx.y) · u]]γ
⇔

s ε [[y]]γ1,x=ν+[s′] and . . .

By lemma 6.4.6, this is impossible (because x is not free in y).

We thus have that [[D(λx.y) · u]]γ = ∅ = [[0]]γ.

K If t = t1 + t2, we need to show [[D(λx.t1 + t2) · u]]γ = [[λx.(∂t1 + t2/∂x) · u]]γ,

i.e. that [[D(λx.t1 + t2) · u]]γ = [[λx.(∂t1/∂x) · u+ (∂t2/∂x) · u]]γ.

By induction, we know that [[λx.(∂ti/∂x) · u]] = [[D(λx.ti) · u]].

Thus, we need to show [[D(λx.t1 + t2) · u]]γ = [[D(λx.t1) · u+ D(λx.t2) · u]]γ.

This follows from lemma 6.4.3.

K If t = 0, this is trivial.

K abstraction: if t is of the form λy.t,

we need to show that [[D(λxy.t) · u]]γ = [[λx.(∂λy.t)/(∂x) · u]]γ,

i.e. that [[D(λxy.t) · u]]γ = [[λxy.(∂t/∂x) · u]]γ.

(ν, µ, s) ε [[D(λxy.t) · u]]γ
⇔

(µ, s) ε [[λy.t]]γ1,x=ν+[s′] and s′ ε [[u]]γ2 with γ = γ1 + γ2

⇔
s ε [[t]]γ1,x=ν+[s′],y=µ and s′ ε [[u]]γ2 with γ = γ1 + γ2

Similarly:

(ν, µ, s) ε [[λxy.(∂t/∂x) · u]]γ
⇔

s ε [[(∂t/∂x) · u]]γ,x=ν,y=µ

⇔
(ν, s) ε [[λx.(∂t/∂x) · u]]γ,y=µ

⇔ { by induction }
(ν, s) ε [[D(λx.t) · u]]γ,y=µ

⇔
(ν+[s′], s) ε [[λx.t]]γ1,y=µ1 and s′ ε [[u]]γ2,y=µ2 with γ = γ1+γ2 and µ = µ1+µ2

⇔ { since y is not free in u (Barendregt's convention), µ2 = [] }
(ν+ [s′], s) ε [[λx.t]]γ1,y=µ and s′ ε [[u]]γ2,y=[] with γ = γ1 + γ2

⇔
s ε [[t]]γ1,y=µ,x=ν+[s′] and s′ ε [[u]]γ2 with γ = γ1 + γ2

so that we have equality.
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K di�erentiation: if t = D t1 · t2,
we need to show [[D(λx.D t1 · t2) · u]]γ = [[λx.(∂D t1 · t2/∂x) · u]],

i.e. [[D(λx.D t1 · t2) · u]]γ = [[λx.D((∂t1/∂x) · u) · t2]]γ ∪ [[λx.D t1 · (∂t2/∂x) · u]]γ
(ν, µ, s) ε [[D(λx.D t1 · t2) · u]]γ
⇔

(µ, s) ε [[D t1 · t2]]γ1,x=ν+[s′] and s′ ε [[u]]γ2 with γ = γ1 + γ2

⇔
(µ+ [s′′], s) ε [[t1]]γ1,1,x=ν1 and s′′ ε [[t2]]γ1,2,x=ν2 and s′ ε [[u]]γ2

with γ = γ1,1 + γ1,2 + γ2 and ν+ [s′] = ν1 + ν2 (6-5)

On the other hand:

(ν, µ, s) ε [[λx.D((∂t1/∂x) · u) · t2]]γ
⇔

(µ, s) ε [[D((∂t1/∂x) · u) · t2]]γ,x=ν

⇔
(µ+ [s′′], s) ε [[(∂t1/∂x) · u]]γ1,x=ν1 and s′′ ε [[t2]]γ2,x=ν2

with γ = γ1 + γ2 and ν = ν1 + ν2

⇔
(ν1, µ+ [s′′], s) ε [[λx.(∂t1/∂x) · u]]γ1 and s′′ ε [[t2]]γ2,x=ν2

with γ = γ1 + γ2 and ν = ν1 + ν2

⇔ { by induction }
(ν1, µ+ [s′′], s) ε [[D λx.t1 · u]]γ1 and s′′ ε [[t2]]γ2,x=ν2

with γ = γ1 + γ2 and ν = ν1 + ν2

⇔
(µ+ [s′′], s) ε [[t1]]γ1,1,x=ν1+[s′] and s′ ε [[u]]γ1,2 and s′′ ε [[t2]]γ2,x=ν2

with γ = γ1,1 + γ1,2 + γ2 and ν = ν1 + ν2 (6-6)

and

(ν, µ, s) ε [[λx.D t1 · (∂t2/∂x) · u]]γ
⇔

(µ, s) ε [[D t1 · (∂t2/∂x) · u]]γ,x=ν

⇔
(µ+ [s′′], s) ε [[t1]]γ1,x=ν1 and s′′ ε [[(∂t2/∂x) · u]]γ2,x=ν2

with γ = γ1 + γ2 and ν = ν1 + ν2

⇔
(µ+ [s′′], s) ε [[t1]]γ1,x=ν1 and (ν2, s′′) ε [[λx.(∂t2/∂x) · u]]γ2

with γ = γ1 + γ2 and ν = ν1 + ν2

⇔ { by induction }
(µ+ [s′′], s) ε [[t1]]γ1,x=ν1 and (ν2, s′′) ε [[D λx.t2 · u]]γ2

with γ = γ1 + γ2 and ν = ν1 + ν2

⇔
(µ+ [s′′], s) ε [[t1]]γ1,x=ν1 and s′′ ε [[t2]]γ2,1,x=ν2+[s′] and s′ ε [[u]]γ2,2

with γ = γ1 + γ2,1 + γ2,2 and ν = ν1 + ν2 (6-7)

It is easy to see that (6-6) implies (6-5) and that (6-7) implies (6-5).

To see that (6-5) implies (6-6) or (6-7), note that s′ is either in ν1 or in ν2. In

the �rst case, we get (6-6) and in the second case, we get (6-7).

This concludes the case of di�erentiation.
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K application: if t = (t1)t2,

we need to show [[D(λx.(t1)t2) · u]]γ = [[λx.(∂(t1)t2/∂x) · u]],

i.e. [[D(λx.(t1)t2) · u]]γ = [[λx . ((∂t1/∂x) · u)t2 + (D t1 · (∂t2/∂x) · u)t2]]γ,

i.e. [[D(λx.(t1)t2) · u]]γ = [[λx.((∂t1/∂x) · u)t2]]γ ∪ [[λx.(D t1 · (∂t2/∂x) · u)t2]]γ.

(ν, s) ε [[D(λx.(t1)t2) · u]]γ
⇔

s ε [[(t1)t2]]γ1,x=ν+[s′] and s′ ε [[u]]γ2 with γ = γ1 + γ2

⇔
(µ, s) ε [[t1]]γ1,0,x=ν0 and every µi ε [[t2]]γ1,i,x=νi and s′ ε [[u]]γ2

with γ = γ1,0 + · · ·+ γ1,i + γ2 and ν+ [s′] = ν0 + · · · (6-8)

On the other hand:

(ν, s) ε [[λx.((∂t1/∂x) · u)t2]]γ
⇔

(µ, s) ε [[(∂t1/∂x) · u]]γ0,x=ν0 and every µi ε [[t2]]γi,x=νi

with γ = γ0 + · · · and ν = ν0 + · · ·
⇔

(ν0, µ, s) ε [[λx.(∂t1/∂x) · u]]γ0 and every µi ε [[t2]]γi,x=νi

with γ = γ0 + · · · and ν = ν0 + · · ·
⇔ (by induction)

(ν0, µ, s) ε [[D λx.t1 · u]]γ0 and every µi ε [[t2]]γi,x=νi

with γ = γ0 + · · · and ν = ν0 + · · ·
⇔

(ν0 + [s′], µ, s) ε [[λx.t1]]γ0,1 and s′ ε [[u]]γ0,2 and every µi ε [[t2]]γi,x=νi

with γ = γ0,1 + γ0,2 + · · · and ν = ν0 + · · ·
⇔

(µ, s) ε [[t1]]γ0,1,x=ν0+[s′] and s′ ε [[u]]γ0,2 and every µi ε [[t2]]γi,x=νi

with γ = γ0,1 + γ0,2 + · · · and ν = ν0 + · · · (6-9)

and

(ν, s) ε [[λx.(D t1 · (∂t2/∂x) · u)t2]]γ
⇔

s ε [[(D t1 · (∂t2/∂x) · u)t2]]γ,x=ν

⇔
(µ, s) ε [[D t1 · (∂t2/∂x) · u]]γ0,x=ν0 and every µi ε [[t2]]γi,x=νi

with γ = γ0 + · · · and ν = ν0 + · · ·
⇔

(µ+ [s′′], s) ε [[t1]]γ0,1,x=ν0,1 and s′′ ε [[(∂t2/∂x) · u]]γ0,2,x=ν0,2

and every µi ε [[t2]]γi,x=νi

with γ = γ0,1 + γ0,2 + · · ·+ γi and ν = ν0,1 + ν0,2 + · · ·+ νi
⇔

(µ+ [s′′], s) ε [[t1]]γ0,1,x=ν0,1 and (ν0,2, s′′) ε [[λx.(∂t2/∂x) · u]]γ0,2

and every µi ε [[t2]]γi,x=νi

with γ = γ0,1 + γ0,2 + · · ·+ γi and ν = ν0,1 + ν0,2 + · · ·+ νi
⇔ { by induction hypothesis }

(µ+ [s′′], s) ε [[t1]]γ0,1,x=ν0,1 and (ν0,2, s′′) ε [[D(λx.t2) · u]]γ0,2

and every µi ε [[t2]]γi,x=νi
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with γ = γ0,1 + γ0,2 + · · ·+ γi and ν = ν0,1 + ν0,2 + · · ·+ νi
⇔

(µ+ [s′′], s) ε [[t1]]γ0,1,x=ν0,1 and (ν0,2 + [s′], s′′) ε [[λx.t2]]γ0,2,1 and s′ ε [[u]]γ0,2,2

and every µi ε [[t2]]γi,x=νi

with γ = γ0,1+γ0,2+· · ·+γi and ν = ν0,1+ν0,2+· · ·+νi and γ0,2 = γ0,2,1+γ0,2,2

⇔
(µ+ [s′′], s) ε [[t1]]γ0,1,x=ν0,1 and s′′ ε [[t2]]γ0,2,1,x=ν0,2+[s′] and s′ ε [[u]]γ0,2,2

and every µi ε [[t2]]γi,x=νi

with γ = γ0,1 + γ0,2,1 + γ0,2,2 + · · ·+ γi and ν = ν0,1 + ν0,2 + · · ·+ νi (6-10)

It is immediate that (6-9) implies (6-8).

It is also direct that (6-10) implies (6-8).

To see that (6-8) implies (6-9) or (6-10): in (6-7), we have either

� �rst case: s′ ε ν0, in which case (6-8) is of the form

(µ, s) ε [[t1]]γ1,0,x=ν0+[s′] and every µi ε [[t2]]γ1,i,x=νi and s′ ε [[u]]γ2

with γ = γ1,0 + · · ·+ γ1,i + γ2 and ν = ν0 + · · ·
which implies (6-9).

� second case: there is some i0 such that s′ ε νi0 .

If we rename µi0 into s′′, (6-8) has the form:

(µ+ [s′′], s) ε [[t1]]γ1,0,x=ν0 and every µi ε [[t2]]γ1,i,x=νi

and s′′ ε [[t2]]γ′′,x=ν′′+[s′] and s′ ε [[u]]γ2 with γ = γ′′ + γ1,0 + · · ·+ γ1,i + γ2

and ν = ν′′ + ν0 + · · ·
which easily implies (6-10).

This concludes the case of application, and so, concludes the proof of the second

part of proposition 6.4.5.

�X
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We argued at the beginning of section 2.5 that predicate transformers are appropri-

ate to model abstract speci�cations for programs. We also argued in sections 2.5.1

and 2.5.6 that interaction systems can be seen as concrete representations for pred-

icate transformers. It is thus natural to look at the notion of predicate transformer

as a denotational model for linear logic. We know by proposition 2.5.23 that the

two categories are equivalent, so that predicate transformers do form a denotational

model for full linear logic. It is however interesting to unfold the details since the

resulting model is both concise and elegant.

7.1 A Denotational Model

7.1.1 Multiplicative Additive Linear Logic

It is quite straightforward to unfold proposition 2.5.23 and the linear logic connectives

to act on predicate transformers rather than on interaction systems.

§ The connectives. By the isomorphism P(S1 + S2) ' P(S1)× P(S2), we can de�ne:

. Definition 7.1.1: if P1 and P2 are (monotonic) predicate transformers on S1
and S2, de�ne the predicate transformer P1 ⊕ P2 on S1 + S2 as:

P1 ⊕ P2
(
(x1, x2)

)
,

(
P1(x1), P2(x2)

)
. (where x1 ⊆ S1 and x2 ⊆ S2)

Because of the de�nition of linear negation, the fact that ⊕ is self-dual will be a

triviality!

The constants are very simple:

. Definition 7.1.2: de�ne the constants 0 and skip as:

0 : P(∅)→ P(∅) and skip : P({∗})→ P({∗})
∅ 7→ ∅ x 7→ x

We also write ⊥ for the predicate transformer skip.
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The tensor P1 ⊗ P2 of two predicate transformers is a little more complex but

is the most \natural" predicate transformer to de�ne on S1 × S2. The �rst remark

is that P1 ⊗ P2(x1×x2) is most naturally de�ned as P1(x1) × P2(x2). With that in

mind, we de�ne P1 ⊗ P2 as the smallest predicate transformer \generated" by this:

. Definition 7.1.3: if P1 and P2 are (monotonic) predicate transformers on S1
and S2, de�ne the predicate transformer P1 ⊗ P2 on S1 × S2 as:

P1 ⊗ P2(r) ,
⋃

x1×x2⊆r

P1(x1)× P2(x2) . (where r ⊆ S1 × S2)

This operation has already been considered in the re�nement calculus to model par-

allel execution of independent pieces of programs, see [10].

As opposed to the case of interaction systems, where the de�nition of the

linear arrow is quite complex,( takes a very simple form in the context of predicate

transformers, especially if one has some realizability intuition about it:1

. Definition 7.1.4: if P1 and P2 are (monotonic) predicate transformers on S1
and S2, de�ne the predicate transformer P1( P2 on S1 × S2 as:

(s1, s2) ε P1( P2(r) ⇔ (∀x1 ⊆ S1) s1 ε P1(x1)⇒ s2 ε P2
(
r(x1)

)
.

(where r ⊆ S1 × S2)

The most interesting de�nition is probably linear negation P⊥, which can be

de�ned as the implication P ( ⊥. However, in the setting of monotonic predicate

transformers, the de�nition can be simpli�ed into:

. Definition 7.1.5: if P is a (monotonic) predicate transformer on S, de�ne P⊥

to be the following predicate transformer on S:

P⊥(x) , { · P · {(x) . (where { denotes complementation with respect to S)

§ Link with Interaction Systems. We have the following representation lemma:

◦ Lemma 7.1.6: the operations de�ned above on predicate transformers

correspond to the operations with same name on interaction systems:

0◦ = 0

skip◦ = skip

(w1 ⊕w2)◦ = w◦
1 ⊕w◦

2

(w1 ⊗w2)◦ = w◦
1 ⊗w◦

2

(w⊥)◦ = (w◦)⊥

proof: let's only check the interesting points: tensor and negation.

K tensor, ⊆ direction:

(s1, s2) ε (w1 ⊗w2)◦(r)
⇔ { de�nition of ◦ }

∃a ε (w1 ⊗w2).A
(
(s1, s2)

)
∀d ε (w1 ⊗w2).D

(
(s1, s2), a

)
1: Note that like the de�nition of ⊗, the de�nition of ( is impredicative in the sense that it uses

quanti�cation on subsets.
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(w1 ⊗w2).n
(
(s1, s2), a, d

)
ε r

⇔ { de�nition of ⊗ on interaction systems }(
∃a1 ε A1(s1)

)(
∃a2 ε A2(s2)

)(
∀d1 ε D1(s1, a1)

)(
∀d2 ε D2(s2, a2)

)(
s1[a1/d1], s2[a2/d2]

)
ε r

⇔(
∃a1 ε A1(s1)

)(
∃a2 ε A2(s2)

){
s1[a1/d1] | d1 ε D1(s1, a1)

}
×

{
s2[a2/d2] | d2 ε D2(s2, a2)

}
⊆ r

⇒ { de�nition of ⊗ on predicate transformer, }
{ with the fact that s1 ε w◦

1

`
{s1[a1/d1] | d1 ε D1(s1, a1)}

´
}

(s1, s2) ε w
◦
1 ⊗w◦

2(r)

K tensor, ⊇ direction:

(s1, s2) ε w
◦
1 ⊗w◦

2(r)

⇒ { de�nition: for some x1 × x2 ⊆ r }

s1 ε w
◦
1(x1) and s2 ε w

◦
2(x2)

⇔(
∃a1 ε A1(s1)

)(
∀d1 ε D1(s1, a1)

)
s1[a1/d1] ε x1

and
(
∃a2 ε A2(s2)

)(
∀d2 ε D2(s2, a2)

)
s2[a2/d2] ε x2

⇒ { because x1 × x2 ⊆ r }(
∃a1 ε A1(s1)

)(
∃a2 ε A2(s2)

)(
∀d1 ε D1(s1, a1)

)(
∀d2 ε D2(s2, a2)

)(
s1[a1/d1], s2[a2/d2]

)
ε r

⇔
(s1, s2) ε (w1 ⊗w2)◦(r)

K negation: we have already seen (lemma 2.5.4) that w⊥◦ = w•. We thus need to

show that w• = { ·w◦ · {
s ε { ·w◦ · {(x)
⇔

¬
(
∃a ε A(s)

)(
∀d ε D(s, a)

)
s[a/d] ε {x

⇔(
∀a ε A(s)

)(
∃d ε D(s, a)

)
¬s[a/d] ε {x

⇔(
∀a ε A(s)

)(
∃d ε D(s, a)

)
s[a/d] ε x

⇔
s ε w•(x)

�X

We can also check that the de�nition of the linear arrow corresponds to the \real"

linear arrow:

◦ Lemma 7.1.7: for any predicate transformers P1 and P2, we have

P1( P2 = (P1 ⊗ P⊥2 )
⊥

.

From this, we can conclude that

(w1( w2)
◦ = w◦

1( w◦
2 .
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proof:

(s1, s2) ε P1( P2(r)

⇔
(∀x1 ⊆ S1) s1 ε P1(x1)⇒ s2 ε P2

(
r(x1)

)
⇔ { logic }

(∀x1 ⊆ S1) s1 /ε P1(x1) ∨ s2 ε P2
(
r(x1)

)
⇔ { logic: ⇒ direction: monotonicity of P2; }

{ ⇐ direction: specializing for x2 , r(x1) }
(∀x1 ⊆ S1, x2 ⊆ S2)

(
r(x1) ⊆ x2

)
⇒ s1 /ε P1(x1) ∨ s2 ε P2(x2)

⇔ { put y , {x2, equivalence r(x1) ⊆ {x2 i� x1 × x2 ⊆ {r }
(∀x1 ⊆ S1, y ⊆ S2)

(
x1 × y ⊆ {r

)
⇒ s1 /ε P1(x1) ∨ s2 ε P2({y)

⇔ { logic }
¬(∃x1 ⊆ S1, y ⊆ S2)

(
x1 × y ⊆ {r

)
∧ s1 ε P1(x1) ∧ s2 /ε P2({y)

⇔
¬(∃x1 ⊆ S1, y ⊆ S2)

(
x1 × y ⊆ {r

)
∧ s1 ε P1(x1) ∧ s2 ε P⊥2 (y)

⇔ { de�nition of ⊗ and ⊥ }
(s1, s2) ε (P1 ⊗ P⊥2 )

⊥
(r)

The second point follows directly from the following facts

� for interaction systems, we have w1( w2 ' (w1 ⊗w⊥
2 )

⊥
(lemma 6.3.2);

� IdS is an isomorphism from w to w′ i� w◦ = w′◦ (lemma 2.5.21).

�X

§ Safety Properties, ?-Autonomy. Even though it is equivalent to the category of

interaction systems with simulations, the category of predicate transformers and for-

ward data-re�nements is slightly simpler. The reason is that we have replaced many

isomorphisms (bisimilarity of interaction system) by plain (extensional) equality. For

example, that negation is involutive is totally trivial. Let's �rst give another charac-

terization of forward data-re�nements (de�nition 2.5.20 on page 60).

. Definition 7.1.8: if P is a predicate transformer on S, a safety property for P

is a subset x ⊆ S satisfying x ⊆ P(x). We write S(P) for the collection of

safety properties for P.

Thus, \safety property" is just a synonym for \invariant predicate" (de�nition 2.5.15).

If we have the intuition that a predicate transformer is an abstract speci�cation

(page 50), then a safety property is a set of states x ⊆ S with the following property:

for any program satisfying the speci�cation,

if execution is started from a state in x, then execution will termi-

nate, and the �nal state will also be in x.

We have:

◦ Lemma 7.1.9: a relation r ⊆ S1 × S2 is a forward data-re�nement

from P1 to P2 i� r ε S(P1( P2).

proof: suppose �rst that r is a a safety property for P1( P2:

s2 ε r · P1(x)
⇒ { for some s1, }

(s1, s2) ε r ∧ s1 ε P1(x)
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⇒ { r is a safety property for P1 ( P2 }
(s1, s2) ε P1( P2(r) ∧ s1 ε P1(x)

⇔
(∀x) s1 ε P1(x)⇒ s2 ε P2

(
r(x)

)
∧ s1 ε P1(x)

⇒
s2 ε P2

(
r(x)

)
which shows that r · P1 ⊆ P2 · r.
Conversely, suppose r · P1 ⊆ P2 · r, and let (s1, s2) ε r. We are going to show

that (s1, s2) ε P1( P2(r). If s1 ε P1(x), we have a2 ε r · P1(x), which implies by

hypothesis that s2 ε P
(
r(x)

)
.

�X

Since we know by proposition 2.5.23 that interaction systems with simulations

and predicate transformers with forward data-re�nements are weakly equivalent cat-

egories, no confusion really arises from the following de�nition:

. Definition 7.1.10: an interface is a pair (S, P) where S is a set and P a mono-

tonic predicate transformer on S. The category of interfaces with forward

data-re�nements is called Int..

Moreover:

◦ Lemma 7.1.11: the operations ⊕, ⊗ and ⊥ de�ned earlier can be lifted

to functors on Int.

proof: easy. Let's look at the case of negation: �rst notice that we have the following:

{ · [r] = 〈r〉 · { and { · 〈r〉 = [r] · { .

So that we can de�ne the action of ⊥ on morphisms as r⊥ , r∼:

〈r∼〉 · P1 ⊆ P2 · 〈r∼〉
⇒

{ · P2 · 〈r∼〉 · { ⊆ { · 〈r∼〉 · P1 · {
⇔

{ · P2 · { · [r∼] ⊆ [r∼] · { · P1 · {
⇔

P⊥2 · [r∼] ⊆ [r∼] · P⊥1
⇒

〈r〉 · P⊥2 · [r∼] · 〈r〉 ⊆ 〈r〉 · [r∼] · P⊥1 · 〈r〉
⇒ { by lemma 2.5.11, [r∼] · 〈r〉 ⊇ Id and 〈r〉 · [r∼] ⊆ Id }

〈r〉 · P⊥2 ⊆ P⊥1 · 〈r〉
⇔

r∼ is a forward data-re�nement from P⊥2 to P⊥1 .

�X

Just like the category of interaction systems, the category of interfaces is a

model of MALL. However, in this new context, the result is much simpler to prove:

� Proposition 7.1.12: the constructions just de�ned make Int into

a ?-autonomous category.



150 7 An Abstract Version: Predicate Transformers

proof: let's start with the fact that ( is right-adjoint to ⊗:

r ε Int(P1 ⊗ P2, P3)
⇔ { lemma 7.1.9 }

r ε S
(
(P1 ⊗ P2)( P3

)
⇔ { P ( Q = (P ⊗Q⊥)⊥ (lemma 7.1.7) }

r ε S
((

(P1 ⊗ P2)⊗ P⊥3
)⊥)

⇔ { associativity of ⊗ }

r ε S
((
P1 ⊗ (P2 ⊗ P⊥3 )

)⊥)
⇔ { P ( Q = (P ⊗Q⊥)⊥ and P⊥⊥ = P }

r ε S
(
P1( (P2( P3)

)
⇔ { lemma 7.1.9 }

r ε Int(P1, P2( P3)

That ⊥ , skip is a dualizing object is easy: the canonical morphism from P to P⊥⊥

is the identity, which is trivially an isomorphism!

We do not bother with the other bureaucratic conditions de�ning a ?-autonomy.

They are trivially true.

�X

7.1.2 Exponentials

The de�nition of the exponential ! is a little subtler: intuitively, !P should be a kind

a arbitrary n-ary tensor Id⊕P⊕ (P⊗P)⊕ (P⊗P⊗P)⊕· · ·, quotiented by \shu�ing".

Just like Mf(S) is
⋃
n S

n modulo renaming (de�nition 5.3.1), so is !P the predicate

transformer
⊕
n P

n⊗ modulo renaming. De�ne the \commutative product" ⊗
⋂
iεI xi

of a �nite number of subsets of S:

. Definition 7.1.13: if (xi)iεI is a �nite family of subsets of S, we de�ne the

following collection of multisets:

[si]iεI ε
⊗⋂
jεJ

xj ⇔ (∃σ : I ∼→ J) (∀i ε I) si ε xσi .

This is just the usual cartesian product modulo reindexing. With this de�nition, we

can de�ne the predicate transformer !P:

. Definition 7.1.14: if P is a monotonic predicate transformer on S, de�ne !P to

be the following predicate transformer on Mf(S):

[s1, . . . , sn] ε !P(U)

⇔
(∃x1, . . . , xn ⊆ S) s.t.

( ⊗⋂
1�i�n

xi

)
⊆ U ∧ (∀1 � i � n) si ε P(xi) .

Dually, de�ne ?P ,
(
!(P⊥)

)⊥
.

We have:

◦ Lemma 7.1.15: for any interaction system w on S,

(!w)◦ = !(w◦) .
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proof: the direct proof is straightforward.

�X

As a corollary to this, lemma 6.1.4 and proposition 2.5.23, we obtain:

◦ Lemma 7.1.16:

� ! is a comonad on Int;

� !P is the free ⊗-comonoid on P;

� ? is a monad on Int;

� ?P is the free

&

-monoid on P;

� !(P1 & P2) ' !P1 ⊗ !P2.

7.1.3 The Model

We can now detail the denotational model we obtain: start with a valuation of atomic

formulas as predicate transformers and use the relational interpretation of proofs

described in section 5.3.

� Proposition 7.1.17: if π is a proof of the sequent ` G1 , . . . , Gn,

then [[π]] is a safety property in G∗1

&

. . .

&

G∗n.

Just like in the previous section, the interpretation [[π]] does not depend on the actual

predicate transformers we use for the atoms, but just on their set of states. This

remark will be the basis of the model for second order linear logic developed in

chapter 8.

proof: this is in essence contained in proposition 7.1.12 and lemma 7.1.16.

For the sake of completeness, here is a direct proof that the interpretation of the

tensor rule is functorial. More details can be read in [53].

If π is
π1 ` Γ , F1 π2 ` ∆ , F2

` Γ , ∆ , F1 ⊗ F2
then [[π]] =

{(
γ, δ, (s1, s2)

)
| (γ, s1) ε [[π1]] ∧ (δ, s2) ε [[π2]]

}
.

Suppose that [[π1]] is a safety property in Γ

&

F1 and that [[π2]] is a safety property

in ∆

&

F2. We need to show that [[π]] is a safety property in Γ

&

∆

&

(F1 ⊗ F2).(
γ, δ, (s1, s2)

)
ε [[π]]

⇒
(γ, s1) ε [[π1]] and (δ, s2) ε [[π2]]

⇒ { [[π1]] and [[π2]] are safety properties in Γ, F1 and ∆, F2 }
(γ, s1) ε Γ, F1([[π1]]) and (δ, [[π2]]) ε ∆, F2([[π2]]).

By contradiction, suppose
(
γ, δ, (s1, s2)

)
/ε Γ, ∆, F1 ⊗ F2([[π]])

⇒(
γ, δ, (s1, s2)

)
ε Γ⊥ ⊗ ∆⊥ ⊗ (F1 ⊗ F2)⊥({[[π]])

⇒ { for some u× v× r ⊆ {[[π]]: }
γ ε Γ⊥(u) ∧ δ ε ∆⊥(v) ∧ (s1, s2) ε (F1 ⊗ F2)⊥(r)︸ ︷︷ ︸
⇒

. . . ∧
(
(∀x× y ⊆ {r) s1 ε F⊥1 ({x) ∨ s2 ε F⊥2 ({y)

)
.
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In particular, de�ne x = 〈π∼1 〉u and y = 〈π∼2 〉v. It is easy to show that x×y ⊆ {r,
so that we have s1 ε F

⊥
1 ({x) or s2 ε F

⊥
2 ({y).

Suppose s1 ε F
⊥
1 ({x): we have γ ε Γ⊥(u) and u × {x ⊆ {[[π1]] (easy lemma),

so by de�nition, (γ, s1) ε Γ
⊥ ⊗ F⊥1 ({[[π1]]), i.e. (γ, s1) /ε Γ, F1([[π1]])! This is a

contradiction.

Similarly, one can derive a contradiction from s2 ε F
⊥
2 ({y).

This �nishes the proof that [[π]] is a safety property for Γ, ∆, F1 ⊗ F2.

We can make a simpler but more abstract proof by noting that if ri : Γ⊥ ( Fi,

then r1 ⊗ r2 : Γ1 ⊗ Γ2( F1 ⊗ F2 = Γ1

&

Γ2

&

(F1 ⊗ F2).
�X

7.1.4 The Problem of Constants

This model, together with its interaction system variant, su�ers from a small degen-

eracy: if the atoms are interpreted by trivial objects, then all the formulas will be

trivial. This is in particular the case when the only atomic formulas are the constants:

we obtain a subcategory of Int isomorphic to its relational counterpart.

◦ Lemma 7.1.18: if F is a linear formula without propositional variables,

then its interpretation F : P(|F|)→ P(|F|) is the identity.

proof: simple induction.

�X

Similarly, when adding atoms, one needs to be careful not to chose a too simple

valuation:

◦ Lemma 7.1.19: suppose each atom is interpreted by an interface of the

form (Si, 〈gr(gi)〉) where gi : Si
∼→ Si, then for any linear formula F,

we have:

� the interpretation of F is of the form 〈gr(f)〉 where f : |F| ∼→ |F|;
� the interpretation of F is equal to the interpretation of F⊥.

proof: simple induction.

�X

A similar phenomenon happens when the atoms are of the form 〈r〉 for a functional

relation r. (In this case, 〈r〉⊥ = [r] = 〈r〉.)

# Remark 21: note that even though the model is degenerated in the case
of lemma 7.1.19 (F = F⊥), it can still be of interest: for example, we can
interpret an atom by:

P : P(B) → P(B)

P , gr(¬) .

We have that x , {(True,False), (False,True)} ε S(P ⊗ P). This shows
that a safety property in P1 ⊗ P2 needs not contain a product of safety
properties in P1 and P2.
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7.1.5 Specification Structures

In [2], the authors de�ne the notion of speci�cation structure, a categorical notion

bringing Hoare logic to the realm of categories. Recall the de�nition:

. Definition 7.1.20: if C is a category, a speci�cation structure on C is given by

the following data:

� for each object A of C, a collection P(A) of \properties over A";

� for any pair (A,B) of objects of C, a relation SA,B ⊆ PA×C(A,B)×PB.

We write ϕ{f}ψ for (ϕ, f,ψ) ε SA,B and require the following:

ϕ{IdA}ϕ
ϕ{f}ψ and ψ{g}θ ⇒ ϕ{g · f}θ

for all objects A, B and C, morphisms f ε C(A,B) and g ε C(B,C) and

properties ϕ ε PA, ψ ε PB and θ ε PC.

A speci�cation structure on C forms a category CS by taking:

� for objects, pairs (A,ϕ) where ϕ ε PA;

� and for morphisms from (A,ϕ) to (B,ψ), the collection of morphisms f

in C(A,B) s.t. ϕ{f}ψ.

◦ Lemma 7.1.21: there is a faithful functor from any speci�cation struc-

ture CS to C:

(A,ϕ) 7→ A

f 7→ f .

Conversely, for any faithful functor F : D→ C, there is a speci�cation

structure CS equivalent to D s.t. F is equivalent to the faithful functor

de�ned above.

proof: easy. For the second point, de�ne the speci�cation structure CS by taking:

� PA , {ϕεD | F(ϕ) = A};
� and ϕ{f}ψ i�

(
∃α ε D(ϕ,ψ)

)
Fα = f.

�X

The notion of speci�cation structure can be extended to take into account some of

the structure of C. In particular, if C is a model of linear logic, we can require CS to

have a compatible structure. (See [2].)

◦ Lemma 7.1.22: the category Int can be seen as a speci�cation structure

compatible with the linear structure of the category Rel:

� if A is a set, PA is the collection of predicate transformers on A;

� if r is a relation between A and B, P{r}Q i� r · P ⊆ Q · r.

Thus, the denotational model presented above can be seen as a particular instan-

tiation of the theory sketched in the second section of [2]. However, it would be

unfair to reduce Int to that: de�ning a concrete speci�cation structure on Rel which

is compatible with the linear structure is not a trivial exercise. Moreover the cate-

gory Int is particularly interesting because it is constructed from concrete, well-known

ingredients.
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While we are mentioning [2], it could be interesting to compare the two ap-

proaches to obtain \deadlock freeness" (see chapter 6 in this thesis and section 5

in [2]). In essence, a morphism in the case of [2] is a process with a guarantee that

it will communicate with all possible (or interesting) processes. The guarantee is

necessary because in their context, the composition of deadlock free processes is not

necessarily deadlock free. In our case, the problem is irrelevant since the composition

of Angel-deadlock free processes is Angel-deadlock free.2 A more thorough inves-

tigation about the relationship between the category Int and the work of [2] would

probably be interesting but is yet to be done.

7.1.6 Injectivity of the Commutative Product

This small section is irrelevant to the purpose of interaction systems or linear logic.

The idea is simple: the usual cartesian product
∏
iAi enjoys the following trivial

injectivity property: if A1 × · · · × An = B1 × · · · × Bn 6= ∅, then Ai = Bi for

all i's. One can say that
∏

: List · P(S) → P · List(S) is \almost injective". The

operation ⊗
⋂

: Mf · P(S) → P ·Mf(S) used in the de�nition of the exponential can

be seen as a commutative version of cartesian product, and it does enjoy the same

injectivity property.3

◦ Lemma 7.1.23: if (Ai)iεI and (Bi)iεI are two �nite families of non-

empty subsets of S, and if ⊗
⋂
iAi = ⊗

⋂
i Bi then (Ai)iεI and (Bi)iεI

are equivalent up to reindexing. (The multisets [Ai]iεI and [Bi]iεI
are equal.)

The proof goes as follows: suppose ⊗
⋂
iAi = ⊗

⋂
j Bj = P,

� (Ai)i and (Bj)j have one set in common: Ai0 ε (Ai)i and Ai0 = Bj0 ε (Bj)j;

� we de�ne an operation of division such that
(⊗⋂

iAi
)
/Ai0 = ⊗

⋂
i6=i0 Ai;

� this implies that ⊗
⋂
i6=i0 Ai = P/Ai0 = P/Bj0 = ⊗

⋂
j 6=j0 Bj;

� a trivial induction concludes the proof.

K We �rst have:⊗⋂
i

Ai ⊆
⊗⋂
j

Bj ⇒ (∀j)(∃i) Ai ⊆ Bj . (7-1)

By contradiction, suppose that (∃j)(∀i) ¬(Ai ⊆ Bj). Let j0 be such a j. We have

that (∀i)(∃ai ε Ai) ai /ε Bj0 . This implies that [ai]i ε ⊗
⋂
iAi, but [ai]i cannot be

in ⊗
⋂
j Bj! Contradiction.

We can deduce that:⊗⋂
i

Ai =
⊗⋂
j

Bj ⇒ (∃i, j) Ai = Bj .

By (7-1), we can construct an in�nite chain Ai1 ⊇ Bj1 ⊇ . . . ⊇ Ain ⊇ Bjn . . . Since

there is only a �nite number of Ai's and Bj's, there must be a cycle. This implies

that some Ain = Bjn .

2: This gives yet another argument for distinguishing the program from its environment.
3: For the category inclined reader, this \commutative product" is the usual distributivity law from

the monad Mf to the monad Pf in the category Set, just like
∏

is the distributivity law between

the monads List and P.
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K We can now de�ne the operation of division, and prove its property:

. Definition 7.1.24: for any E ⊆Mf(S), de�ne:

1) for a ε S: E/a = {µ | µ+ [a] ε E};
2) for A ⊆ S: E/A =

⋂
aεA E/a.

It satis�es

◦ Lemma 7.1.25: for any A0, . . . ,AN non-empty subsets of S, we have:( ⊗⋂
0�i�N

Ai

)
/ A0 =

⊗⋂
1�i�N

Ai .

proof: the ⊇ inclusion is immediate. Let's show the converse inclusion.

Let [a1, . . . , aN] ε
(⊗⋂

0�i�N

)
/A0. We prove that [ai]i ε ⊗

⋂
1�i�NAi by contra-

diction. Suppose that [ai]i /ε ⊗
⋂
1�i�NAi.

Let a ε A0, we have [a, a1, . . . , aN] ε ⊗
⋂
0�i�NAi. Since [ai]i /ε ⊗

⋂
1�i�N, one of

the ai must be in A0. Without loss of generality, we can suppose a1 ε A0, a ε A1
and ai ε Ai for all i � 2.

Since a1 ε A0, we have [a1, a1, a2, . . . , aN] ε ⊗
⋂
0�i�NAi, i.e. aσi ε Ai for some

bijection σ : {0, . . . ,N} → {0, . . . ,N}. (We put a0 , a1.)

De�ne (ki) by induction as follows:

� k0 = σ(0);

� ki+1 = σ(ki).

Let K = min {i | ki = 0 or ki = 1}. It is not di�cult to show that such a K exists.

Put now I = {k0, . . . , kK}.
Now, rearrange the columns of the following table:

{0,...,N}︷ ︸︸ ︷
A0 A1 . . . Al . . . Al′ . . . AN
aσ0 aσ1 . . . a1 . . . a1 . . . aσN︸ ︷︷ ︸

{1,1,...,N}

into

{0}∪I={0,k0,...,kK}︷ ︸︸ ︷
A0 Ak0

. . . AkK{1
AkK

ak0
ak1

. . . akK
a1︸ ︷︷ ︸

{1}∪I={1,k0,...,kK}

{1,...,N}\I=I︷ ︸︸ ︷
. . . Al . . .

. . . a1 . . .︸ ︷︷ ︸
{1,...,N}\I=I

From this (right hand part), we can deduce that [ai]iεI ε
⊗⋂
iεI Bi. By hypothesis,

we also have that [ai]iεI ε ⊗
⋂
iεIAi (because 1 /ε I).

This implies that [ai]1�i�N ε ⊗
⋂
1�i�NAi! Contradiction.

�X

K The proof of lemma 7.1.23 is now immediate: by induction on N.

� N = 0: trivial;

� N > 0: suppose ⊗
⋂
Ai = ⊗

⋂
Bi. This implies that [Ai]i�N and [Bi]i�N are in fact

of the form [C] + [Ai]i<N and [C] + [Bi]i<N.

Apply lemma 7.1.25 to get ⊗
⋂
i<NAi = ⊗

⋂
i<N Bi, and then the induction hypoth-

esis to get [Ai]i<N = [Bi]i<N.
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From this, we can easily conclude that [C] + [Ai]i<N = [C] + [Bi]i<N.

To �nish on this operation of commutative product, let's mention that inclusion

of products does not enjoy a the same property: ⊗
⋂
iAi ⊆ ⊗

⋂
i Bi does not imply

that [Ai]i ⊆ [Bi]i (pointwise). For example, if we write the binary commutative

product with a ∗, we have (A ∩ B) ∗ (A ∪ B) ⊆ A ∗ B!

7.2 A Nice Restriction: Finitary Predicate Transformers

The collection of all monotonic predicate transformers on a set S is huge.4 It is thus

natural to see if we can �nd subcategories of Int which are still models of full linear

logic.

The �rst idea is to require predicate transformers to commute with arbitrary

unions. By proposition 2.5.8, we know that this amounts to considering predicate

transformers of the form 〈r〉 for some relation r. The problem is that we also

want 〈r〉⊥ = [r] to be of this form. This implies that r is functional, and just like

lemma 7.1.19, we obtain a degenerate model where the interpretation of F is equal to

the interpretation of F⊥.

A less demanding property is to ask for the predicate transformers to satisfy:

� P(∅) = ∅;
� P(S) = S.

It is easy to check that all the constructions respect this property. It is however

not entirely satisfactory for the simple reason that the full set of states is always a

safety property. In particular, the formula P( P has at least two non-empty safety

properties as soon as the set of states has cardinality two.

A more interesting property is to require that the predicate transformers are

both Scott continuous and \cocontinuous". It turns out that this notion corresponds

exactly to the notion of �nitary interaction system.

. Definition 7.2.1: an interaction system w = (A,D,n) on S is �nitary if A(s)

and D(s, a) are �nite for all s ε S and a ε A(s).

The goal of this section is to prove that:

� Proposition 7.2.2: for any monotonic predicate transformer P

on S, the following are equivalent:

1) P commutes with directed intersections and unions;5

2) P is of the form w◦ for a �nitary w;

3) P is continuous for the Cantor topology on P(S).

4: The situation is even worse for interaction systems, since the collection of interaction systems
over a set S forms a proper class!

5: where a directed intersection is the intersection of a \codirected" set U: whenever x, y ε U,
there is a z ε U s.t. z ⊆ x and z ⊆ y.



7.2 A Nice Restriction: Finitary Predicate Transformers 157

Remark that monotonicity isn't implied by Cantor continuity: complementation is

Cantor continuous, but hardly ever monotonic!

proof:

K we start with 2⇒ 1: suppose w is a �nitary interaction system. Scott continuity

is equivalent to s ε P(x) ⇒ s ε P(x0) for some �nite x0 ⊆ x. Suppose s ε w◦(x),

i.e. we have some a ε A(s) s.t. s[a/d] ε x for all d ε D(s, a). Thus, we have

that {s[a/d] | d ε D(s, a)} is �nite, included in x and its image contains s. This

shows that w◦ is Scott continuous. For cocontinuity, it su�ces to note that P is

cocontinuous i� P⊥ is continuous.

K We now show that 2⇒ 3, i.e. that w◦ is Cantor continuous as soon as w is �nitary.

Before that, let's give some notation: the Cantor topology on P(S) is given by

the product topology when seeing P(S) as the product of S copies of the discrete

topology on B. A basis for this topology is given by the collections of all theOx,y's,

where x and y are disjoint �nite sets, and:

Ox,y ,
{
u | x ⊆ u and y ∩ u = ∅

}
.

An open set is simply an arbitrary union of such basic opens.6 Note that a prebase

is given by the simpler collection
{
O∅,{s}, O{s},∅ | s ε S

}
.

Suppose that w is �nitary, let's show that w◦ (written w from now on) is

continuous, i.e. that w{1 maps open set to open sets, or since w{1 commutes with

arbitrary unions, that w{1 maps basic opens to opens: let Ox,y be a basic open:

u ε w{1(Ox,y)

⇔
w(u) ε Ox,y

⇔
x ⊆ w(u) and y ∩w(u) = ∅
⇔

(∀s ε x)
(
∃as ε A(s)

)(
∀d ε D(s, as)

)
s[as/d] ε u and

(∀s ε y)
(
∀a ε A(s)

)(
∃da ε D(s, a)

)
s[a/da] /ε u

⇒ { de�ne x′ = {s[as/d] | s ε x, d ε D(s, as)} }
{ and y′ = {s[a/da] | s ε y, a ε A(s)}; }
{ both x′ and y′ are �nite because x and y are �nite and w is �nitary }

x′ ⊆ u and y′ ∩ u = ∅
⇔

u ε Ox′,y′ .

De�ne now the open set Ux,y as:

Ux,y ,
⋃

as:(sεu)→A(s)
ds:(sεy,aεA(s))→D(s,a)

Ox′,y′

where x′ and y′ are de�ned as above. It is easy to check that u ε w{1(Ox,y)

i� u ε Ux,y, which shows that w◦ is Cantor continuous.

6: This topology coincide with the Lawson topology on the continuous domain P(S).
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K The converse direction (3⇒ 2) relies on the fact that the Cantor topology on P(S)

is compact (by Tikhonov theorem): suppose P is Cantor continuous, and sup-

pose s ε S. We want to �nd a �nite set A(s) and a family
(
D(s, a)

)
aεA(s)

of �nite

sets satisfying the condition

s ε P(U) ⇔
(
∃a ε A(s)

)
D(s, a) ⊆ U .

Once this is done, we can de�ne an the corresponding interaction system by

putting:

AP(s) , A(s)

DP(s, a) , D(s, a)

nP(s, a, s
′) , s′ .

Since P is Cantor continuous, we know that P{1
(
O{s},∅

)
and P{1

(
O∅,{s}

)
are open

sets. We can write them as a union of (possibly in�nitely many) basic opens:

P{1
(
O{s},∅

)
=

⋃
U and P{1

(
O∅,{s}

)
=

⋃
U′ .

Since we have, for any subset u

u ε P{1
(
O{s},∅

)
⇔ s ε P(u)

u ε P{1
(
O∅,{s}

)
⇔ s /ε P(u) ,

we have that U∪U′ is a covering of P(S). By compactness, we can extract a �nite

covering from it: we write

�
(
Oxi,yi

)
iεI

for the subcovering of U;

� and
(
Ox′

j
,y′

j

)
jεJ

for the subcovering of U′.

We have:

s ε P(u) ⇔ (∃i ε I) u ε Oxi,yi

⇔ (∃i ε I) xi ⊆ u ∧ u ∩ yi = ∅

which shows we can take A(s) , I and D(s, i) , xi.

K Finally, we show that 1⇒ 3, i.e. that P is Scott continuous and Scott cocontinuous

implies that P is Cantor continuous: we will show that the inverse image of a basic

open is an open set: let Ox,y be a basic open:

u ε P{1(Ox,y)

⇔
x ⊆ P(u) and y ∩ P(u) = ∅
⇔

(∀s ε x) s ε P(u) and (∀s ε y) s /ε P(u)

⇔ { by Scott (co)continuity, where all xs and ys are �nite }
(∀s ε x)(∃xs ⊆ u) s ε P(xs) and (∀s ε y)(∃ys ⊆ {u) s /ε P(ys)

⇒ { de�ne x′ ,
S

sεx xs and y′ ,
S

sεy ys: both x′ and y′ are �nite }
x′ ⊆ u and y′ ∩ u = ∅
⇔

u ε Ox′,y′ .
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Now, de�ne the open set Ux,y as:

Ux,y ,
⋃

(xs)sεx

(ys)sεy

Ox′,y′

where x′ and y′ are de�ned as above, and we quantify over families (xs)sεx
and (ys)sεy of �nite sets satisfying:

(∀s ε x) xs ⊆ u ∧ s ε P(xs) and (∀s ε y) ys ⊆ {u ∧ s /ε P(ys) .

It is straightforward to check that u ε P{1(Ox,y) i� u ε Ux,y, thus showing that P

is Cantor continuous.

�X

This full subcategory of Int is interesting in itself, but unfortunately it is not

closed under the operation of second-order quanti�cation (see chapter 8).





8 Second Order

As we already pointed out on page 152 (lemma 7.1.18), the interpretation of a linear

formula (as an interaction system or as a predicate transformer) is trivial if the only

atomic formulas are constants. To answer this problem, one needs to start with propo-

sitional variables. Since correctness of the model doesn't depend on those variables,

it is tempting to interpret Π11 logic and see if this introduces non-trivial objects. Once

this is done (section 8.1), we extend the technology developed for this simple case to

full second order quanti�cation in sections 8.3 and 8.4. Both the interpretation of Π11
and full second order follow closely the technology developed in [18] and [19].

Restriction: in all this chapter, we implicitly assume that the set of states are countable

(possibly �nite). The reason is that without this hypothesis, it is not possible to prove

corollary 8.3.24. Most of the other result do hold for unrestricted interfaces.

8.1 PI-1 Logic

Π11 logic is usually called \propositional logic": we start with propositional \variables"

(which are not variable in any sense) and look at the resulting system. This can be

seen as the restriction of second order logic to formulas of the form (∀~X)ϕ(~X).

8.1.1 Idea

Since the Π11 formula ϕ(~X) really means (∀~X)ϕ(~X), we somehow want to form the

predicate transformer \(∀~P)ϕ(~P)". Since we certainly don't want to quantify over all

predicate transformers over all sets (this is a proper class), we start by deciding on a

countably in�nite set I to serve as the generic set of states. We do not assume any

structure on I.

One di�erence with the relational model (or with the coherent spaces model

of [38]) is that the cardinality of I is important: it represents the maximal cardinality

of our objects in the model. It is sensible, for pragmatic reasons, to restrict to

countable interfaces, but if one wanted to model continuous states, then the set I

should be taken of bigger cardinality. (See also remark 29 on page 179.)

Interpreting the formula (∀~X)ϕ(~X) is done in two steps. Suppose for example
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that ϕ is the formula X( X. We start by forming the predicate transformer

r 7→
⋂

P:P(I)→P(I)

P( P(r)

from I× I to I× I. Taking the intersection is coherent with the main intuition since

a safety property for this predicate transformer will be a safety property for all the

predicate transformers of the form P( P.

The second idea, is to \simplify" the above predicate transformer by quotient-

ing the set of states by renaming: since I doesn't carry any structure, any permu-

tation of I would do as well. For the particular example of X ( X, the quotiented

set of states will contain only two elements, representing respectively {(i, i) | i ε I}
and {(i, j) | i 6= j}.

Notation: in order to model the di�erent propositional variables, we use tuples of sets

and predicate transformers. We use the vector notation to denote a tuple: ~X is a tuple

of sets of the form (X1, . . . , Xn) etc. Everything is lifted pointwise. For example, the

notation ~f : ~X→ ~Y is just an abbreviation for f1 : X1 → Y1, . . . , fn : Xn → Yn.

8.1.2 State Spaces, Permutations

The set of of states |ϕ| of a Π11 formulaϕ is simply given by its relational interpretation

(see section 5.3) in which all the atoms are interpreted by the set I:

� |0| = ∅ and |1| = {∗};
� |Xi| = I;

� |ϕ⊥| = |ϕ|;
� |ϕ1 ⊕ϕ2| = |ϕ1|+ |ϕ2|;
� |ϕ1 ⊗ϕ2| = |ϕ1| × |ϕ2|;
� |!ϕ| = Mf(|ϕ|).

If all the propositional variables of ϕ are in (X1, . . . , Xn), then the product SnI
of n copies of the group SI of �nite permutations1 of I acts on |ϕ|. Suppose ~σ ε SnI ,

we de�ne the action [~σ]ϕ : |ϕ| → |ϕ|
� if ϕ is the propositional variable Xi, then [~σ]Xi

(s) = σi(s);

� if ϕ is ψ⊥, then [~σ]ϕ = [~σ]ψ;

� if ϕ is ψ1 ⊕ψ2, then [~σ]ϕ
(
inl(a1)

)
= inl

(
[~σ]ψ1

(a1)
)

and [~σ]ϕ
(
inr(a2)

)
= inr

(
[~σ]ψ2

(a2)
)
;

� if ϕ is ψ1 ⊗ψ2, then [~σ]ϕ
(
(a1, a2)

)
=
(
[~σ]ψ1

(a1), [~σ]ψ2
(a2)

)
;

� if ϕ is !ψ, then [~σ]ϕ
(
[a1, . . . , ak]

)
=
[
[~σ]ψ(a1), . . . , [~σ]ψ(ak)

]
.

Two elements a and b of |ϕ| are equivalent up to renaming if there is a �nite per-

mutation ~σ : Sn
I such that [~σ]ϕ(a) = b. This is trivially an equivalence relation,

and we write a ≈ϕ b, or simply a ≈ b if ϕ is clear from the context. Note that the

equivalence class of an element a ε |ϕ| is simply the orbit of this element under the

action of the group Sn
I .

# Remark 22: the de�nition of the group action makes it clear that the
restriction to �nite permutations is not really a restriction: since an el-
ement of |ϕ| can be seen as a �nite tree with leafs in I, if [~σ]ϕ(a) = b
for an arbitrary permutation, then we can �nd a �nite permutation ~σ′ in
S n

I such that [~σ′]ϕ(a) = b.

1: a permutation is �nite if it only changes a �nite number of elements
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8.1.3 The Model

We can now de�ne formally the interpretation of a formula.

. Definition 8.1.1: a valuation for a formula ϕ is a map ρ from the propositional

variables of ϕ to predicate transformers on I. We write ϕρ for the obvious

predicate transformer on |ϕ| de�ned by interpreting any propositional vari-

able X by ρ(X).

This de�nition allows to give a preliminary candidate for the interpretation of ϕ:

. Definition 8.1.2: let ϕ be a linear formula with atoms. De�ne ϕ̃, a predicate

transformer on |ϕ| as:

ϕ̃(x) ,
⋂
ρ

ϕρ(x) where ρ runs over all valuations of ϕ .

This huge intersection (over a set of cardinality ℵ2!) has the tendency to remove

any local asperity. As a result, the predicate transformer ϕ̃ is very well-behaved. In

particular, we have

◦ Lemma 8.1.3: the predicate transformer ϕ̃ is compatible with ≈ϕ.

Compatibility simply means that the predicate transformer sends ≈-closed subsets

to ≈-closed subsets.

proof: this relies on the following trivial fact: if ρ is a valuation and ~σ and ~τ are

permutations, then the valuation ~σ·ρ·~τ, de�ned as (~σ·ρ·~τ)(Xi)(x) = σi·ρ(Xi)·τi(x)
satis�es ϕ~σ·ρ~τ = [~σ] ·ϕρ · [~τ]. This is a direct induction...

# Remark 23: to be precise, [~σ] is not a predicate transformer, but only a
function. We can lift if to a predicate transformer by taking the update
of the converse of its graph.

Let x ⊆ |ϕ| be ≈-closed, suppose a ε ϕ̃(x) and a ≈ b, i.e. a = [~σ](b) for some

permutation ~σ. We need to show that b ε ϕ̃(x):

a ε ϕ̃(x)

⇔ { de�nition }
a ε

⋂
ρϕρ(x)

⇒ { for any valuation ρ, ~σ · ρ · ~σ{1 is also a valuation }
a ε

⋂
ρϕ~σ·ρ·~σ{1(x)

⇔ { fact above }
a ε

⋂
ρ[~σ] ·ϕρ · [~σ{1](x)
⇔ { [~σ] commutes with intersections and [~σ{1](x) = x (because x is ≈-closed) }

a ε [~σ]
⋂
ρϕρ(x)

⇔ { because a = [~σ](b) }
b ε

⋂
ρϕρ(x)

⇔ { de�nition }
b ε ϕ̃(x).

�X

This lemma makes it sound to de�ne the �nal interpretation of a formula ϕ as:
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. Definition 8.1.4: if ϕ is a linear formula with propositional variables, let |ϕ|≈
be the collection of ≈-equivalence classes of |ϕ|; de�ne the interpretation [[ϕ]]

of ϕ to be the following predicate transformer on |ϕ|≈:

[[ϕ]](x) ,
(
ϕ̃
(⋃

x
))

≈
.

# Remark 23: there is an obvious bijection between P(|ϕ|≈) and ≈-closed
subsets of |ϕ|: x 7→ x≈ ,

{
{a}≈ | a ε U

}
and U 7→

S
U. The de�nition

of [[ϕ]] is just the composition of eϕ with those bijections.

The following is a direct generalization of proposition 7.1.17.

� Proposition 8.1.5: let π be a proof of ` G1 , . . . , Gn, then |π|
is a ≈-closed subset of |Gn| × . . . × |Gn|, and moreover, |π|≈
is a safety property for [[G1

&

. . .

&

Gn]].

proof: the fact that |π| is a safety property in ϕ̃ is exactly proposition 7.1.17.

The only thing to prove is that |π| is ≈-closed. This is a direct induction. Let's

only look brie
y at the case of promotion:

π1 ` ?G1 , . . . , ?Gn , F

π ` ?G1 , . . . , ?Gn , !F
.

Let
(
µ1, . . . , µn, [a1, . . . , ak]

)
ε |π|. By de�nition (page 118), we can partition

each µi into µi,1 + . . .+ µi,k and for each j, we have (µ1,j, . . . , µn,j, aj) ε |π1|.
Suppose now that

(
ν1, . . . , νn, [b1, . . . , bn]

)
≈
(
µ1, . . . , µn, [a1, . . . , ak]

)
. By de�-

nition of≈, this means that µi ≈ νi for each i, and that [a1, . . . , ak] ≈ [b1, . . . , bk].

Without loss of generality, we can assume that we have aj ≈ bj for all j.

For all i, we have µi ≈ νi and we have a partition µi = µi,1 + . . . + µi,k, we can

\transfer" this partition onto νi along ≈: νi = νi,1 + . . .+ νi,k with µi,j ≈ νi,j.
This implies that we have (µ1,j, . . . , µn,j, aj) ≈ (ν1,j, . . . , νn,j, bj) for all j. By in-

duction hypothesis, we can conclude that (ν1,j, . . . , νn,j, bj) ε |π1|. By de�nition

of π, we obtain �nally (ν1, . . . , νn, [b1, . . . , bk]) ε |π|.

The other cases are much simpler...

�X

# Remark 24: as far as only Π1
1 is concerned, we could use eϕ as the in-

terpretation of ϕ but as we'll see in the sequel, if we really want to
interpret (∀~X) ϕ(~X), we need this operation of quotient. As the following
examples will show, this is also relevant from a computational point of
view, since it simpli�es greatly the �nal predicate transformer interpret-
ing the formula.
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8.1.4 Examples

With the machinery in place, we can look at a couple of examples and check that the

resulting interpretations are not trivial.

Note the following equivalences:

� (a, b) /ε P( Q(r) i� a ε P(x) but b /ε Q
(
r(x)

)
for some subset x;

�
(
[a1, . . . , an], a

)
/ε !P ( Q(R) i� all ai ε P(xi) but a /ε Q

(
R(⊗
⋂
i xi)

)
for some

subsets xi.

Since we are only interested in the safety properties of [[ϕ]], we are mostly interested

by the action of ϕ̃ on ≈-closed subsets of |ϕ|. We will transparently switch between

seeing an element e ε |ϕ|≈ as an equivalence class and as a (≈-closed) subset of |ϕ|.
Finally, since we are dealing with closed subsets, when e /ε U (in |ϕ|≈) we may assume

that e ∩
⋃
U = ∅ (in |ϕ|).

§ The Empty Type. Let's start with the most simple example: ϕ , (∀X)X. The

state space |ϕ| is simply I, and any element is equivalent to itself! We thus obtain

that |ϕ|≈ is just {∗}. Since ϕ̃(x) = ∅, we have:

[[ϕ]] : P({∗}) → P({∗})
x 7→ ∅ .

In other words, we have reinvented the predicate transformer corresponding to the

interaction system abort (page 41). This is consistent with the intuition of the \empty"

type since there is no safety property besides ∅.

§ The Singleton Type. Another easy example is the unit type ϕ , (∀X)X( X. We

expect the interpretation [[ϕ]] to have a single non-empty safety property, correspond-

ing to the interpretation of the axiom. The set of states |ϕ| is equal to I × I, and it

is easy to check that (i, j) ≈ (i′, j′) i� i = i′ ∧ j = j′ or i 6= i′ ∧ j 6= j′. We obtain a two

elements set |ϕ|≈ = {e, d}:
� e , {(i, i) | i ε I}, with e standing for \equal";

� d , {(i, j) | i, j ε I , i 6= j}, with d standing for \di�erent"

Let's �rst show that ϕ̃(|ϕ|) ⊆ e, i.e. that [[ϕ]]({e, d}) ⊆ {e}. Suppose by contradiction

that (i, j) ε ϕ̃(|ϕ|) for some i 6= j. In particular, we must have (i, j) ε Q ( Q(|ϕ|)
where Q is constantly equal to {i}. This is impossible because we have i ε Q(∅)
but j /ε Q

(
|ϕ|(∅)

)
= Q(∅) = {i}.2

We now show that r  e implies that ϕ̃(r) = ∅: suppose (i, i) /ε r and let (j, j) ε ϕ̃(r)

(we know that an element of ϕ̃(r) is necessarily of this form by the preceding remark).

In particular, (j, j) ε Q( Q(r), where Q is de�ned as

Q(x) ,

{
{j} if i ε x

∅ otherwise .

This is impossible because j ε Q({i}) but j /ε Q
(
r({i})

)
= ∅ since i /ε r({i}).

We also know by lemma 7.1.9 that e ⊆ Q( Q(e) for any Q. This gives:

ϕ̃(r) =

{
e if e ⊆ r
∅ otherwise

2: Recall that |ϕ| being a relation, it sends a subset x to its direct image 〈|ϕ|∼〉(x).
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which allows to get the �nal [[ϕ]]:

[[ϕ]] : P({e, d}) → P({e, d})

x 7→
{
{e} if e ε x

∅ otherwise .

The only non-empty safety property for [[ϕ]] is thus {e}, which makes it a sensible

interpretation for the unit type. Note however that the predicate transformer is not

trivial in the sense that is is not the identity, nor the (update of the) graph of a

function (refer to lemmas 7.1.18 and 7.1.19).

§ Linear Booleans. Let's now look at types with more than a single inhabitant. The

simplest such type is the type of booleans, which we expect to have three inhabitants:

true, false, and their union. There are several ways to code the booleans inside second

order linear logic. We'll start with ϕ , (∀X) (1 & X)( (1 & X)( X. This is similar

to the booleans from system-F, except that we do not use the full intuitionistic arrow

(contraction is not needed).

The set |ϕ| is equal to ({∗}+ I)× ({∗}+ I)× I and its quotient by renaming is:

|ϕ|≈ =



(∗, ∗, 1),
(∗, 1, 1), (1, ∗, 1),
(∗, 1, 2), (1, ∗, 2),

(1, 1, 1),

(1, 2, 1), (2, 1, 1),

(1, 1, 2),

(1, 2, 3)


(where for example, (1, ∗, 2) is the orbit of

`
inr(i), inl(∗), j

´
with i 6= j)

This set is �nite, but not trivial anymore (10 elements).

The computation will go as follows:

ϕ̃(|ϕ|) ⊆ (∗, 1, 1) ∪ (1, ∗, 1) ∪ (1, 1, 1) (8-1)

ϕ̃ · ϕ̃(|ϕ|) ⊆ (∗, 1, 1) ∪ (1, ∗, 1) . (8-2)

This will show that all safety properties for [[ϕ]] are subsets of {(∗, 1, 1), (1, ∗, 1)}
and since both (∗, 1, 1) ε [[ϕ]]({(∗, 1, 1)}) and (1, ∗, 1) ε [[ϕ]]({(1, ∗, 1)}) (they are the

interpretation of the two canonical proofs of ϕ), we can conclude.

Proof of (8-1): let (a, b, i) ε ϕ̃(|ϕ|), we �rst show that a and b are of the form inl(∗)
or inr(i). Suppose by contradiction that a is of the form inr(j) with i 6= j. De-

�ne Q(x) , {j} ∪ x. By hypothesis , we know that

(a, b, i) ε (1 & Q)( (1 & Q)( Q(|ϕ|)

which is impossible for the following reason:

� a ε 1 & Q(∅)
� and b ε 1 & Q({∗}+ I)

� but i /ε Q
(
|ϕ|(∅, {∗}+ I)

)
= Q(∅) = {j}.3

a is thus necessarily of the form inl(∗) or inr(i) and similarly for b.

3: |ϕ| is a ternary relation between {∗}+I, {∗}+I and I; as the predicate transformer 〈|ϕ|∼〉, it has
type P

`
{∗}+I

´
× P

`
{∗}+I

´
→ P(I).
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Suppose now that a = b = inl(∗), then we can take Q(x) constantly equal to ∅. It is

impossible that (a, b, i) ε ϕ̃(|ϕ|) since a = b ε 1 & Q(∅) but i /ε Q
(
|ϕ|(∅, ∅)

)
= ∅.

# Remark 25: it is possible to show that this inclusion is in fact an equality.
To show that (1, 1, 1) ⊆ eϕ(|ϕ|), suppose that i ε Q(x) and i ε Q(y).

- If one of x or y is empty, then we have that i ε Q(∅) which implies
that i ε Q

`
|ϕ|(x, y)

´
;

- if not, we have that x ⊆ |ϕ|(x, y): if j ε x, then there is some j′

in y (since y 6= ∅) and we have that (j, j′) ε |ϕ|. We thus have
that i ε Q

`
|ϕ|(x, y)

´
by monotonicity.

We can conclude that eϕ(|ϕ|) = (∗, 1, 1) ∪ (1, ∗, 1) ∪ (1, 1, 1).

Proof of (8-2): by the previous remark, we just need to show that (1, 1, 1) is not an

element of ϕ̃
(
(∗, 1, 1) ∪ (1, ∗, 1) ∪ (1, 1, 1)

)
.

Suppose it is not the case, i.e. suppose that
(
inr(i), inr(i), i

)
ε ϕ̃ · ϕ̃(|ϕ|). This

means that
(
inr(i), inr(i), i

)
ε (1 & Q) ( (1 & Q) ( Q

(
ϕ̃(|ϕ|)

)
for all predicate

transformers Q on I. Let j 6= j′ be two elements of I, and de�ne

Q(x) ,

{
{i} if j ε x or j′ ε x

∅ otherwise .

We have that inr(i) ε (1 & Q)
(
{inr(j)}

)
and inr(i) ε (1 & Q)

(
{inr(j′)}

)
, but

since
(
(∗, 1, 1) ∪ (1, ∗, 1) ∪ (1, 1, 1)

)(
inr(j), inr(j′)

)
= ∅,4 we have i /ε Q

(
ϕ̃(|ϕ|)

)
. We

can conclude that (inr(i), inr(i), i) /ε ϕ̃ · ϕ̃(|ϕ|) and obtain

ϕ̃ · ϕ̃(|ϕ) ⊆ (∗, 1, 1) ∪ (1, ∗, 1) .

Since we have that True , {(1, ∗, 1)} and False , {(∗, 1, 1)} are both safety properties

for [[ϕ]], we can conclude that the only non-empty safety properties are:

1) True;

2) False;

3) and True ∪ False.

It is possible to do a little more computation to give the exact predicate trans-

former [[ϕ]]: it is the (smallest) predicate transformer generated by

[[ϕ]](x) =


{(1, 1, 1)} if {(1, 1, 1), (1, 2, 1), (2, 1, 1)} ⊆ x
{(1, ∗, 1)} if (1, ∗, 1) ε x
{(∗, 1, 1)} if (∗, 1, 1) ε x

.

§ Booleans. The \real" booleans from system-F are slightly more complex: they are

given by the formula ϕ , (∀X) !X ( !X ( X. It is possible to show that the only

safety properties for [[ϕ]] are still given by True , {([1], [], 1)} and False , {([], [1], 1)}
(and their union). To show that, we proceed as above. We show:

ϕ̃(|ϕ|) ⊆
⋃{

(1n, 1m, 1) | n+m > 0
}

ϕ̃
(⋃{

(1n, 1m, 1) | n+m > 0
})

⊆ ([1], [], 1) ∪ ([], [1], 1) .

(where 1n = [1, . . . , 1] of length n)

The computations are exactly the same as in the previous case. However, giving an

explicit de�nition of the whole predicate transformer [[ϕ]] is quite di�cult and involves

combinatorics on multisets.

4: here again, (∗, 1, 1)∪ (1, ∗, 1)∪ (1, 1, 1) ⊆ ({∗}+I)× ({∗}+I)× I, i.e. it is a ternary relation; as a

predicate transformer, it has type P
`
{∗}+I

´
× P

`
{∗}+I

´
→ P(I).
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§ \Swap" Booleans. There is a second linear formula for booleans which has the

advantage of involving only ⊗ and(: ϕ , (∀X) (X⊗X)( (X⊗X). The two canonical

proofs are either the identity or the \swap", which, if we di�erentiate the occurrences

of X linked by axioms, is the proof coming from (∀X) (X1 ⊗ X2)( (X2 ⊗ X1).

The set |ϕ| is (I × I) × (I × I), and |ϕ|≈ is slightly bigger than for the linear

booleans (15 elements). We write (ij, kl) instead of
(
(i, j), (k, l)

)
:

|ϕ|≈ =


(00, 00),

(00, 01), (00, 10), (01, 00), (10, 00),

(00, 12), (01, 02), (10, 20), (01, 20), (10, 02), (12, 00),

(00, 11), (01, 01), (01, 10),

(01, 23)


Once again, there are only three non-empty safety properties:

1) True , {(00, 00), (01, 01)};
2) False , {(00, 00), (01, 10)};
3) their union.

To show that there are no bigger safety properties, it su�ces to show that

ϕ̃(|ϕ|) ⊆ (00, 00) ∪ (01, 01) ∪ (01, 10) .

Let's �rst show that ϕ̃(|ϕ|) ⊆ (00, 00)∪(01, 01)∪(01, 10)∪(01, 00)∪(10, 00): suppose

that there is some other (ij, kl) ε ϕ̃(|ϕ|). This means exactly that {k, l} 6⊆ {i, j}.
De�ne Q to be constantly equal to {i, j}. We have trivially that (i, j) ε Q ⊗ Q(∅),
but we cannot have (k, l) ε Q ⊗ Q

(
|ϕ|(∅)

)
. It is thus impossible for (ij, kl) to be

in ϕ̃(|ϕ|).
To eliminate the last two elements (ij, ii) and (ji, ii), de�ne Q(x) , x ∪ {j}. We

do have i ε Q({i}) and j ε Q(∅) so that (i, j) ε Q ⊗ Q(∅). However, we do not

have (i, i) ε Q⊗Q
(
|ϕ|(∅)

)
.

We now need to show that there are no smaller safety properties than True,

False and True∪False. For example, let's show that {(00, 00)} is not a safety property

for [[ϕ]]: we will show that (ii, ii) /ε (Q ⊗ Q) ( (Q ⊗ Q)
(
{(00, 00)}

)
. Choose two

elements j 6= j′ in I, and de�ne Q as:

Q(x) ,

{
{i} j ε x or j′ ε x

∅ otherwise .

We have (i, i) ε Q ⊗ Q({(j, j′)}), but since (00, 00)
(
{(j, j′)}

)
= ∅, it is not the case

that (i, i) ε Q⊗Q
(
(00, 00)

(
{(j, j′)}

))
.

To show that (ij, ij) /ε [[ϕ]]
(
{(01, 01)}

)
, or that (ij, ji) /ε [[ϕ]]

(
{(01, 10)}

)
, use

Q(x) ,

{
{i, j} if k ε x

∅ otherwise

for some arbitrary k ε I. We have (i, j) ε Q⊗Q
(
{(k, k)}

)
but (01, 01)

(
{(k, k)}

)
= ∅.

The same predicate transformer Q also shows that {(01, 01), (01, 10)} is not a safety

property.

# Remark 26: unfortunately, there are not many easy examples. For in-
stance, due to the presence of exponentials, natural numbers (given by
the formula ϕ , (∀X) X ( !(X ( X) ( X) turn out to be much more
di�cult and requires non-trivial combinatorics on multisets.
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8.2 Second Order in the Relational Model

Before diving into the full construction, let's review brie
y second order in the rela-

tional model. The details we omit can be found in [18], [19] or [20].

8.2.1 Injections

De�ne the following notation: if f is a function from X to Y,

� f+ , 〈gr(f)∼〉, i.e. f+ : P(X)→ P(Y) and f+(x) , {f(a) | a ε x};
� f{ , 〈gr(f)〉, i.e. f{ : P(Y)→ P(X) and f{(y) , {a | f(a) ε y}.

We have:

◦ Lemma 8.2.1: if f is an injection X ↪→ Y, then

� f{ · f+ = IdP(X);

� f+ · f{ ⊆ IdP(Y), and more precisely, f+ · f{(y) = f+(X) ∩ y.

One last thing about injections:

. Definition 8.2.2: an injection ι:X ↪→ Y satisfying ι(a) = a for all a ε X is

called an inclusion. We write X ⊆ Y.

8.2.2 Stable Functors

Let Inj denote the category of sets and injections.

. Definition 8.2.3: a functor F from Inj to Inj is stable if:

1) F sends inclusions to inclusions;

2) F commutes with �nite intersections;

3) F commutes with directed unions.

# Remark 27: the categorical de�nition of stable functor would read \com-
mutes with pullbacks and directed limits". Since we are dealing with sets,
it is natural to require that the functor preserves inclusions. When a func-
tor preserves inclusions, points 2 and 3 are equivalent to the categorical
de�nition.

The de�nition of stable functor is extended to functors of arbitrary arity. We can

talk about a stable functor from Injn to Inj. For such a functor F, we write F~X(~f), or

simply F(~f) for the action of F on the (pointwise) injection ~f : ~X ↪→ ~Y.

Stable functors enjoy a very nice property:

◦ Lemma 8.2.4: let F be a stable functor from Injn to Inj, if a ε F(~X),

then there is a �nite ~X0 ⊆ ~X such that a ε F(~X0). Moreover, there is

a smallest such ~X0, which depends only on a and F (and not on X).

We write |a|F for this unique minimal set and we call it the support

of a.

proof: see [19] or [18] for the easy proof. It follows from the fact that any set is the

directed union of its �nite subsets and that stable functor preserve directed union

and binary intersections, and send inclusions to inclusions.

�X

We have:
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◦ Lemma 8.2.5: let F be a functor from Injn to Inj preserving inclusions

and let f, g : ~X ↪→ ~Y; if the restriction of f and g coincide on x ⊆ X,

then the restriction of F(f) and F(g) coincide on F(x).

In particular, if F is stable, a ε F(~X) and if ~f and ~g are injections

from ~X to ~Y which coincide on |a|F, then F(~f)(a) = F(~g)(a).

proof: that~f and ~g coincide on x can be expressed by saying that the following diagram

commutes: (ι denotes an inclusion)

~x ⊂
ι - ~X

~X

ι
?

∩

⊂
~f - ~Y

~g
?

∩

This implies (because F is a functor preserving inclusions) that the following dia-

grams commutes:

F
(
~x) ⊂

ι - F(~X)

F(~X)

ι
?

∩

⊂
F(~f) - F(~Y)

F(~g)
?

∩

i.e. F(~f) and F(~g) coincide on F
(
|a|F

)
.

The second point is direct application of the �rst point.

�X

8.2.3 Trace of a Stable Functor

If F is a stable functor of arity n + 1, its trace will be a functor of arity n. The idea

is to use the operation from the previous section: we quotient by the action of the

group SI.

. Definition 8.2.6: if F is a stable functor of arity n + 1; de�ne the following

n-ary functor T F, called the trace of F:

� action on objects:

(T F)(X1, . . . , Xn) , F(X1, . . . , Xn, I)≈F

where a ≈F b i� a = F~X,I(
~Id, σ)(b) for some �nite bijection σ : SI;

� action on morphisms: suppose ~f : ~X→ ~Y, de�ne

(T F)~X(~f) : (T F)(~X) → (T F)(~Y)

{a}≈ 7→
{
F~X,I(

~f, σ)(a) | σ : SI

}
.

It is trivial to check that the de�nition is sound.

We have the following lemma:

◦ Lemma 8.2.7: Suppose F is a stable functor of arity n + 1; suppose

moreover that a ε F(X1, . . . , Xn, Y) where Y is an in�nite set. If f is

an injection from Y to Y, then we have a ≈F F~X,Y(
~Id, f)(a).
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proof: we only look at the case when F is of arity 1, the other cases are similar. By

lemma 8.2.4, we have a ε F(|a|F) where |a|F ⊆f Y The restriction of f to |a|F is

an injection with �nite support, so that we can extend it to a bijection g:Y ∼→ Y.

We can even ensure that this bijection is a �nite permutation.

Since f and g coincide on |a|F, we can apply lemma 8.2.5 and get F(f)(a) = F(g)(a).

Since we have that a ≈F F(g)(a), we can conclude.

�X

8.3 Open Formulas as Predicate Transformers

We can now lift the notions of stable functor and trace to take into account predicate

transformers.

8.3.1 Rigid Embeddings

The �rst question to answer is the following: what is an \injection" between predicate

transformers? The answer is given by the notion of rigid embedding:

. Definition 8.3.1: if (X, P) and (Y,Q) are interfaces, a rigid embedding from P

to Q is an injection f : X ↪→ Y satisfying P · f{ = f{ ·Q.

We write f : (X, P) ↪→ (Y,Q), or simply f : P ↪→ Q. If f is an inclusion, we

write (X, P) ≺ (Y,Q) and say that P is a subobject of Q.

As lemma 8.3.7 will show, a rigid embedding is a special case of embedding. Since

we are only interested in rigid embeddings, we omit the adjective \rigid".

A subobject of (X, P) is entirely determined by the subset X0 of X:

◦ Lemma 8.3.2: we have, (X0, P0) ≺ (X, P) i� P(x) ∩ X0 ⊆ P(x ∩ X0) for

all x ⊆ X.

proof: let ι : (X0, P0) ≺ (X, P) be an embedding,

(∀x ⊆ X) P0 · ι{(x) = ι{ · P(x)
⇔ { ι{(x) = X0 ∩ x }

(∀x ⊆ X) P0(X0 ∩ x) = X0 ∩ P(x)
⇒ { in particular, for x ∩ X0, P0(X0 ∩ x) = X0 ∩ P(X0 ∩ x) }

(∀x ⊆ X) X0 ∩ P(X0 ∩ x) = X0 ∩ P(x)
⇔

(∀x ⊆ X) X0 ∩ P(x) ⊆ P(X0 ∩ x)
This concludes the proof: for any embedding (X0, P0) ≺ (X, P), the predicate

transformer P0 is necessarily of the form P0(x0) = X0 ∩ P(x0). This allows to

write X0 ≺ (X, P) without fear of confusion.

�X

As opposed to the traditional case of coherent spaces, it is not the case that any

subset of (X, P) can be made into a subobject of (X, P). In particular, an interface

needs not be the limit of its �nite subobjects. Here is an example of in�nite interface

with no proper subobject:

P : P(N) → P(N)
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x 7→
{

N if x = N

∅ otherwise .

# Remark 28: unfortunately, there is now easy way out of this:
- we cannot require that all �nite subsets to be subobject (see re-
mark 29 on page 179) as the collection of such interfaces is not
closed by dual (see previous example);

- if we require all subsets to be subobjects, we obtain something quite
degenerate where x ⊆ P(X) ⇒ x ⊆ P(x), i.e. S(P) = P(P(X)).

On the other hand, any superset Y of X can be made into a superobject of (X, P):

just de�ne Q(y) , P(y ∩ X).

. Definition 8.3.3: the category Emb has countable interfaces as objects and

rigid embeddings as morphisms.

This category enjoys many closure properties, similar to Inj. For example:

◦ Lemma 8.3.4:

� any embedding can be factorized as an inclusion followed by an

isomorphism;

� Emb has all �ltered limits and pullbacks.

Since those properties will not be used in the sequel, the proof is omitted. We only

mention that the construction are the same as the one used in Inj and that one just

needs to check that they preserve embeddings between interfaces.

• Corollary 8.3.5: The class of interfaces satis�es:

� the relation \≺" is a partial order;

� it is closed under �nite glbs (intersection);

� it is closed under directed lubs (union);

� it is closed under \bounded" lowest upper bounds: if X0 ≺ (X, P)

and X1 ≺ (X, P), then X0 ∪ X1 ≺ (X, P).

What is more important is that embeddings interact well with the logical connectives:

◦ Lemma 8.3.6: if f1 : (X1, P1) ↪→ (Y1,Q1) and f2 : (X2, P2) ↪→ (Y2,Q2),

we have:

� f1 : P⊥1 ↪→ Q⊥
1 (and in particular, X0 ≺ (X, P) i� X0 ≺ (X, P⊥));

� f1 ⊕ f2 : P1 ⊕ P2 ↪→ Q1 ⊕Q2;
� f1 ⊗ f2 : P1 ⊗ P2 ↪→ Q1 ⊗Q2;
� !f1 : !P1 ↪→ !Q1;

proof: let's only look at the case of linear negation: write { for complementation,

f : (X, P) ↪→ (Y,Q)

⇔ { de�nition }
P · f{ = f{ ·Q
⇔

{ · P · f{ · { = { · f{ ·Q · {
⇔ { f{ commutes with complementation }

{ · P · { · f{ = f{ · { ·Q · {
⇔
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P⊥ · f{ = f{ ·Q⊥

⇔ { de�nition }
f : (X, P)⊥ ↪→ (Y,Q)⊥

The other cases are in no way more di�cult.

�X

The central fact is that linear negation is covariant. (We are not (yet) de�ning a

denotational model: an embedding does not represent a proof.)

Finally, we have:

◦ Lemma 8.3.7: if f : P ↪→ Q, then:

� gr(f) is a simulation from P to Q;

� gr(f)∼ is a simulation from Q to P, it is left inverse to gr(f);

� x is a safety property for P i� f+(x) is a safety property for Q;

� if y is a safety property for Q, then f{(y) is a safety property

for P.

proof: the only non trivial part is checking the second point. It follows from the fact

that 〈gr(f)∼〉 = [gr(f)∼] and that r is a simulation from P to Q i� P · [r∼] ⊆ [r∼] ·Q.

(This point follows from the Galois connection 〈r〉 ` [r∼] (lemma 2.5.11).)

�X

8.3.2 Parametric Interfaces

We now have the technology needed to de�ne \parametric interfaces". Those are

meant to represent formulas with free variables. The idea is, going back to the model

of system-F presented in [38], that a formula with free variable X is represented by a

stable functor from Emb to Emb. We moreover require this functor to be split in two

parts:

� one part acting on the sets (of states), i.e. the relational part;

� one part acting on interfaces on those sets.

Formally, this gives:

. Definition 8.3.8: an n-ary parametric interface is a pair (|F|, F), where:

1) |F| is a stable functor from Injn to Inj;

2) if ~P is an interface on ~X, then F(~P) is an interface on F(~X);

3) if ~f : (~X,~P) ↪→ (~Y, ~Q), then |F|(~f) :
(
|F|(~X), F(~P)

)
↪→
(
|F|(~Y), F(~Q)

)
.

(where all the vectors have length n)

|F| is called the relational part of (|F|, F); we usually omit it.

Any such parametric interface trivially induces a functor from Embn to Emb. More-

over, we have the following (easy) property:

◦ Lemma 8.3.9: as a functor from Embn to Emb, an n-ary parametric

interface commutes with pullbacks and directed limits.

Note however that it is very unlikely that any stable functor from Embn to Emb can

be split into a relational part and a speci�cation part.
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We can now lift all the logical constructions on interfaces:

. Definition 8.3.10: if F and G are n-ary parametric interfaces, de�ne the fol-

lowing parametric interfaces:

F⊥(~P) , F(~P)⊥

F⊕G(~P) , F(~P)⊕G(~P)

F⊗G(~P) , F(~P)⊗G(~P)

(!F)(~P) , !
(
F(~P)

)
.

(the relational part is de�ned pointwise in the obvious way)

That those operations yield parametric speci�cations follows from lemma 8.3.6.

8.3.3 Parametric Safety properties (Objects of Variable Type)

The aim is now to represent \parametric safety properties", i.e. if F is a parametric

interface, then a \safety property" for it should be given by a family of safety proper-

ties for all the F(P). We �rst introduce the more intuitive notion of object of variable

type F and then show it is possible to simplify this to obtain the notion of object of

type F, slightly less intuitive but easier to manipulate.

§ Objects of Variable Type. A safety property for F should be a safety property for

all the interfaces F(~P). For technical reasons, this is not quite enough, and we need

to require that such a safety property behaves well w.r.t. embeddings:

. Definition 8.3.11: let F be an n-ary interface; an object of variable type F, or

a parametric safety property for F is given by a family
(
t~X
)

~X
indexed by

countable (possibly �nite) sets such that:

1) t~X ⊆ |F|(~X);

2) t~X = |F|(~f){(t~Y) whenever ~f : ~X ↪→ ~Y; (stability)

3) for any predicate transformer ~P on ~X, t~X is a safety property for F(~P).

We write t :: F to mean that t is a parametric safety property for F.

A (boring) example of parametric safety property is the constantly empty family:

this is a parametric safety properties for every parametric interface.

Considering families indexed by all countable sets may seem a little extreme.

The next lemma shows that a parametric safety property is in fact determined by its

value on �nite sets5 and section 8.3.4 shows that we can even restrict to the single

value on the set I.

◦ Lemma 8.3.12: if t :: F, then a ε t~X i� a ε t|a|F ∩ |F|(~X). We thus have

t~X =
{
a ε |F|(~X) | a ε t|a|F

}
.

proof: this is an easy application of the stability condition in de�nition 8.3.11.

�X

Moreover, since |F|(f){ commutes with unions, the lattice structure of safety

properties for a predicate transformer lifts pointwise to n-ary interfaces:

5: We haven't gained much, since the collection of �nite sets is still a proper class!
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◦ Lemma 8.3.13: the collection of parametric safety properties for a

given parametric interface forms a complete sup-lattice.

§ Monotonic Objects and Composition. One problem when dealing with objects of

variable type is that they are not closed under composition: if we follow section 7.1,

a morphism from F to G is a safety property for F ( G. However, if t :: F ( G

and t′ :: G ( H, then the pointwise composition t′ · t needs not be an object of

variable type F ( H. In order to cope with this problem, we introduce the weaker

notion of monotonic object:

. Definition 8.3.14: let F be an n-ary interface; a monotonic object of variable

type F is given by a family
(
t~X
)

~X
indexed by countable (possibly �nite) sets

such that:

1) t~X ⊆ |F|(~X);

2) t~X ⊆ |F|(~f)
{(t~Y) whenever ~f : ~X ↪→ ~Y; (weak stability)

3) for any speci�cation ~P on ~X, t~X is a safety property for F(~P).

The only di�erence with de�nition 8.3.11 is that we relaxed the stability condition to

an inclusion, rather than an equality. Every monotonic object can be thought of as a

representation for a object of variable type via the following closure operation:

◦ Lemma 8.3.15: if t is a monotonic object of type F; de�ne t̂ as:

t̂~X ,
⋃

~X⊆~Y

t~Y ∩ |F|(~X) .

We have t̂ :: F.

Moreover, ̂ is a closure operation: t̂ is the smallest object of vari-

able F containing t.6

proof: the only non-trivial part is showing that (̂t)~X is a safety property for any F(~P).

Since safety properties are closed under arbitrary unions, it is enough to show

that t~Y ∩ |F|(~X) is such a universal safety property whenever ~X ⊆ ~Y.

Let ~X ⊆ ~Y, and suppose ~P is a speci�cation on ~X. We can \extend" ~P to a

speci�cation ~Q on ~Y so that (~X,~P) ≺ (~Y, ~Q): de�ne ~Q(~y) , ~P(~y∩~X). This implies

that
(
|F|(~X), F(~P)

)
≺
(
|F|(~Y), F(~Q)

)
. By lemma 8.3.2, we know that

|F|(~X) ∩ F(~Q)(t~Y) ⊆ F(~Q)(|F|(~X) ∩ t~Y) . (8-3)

We can now compute:

t~Y ∩ |F|(~X)

⊆ { t~Y
is a safety property in F(~Q) }

F(~Q)(t~Y) ∩ |F|(~X)

⊆ { remark (8-3) above }
F(~Q)

(
t~Y ∩ |F|(~X)

)
⊆ {

`
|F|(~X), F(~P)

´
≺

`
|F|(~Y), F(~Q)

´
, so we have F(~P)

`
|F|(~X) ∩ ~y

´
= F(~Q)(~y) ∩ |F|(~X) }

F(~P)
(
t~Y ∩ |F|(~X)

)
This concludes the proof.

�X

6: Here again, we are dealing with a union indexed by a proper class!
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◦ Lemma 8.3.16: if t and t′ are monotonic objects of type F ( G

and G( H, then the (pointwise) composition (t′ · t)~X , (t′)~X · (t)~X

is a monotonic object of type F( H.

However, the (pointwise) composition of object of variable types

needs not yield an object of variable type, but only a monotonic

object.

proof: simple if one keeps in mind lemma 7.1.9.

�X

Since the pointwise relational composition of two variable objects is only a

monotonic object, we need to de�ne composition as the closure of the relational

composition:

. Definition 8.3.17: if F, G and H are n-ary parametric interfaces and if t and t′

are respectively objects of variable type F ( G and G ( H, de�ne the

composition t′ · t as the family (t′ · t)~X , t̂
′
~X
· t~X.

(where composition on the right is plain relational composition)

We have:

◦ Lemma 8.3.18: if t :: F ( G and t′ :: G ( H, then t′ · t :: F ( H;

moreover, we only need to consider �nite extensions of ~X to compute

the value (t′ · t)~X:

(t′ · t)~X =
⋃

~Y �nite extension of ~X

t′~Y · t~Y ∩ |F( H|(~X)

where Y is a �nite extension of X if X ⊆ Y and Y \ X is �nite.7

proof: See [18] or [19]

�X

An important corollary is

• Corollary 8.3.19: if ~X is (pointwise) in�nite, then (t′ · t)~X = t′~X
· t~X.

(where composition on the right is plain relational composition)

proof: let ~Y0 be a �nite extension of ~X s.t. (a, c) ε t′~Y0
·t~Y0

. We need to show that (a, c)

is already in t′~X · t~X.

(a, c) ε t′~Y0
· t~Y0

⇔(
∃b ε |G|(~Y0)

)
(a, b) ε t~Y0

∧ (b, c) ε t′~Y0

⇒ { let ~f : ~Y0 ↪→ ~X s.t. the restriction of ~f to |a|F ∪ |c|H is the identity. }
{ This is possible because |a|F ∪ |c|G is �nite and ~X is in�nite. }(

∃b ε |G|(~Y0)
)

(a, b) ε |F( G|(~f){(t~Y0
) ∧ (b, c) ε |G( H|(~f){(t′~Y0

)

⇔(
∃b ε |G|(~Y0)

) (
|F|(~f)(a), |G|(~f)(b)

)
ε t~X ∧

(
|G|(~f)(b), |H|(~f)(c)

)
ε t′~X

⇔ { by lemma 8.2.5, |F|(~f)(a) = a and |H|(~f)(c) = c }(
∃b ε |G|(~Y0)

) (
a, |G|(~f)(b)

)
ε t~X ∧

(
|G|(~f)(b), c

)
ε t′~X

7: The collection of �nite extensions of X still forms a proper class!
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⇒ { put b′ , |G|(~f)(b); we have b′ ε |G|(~X) }(
∃b′ ε |G|(~X)

)
(a, b′) ε t~X ∧ (b′, c) ε t′~X

⇔
(a, c) ε t′~X

· t~X
�X

8.3.4 “Universality”

We can now explain in what sense the in�nite set I is \universal".

◦ Lemma 8.3.20: if t :: F, then (t~X) is entirely determined by its value

on ~I (countably in�nite set).

proof: by lemma 8.3.12, we only need to know the value of t~X for �nite ~X's. If ~X is

�nite, then we can �nd a pointwise injection ~f : ~X→~I. By the stability condition,

we get t~X = |F|(~f){(t~I).
�X

We can thus replace the notion of \object of variable type" by the simpler notion:

. Definition 8.3.21: if F is a parametric interface of arity n, an object of type F

is a set t ⊆ |F|(~I) satisfying:

1) if ~f :~I ↪→~I, then |F|(~f){(t) = t; (stability)

2) for any speci�cation ~P on ~I, then t is a safety property in F(~P).

Note in this de�nition that the ~f from the stability condition is an injection, and not

an isomorphism: requiring t to be only closed by permutation (i.e. bijections) is not

enough.

This de�nition is equivalent to the notion of object of variable type. We triv-

ially have that if (t~X) is an object of type F, then t~I is an object of type F. For the

converse, if t is an object of type F, de�ne the family (t~X) as follows:

t~X ,
⋃

~f:~X↪→~I

|F|(~f){(t) . (8-4)

The stability condition imposes such symmetries that we can replace the union above

by an intersection!

◦ Lemma 8.3.22:

1) if f, g : X ↪→ I, then there is h : I ↪→ I s.t. f = h · g or g = h · f;
2) if ~f,~g :~I ↪→~I, then there are ~h~f,

~h~g :~I ↪→~I s.t. ~h~f ·~f = ~h~g · ~g;

3) if t~X is de�ned as (8-4), then we have: t~X =
⋂

~f:~X↪→~I |F|(~f)
{(t).

proof: for the �rst point, suppose that {f+(X) and {g+(X) are in�nite: we can then

de�ne h
(
f(x)

)
, g(x) and since there is necessarily an injection from {f+(X)

to {g+(X) (because the latter is in�nite), we can complete h using such an injec-

tion. We have trivially that h : I ↪→ I and h · f = g.

If one of {f+(X) and {g+(X) is �nite, we can compare their cardinalities. Sup-

pose #
(
{f+(X)

)
� #

(
{g+(X)

)
, we then de�ne h

(
f(x)

)
, g(x), and we complete

the de�nition of h by an injection from {f+(X) to {g+(X).

If #
(
{g+(X)

)
� #

(
{f+(X)

)
, proceed symmetrically.
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For the second point, let's look at an example. Suppose n = 2 and (f1, f2) : ~X ↪→~I;

suppose that by the �rst point, we have h1 · f1 = g1 and h2 · g2 = f2. We can

take ~h~f , (h1, Id) and ~h~g , (Id, h2). It is easy to extend to arbitrary n.

For the last point, let a ε t~X, i.e. a ε |F|(~f){(y) for some ~f : ~X ↪→~I. Let ~g : ~X ↪→~I.

We know that there are ~h~f,
~h~g :~I ↪→~I s.t. ~h~f ·~f = ~h~g · ~g, so that we have:

|F|(~f){(t) = |F|(~f){ · |F|(~h~f)
{(t) { because ~h~f

: ~I ↪→ ~I }

= |F|(~h~f ·~f)
{(t) { by functoriality }

= |F|(~h~g · ~g){(t) { by the second point }

= |F|(~g){ · |F|(~h~g)
{(t) { by functoriality }

= |F|(~g){(t) { because ~h~g : ~I ↪→ ~I } .

This shows that a ε |F|(~g){(t), and thus that a ε
⋂

~g:~I↪→~I |F|(~g)
{(t).

�X

We can now show:

◦ Lemma 8.3.23: if (t~X) is de�ned as (8-4), then (t~X) is an object of

variable type F.

proof: we need to check the three conditions:

K t~X ⊆ |F|(~X): trivial

K if ~f : ~X ↪→ ~Y, then t~X = |F|(~f){t~Y :

� \⊇ direction":

|F|(~f){(t~Y) = |F|(~f){
⋃

~g:~Y↪→~I

|F|(~g){(t)

=
⋃

~g:~Y↪→~I

|F|(~f){ · |F|(~g){(t)

=
⋃

~g:~Y↪→~I

|F|(~g ·~f){(t)

⊆
⋃

~h:~X↪→~I

|F|(~h){(t)

= t~X

� \⊆ direction": we use lemma 8.3.22 point 3

|F|(~f){(t~Y) = |F|(~f){
⋂

~g:~Y↪→~I

|F|(~g){(t)

=
⋂

~g:~Y↪→~I

|F|(~f){ · |F|(~g){(t)

=
⋂

~g:~Y↪→~I

|F|(~g ·~f){(t)

⊇
⋂

~h:~X↪→~I

|F|(~h){(t)

= t~X
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K if ~P is a speci�cation on ~X, then t~X ⊆ F(~P)(t~X):

a ε t~X
⇔ { de�nition }

a ε
⋃

~f:~X↪→~I |F|(~f)
{(t)

⇒ { claim: |F|(~f){(t) ⊆ F(~P)
`
|F|(~f){(t)

´
, see below }

a ε
⋃

~f:~X↪→~I F(
~P)
(
|F|(~f){(t)

)
⇒ { for any predicate transformer Q,

S
Q ⊆ Q

S
}

a ε F(~P)
(⋃

~f:~X↪→~I |F|(~f)
{(t)

)
⇔ { de�nition }

a ε F(~P)(t~X)

Claim: |F|(~f){(t) ⊆ F(~P)
(
|F|(~f){(t)

)
for any ~f : ~X ↪→~I.

De�ne ~P~f = ~f+ ·~P ·~f{. It is trivial to check that ~f : (~X,~P) ↪→ (~I,~P~f), which implies

that |F|(~f) : F(~P) ↪→ F(~P~f). By de�nition, it means that F(~P)·|F|(~f){ = |F|(~f){·F(~P~f).

Since ~P~f is a speci�cation on ~I, we know that t ⊆ F(~P~f)(t). By monotonicity

of |F|(~f){, this implies |F|(~f){(t) ⊆ |F|(~f){ · F(~P~f)(t). By the previous equality, we

can conclude that |F|(~f){(t) ⊆ F(~P) · |F|(~f){(t).
�X

• Corollary 8.3.24: the collection of objects of variable type F and the

collection of objects of type F are in bijection.

Since lemma 8.3.19 ensures that plain composition for objects of types F ( G

and G( H is well-de�ned, we now replace the notion of object of variable type F by

the (simpler) notion of object of type F. We now write t :: F for the latter.

# Remark 29: in the purely relational model, instead of (8-4), one recovers
the whole (t~X

) from t~I in the following way:

t~X
,

{
a ε |F|(~X) | (∃~f : |a|F ↪→ ~I) |F|(~f)(a) ε t

}
which has the advantage of working for set of arbitrary cardinality.

The reason we cannot use this de�nition is that it seems impossible to
prove that t~X

is a safety property in all the F(~P) for ~P a speci�cation on ~X
when ~X is not countable. The problem comes from the fact that |a|F
needs not be a subobject of (~X, ~P). We can overcome this problem when
~X is countable by the following trick: if ~f : |a|F ↪→ ~I, then we can �nd
some ~g : ~X ↪→ ~I extending f, and proceed as in the proof of lemma 8.3.23.

We have �nally found a notion of object of type F which doesn't involve proper

classes. What is almost magical is that this allows to recover an object of variable

type indexed by all countable sets!

8.3.5 The Categories of n-ary Parametric Interfaces

Just like Int forms a category, the collection of n-ary parametric interfaces PInt(n) can

be equipped with a structure of category:

. Definition 8.3.25: for any natural number n, the category PInt(n) is de�ned

as follows:

� objects are n-ary parametric countable interfaces;

� a morphism from F to G is an object of type F( G;
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� if t :: F( G and t′ :: G( H, the composition t′ · t :: F( H is given

by the relational composition of t′ and t.

By convention, if F is of arity 0, an object of type F is simply a safety property

for F.

This is indeed a category (by lemma 8.3.19 and the fact that Id|F|(~I) :: F ( F).

Moreover, just like in section 2.5, we get:

� Proposition 8.3.26: for all n, PInt(n) with the operations from

de�nition 8.3.10 forms a denotational model for full linear

logic.

Checking formally everything is a lengthy and boring job: it amounts to lift all of

section 7.1 pointwise.

8.4 Second Order Quantification

Now that we can model formulas with free propositional variables (represented by

parametric interfaces), the goal is to give the semantical operation modeling quanti�-

cation. For that, we use the operation of \trace" de�ned on page 170 for the relational

model. We extend it to deal with predicate transformer in the same way as we did

in section 8.1 by taking a huge intersection over all predicate transformers on I.

8.4.1 Trace of a Parametric Interface

The de�nition is just the same as de�nition 8.1.2, relativized to a single variable:

. Definition 8.4.1: let F be an interface of arity n + 1; de�ne T̃ F, the pre-trace

of F to be the following interface of arity n:

| T̃ F|(X1, . . . , Xn) , |F|(X1, . . . , Xn, I)
T̃ F~X(P1, . . . , Pn) ,

⋂
Q speci�cation on I

F~X,I(P1, . . . , Pn,Q) .

De�ne the trace of F to be the following interface of arity n, on the set T |F|
(the relational trace of |F|, see page 170):

T F~X(~P)(U) ,
(
T̃ F~X(~P)

(⋃
U
))

≈
.

That this de�nition is sound follows from:

◦ Lemma 8.4.2: if F is an interface of arity n+ 1,

1) T̃ F is an interface of arity n;

2) the group SI of �nite permutations acts on | T̃ F|(~X) = |F|(~X, I)
with the obvious de�nition: [σ](a) = |F|~X,I(Id

n, σ)(a);

3) if U ⊆ | T̃ F|(~X) is ≈-closed, then so is T̃ F~X(~P)(U).

The proof of point 3 is completely similar to the proof of lemma 8.1.3.

Moreover, we have:
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◦ Lemma 8.4.3: the operation T is a functor from PInt(n+1) to PInt(n).

The action of T on morphisms (embeddings) is de�ned as the action of the relational

trace on underlying injections (page 170).

Finally, we have (where stability is point 1 in de�nition 8.3.21)

◦ Lemma 8.4.4: if t ⊆ |F|(~I, I), then t is stable w.r.t F i� t≈ is stable

w.r.t. T F. This implies that t :: F i� t≈ :: T F.

8.4.2 An Appropriate Adjunction

Following Lawvere insight, we justify the relevance of T as a sound interpretation of

universal quanti�cation by showing an adjunction between T : PInt(n+1) → PInt(n)

and U : PInt(n) → PInt(n+1), the \useless variable functor". It is de�ned by:

|U(F)|(X1, . . . , Xn, Xn+1) , |F|(X1, . . . , Xn)

U(F)(P1, . . . , Pn, Pn+1) , F(P1, . . . , Pn) .

This adjunction is the semantical counterpart of the logical rule de�ning universal

quanti�cation: Γ ` (∀X) F(X) i� Γ ` F(X) where X is not free in Γ . The functor U

makes sure that we use a fresh variable. Checking that this is an adjunction amounts

to checking that the collection of morphisms from UG to F is naturally isomorphic

to the collection of morphisms from G to T F.

§ From PInt(n+1)(UG, F) to PInt(n)(G,T F). Suppose t is a morphism from UG to F,

i.e. that t :: UG( F. The obvious candidate for a morphism Λt :: F( T F is:

Λt ,
{(
b, {a}≈

)
| (b, a) ε t

}
.

In the terminology of system-F, Λt is a type abstraction.

◦ Lemma 8.4.5: if t :: UG( F then Λt :: G( T F.

proof: we need to prove that Λt is stable and that (Λt)~X is a safety property in

any (G( T F)(~P) for speci�cations ~P on ~X.

K Stability: let ~f : ~X ↪→~I

(b, {a}≈) ε |G( T F|(~f){Λt
⇔(

|G|(~f)(b), |T F|(~f)({a}≈)
)
ε Λt

⇔(
|G|(~f)(b),

{
|F|(~f, f)(a) | f ε SI

} )
ε Λt

⇔(
|G|(~f)(b), {|F|(~f, Id)(a)}≈

)
ε Λt

⇔(
|G|(~f)(b), |F|(~f, Id)(a)

)
ε t

⇔(
|UG|(~f, Id)(b), |F|(~f, Id)(a)

)
ε t

⇔
(b, a) ε |UG( F|(~f, Id){(t)
⇔ { t is stable for UG ( F }

(b, a) ε t
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⇔
(b, {a}≈) ε ∆t

K Λt is a universal safety property:

(b, {a}≈) ε Λt

⇔
(b, a) ε t

⇒ { t is an object of type UG ( F }

(∀~P,Q) (b, a) ε (UG( F)(~P,Q)(t)

⇔
(∀~P,Q) (b, a) ε

(
G(~P)( F(~P,Q)

)
(t)

⇔ { de�nition of ( }

(∀~P,Q) (∀y) b ε G(~P)(y)⇒ a ε F(~P,Q)(〈t〉y)
⇔

(∀~P) (∀y) b ε G(~P)(y)⇒ (∀P) a ε F(~P,Q)(〈t〉y)
⇔ { de�nition of pre-trace }

(∀~P) (∀y) b ε G(~P)(y)⇒ a ε (T̃ F)(~P)(〈t〉y)
⇒ { claim (see below): 〈t〉y ⊆

S
〈Λt〉y }

(∀~P) (∀y) b ε G(~P)(y)⇒ a ε (T̃ F)(~P)(
⋃
〈Λt〉y)

⇔ { de�nition of T, and because
S
〈Λt〉y is ≈-saturated }

(∀~P) (∀y) b ε G(~P)(y)⇒ {a}≈ ε (T F)(~P)(〈Λt〉y)
⇔ { de�nition of ( }

(∀~P) (b, {a}≈) ε
(
G( (T F)

)
(~P)(Λt)

proof of the claim: 〈t〉y ⊆
⋃
〈Λt〉y for any y:

a ε 〈t〉y
⇔

(∃b ε y) (b, a) ε t

⇒
(∃b ε y) (b, {a}≈) ε Λt

⇒ { for α = {a}≈ }

(∃b ε y) (∃α) (b, α) ε Λt ∧ a ε α
⇔

(∃α ε 〈Λt〉y) a ε α
⇔

a ε
⋃
〈Λt〉y

�X

§ From PInt(n)(G,T F) to PInt(n+1)(UG, F). For the converse, just do . . . the opposite:

if t :: G( T F, de�ne:

Et ,
{
(b, a) |

(
b, {a}≈

)
ε t

}
.

We have the expected result, namely:

◦ Lemma 8.4.6: if t :: G( T F then Et :: UG( F.
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proof: suppose that t :: G( T F, we need to prove that Et :: UG( F: i.e. , that Et

is stable and is a universal safety property.

K Stability: let ~f, f and ~g, g be injections ~I ↪→~I:

(b, a) ε |UG( F|(~f, f){(Et)
⇔(

|UG|(~f, f)(b), |F|(~f, f)(a)
)
ε Et

⇔(
|G|(~f)(b), {|F|(~f, f)(a)}≈

)
ε t

⇔(
|G|(~f)(b),

{
|F|(~f, g · f)(a) | g : SI

} )
ε t

⇔ { since g · f is an injection, we can apply lemma 8.2.7; }
{ the proof of the \⇐" direction is similar to the proof of lemma 8.2.7 }(

|G|(~f)(b),
{
|F|(~f, g)(a) | g : SI

} )
ε t

⇔(
|G|(~f)(b), |T F|(~f)({a}≈)

)
ε t

⇔
(b, {a}≈) ε |G( T F|(~f){t
⇔ { t is stable for G ( T F }

(b, {a}≈) ε t

⇔
(b, a) ε Et

K Et is a universal safety property: let ~P,Q be speci�cations on ~I.

We will now prove that Et ⊆ G(~P) ( F(~P,Q)(Et): suppose (b, a) ε Et and

let b ε G(~P)(~y). We need to show that a ε F(~P,Q)(〈Et〉~y):
(b, a) ε Et

⇔ { de�nition of Et }
(b, {a}≈) ε t

⇒ { since t ⊆ G(~P) ( T F(~P)(t) and b ε G(~P)(~y), by de�nition of (: }
{a}≈ ε T F(~P)(〈t〉~y)
⇒ { in particular (de�nition of T F) }

a ε F(~P,Q)(
⋃
〈t〉~y)

⇒ { claim (see below):
S
〈t〉~y ⊆ 〈Et〉~y }

a ε F(~P,Q)(〈Et〉~y)
Proof of the claim:

⋃
〈t〉~y ⊆ 〈Et〉~y for any ~y:

a ε
⋃
〈t〉~y
⇔

(∃a′) a ≈ a′ ∧ {a′}≈ ε 〈t〉~y
⇔

(∃a′) (∃b ε ~y) a ≈ a′ ∧ (b, {a′}≈) ε t

⇔ { {a}≈ = {a′}≈ since a ≈ a′ }
(∃b ε ~y) (b, {a}≈) ε t

⇔
b ε 〈Et〉~y

�X

Checking that the operations Λ and E are inverse to each other is easy. The

isomorphism is trivially natural, which allows to conclude:
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� Proposition 8.4.7: for any n, the functor U : PInt(n) → PInt(n+1)

is left-adjoint to the functor T : PInt(n+1) → PInt(n).

8.4.3 Substitution

Proposition 8.4.7 justi�es, categorically speaking, the introduction rule for the uni-

versal quanti�er:

Γ ` F(Y)

Γ ` (∀X) F(X)
if Y is not free in Γ .

The dual rule for the existential quanti�er uses the notion of substitution:

Γ ` F[G/X]

Γ ` (∃X) F(X)
where G is a formula .

Rather than doing this \unary" substitution, we de�ne an operation representing the

parallel substitution F[G1/X1, . . . , Gn/Xn]:

. Definition 8.4.8: suppose ~G is a \parametric substitution" from Embn to Embk

(i.e. ~G is of the form (G1, . . . , Gn) where each Gi is a k-ary interface);

de�ne the following operation of substitution taking an n-ary interface F

and returning a k-ary interface F~G/:

� action on objects:

|F~G/|(X1, . . . , Xn) , |F|
(
|~G|(X1, . . . , Xn)

)
F~G/(P1, . . . , Pn) , F

(
~G(P1, . . . , Pn)

)
i.e. F~G/ is just the composition F · ~G;

� action on morphisms: if t :: F( H, then t~G/ = t~G(Ik), i.e.

t~G/ ,
⋃

~f:|~G|(Ik)↪→~I

|F( H|(~f){(t) .

Unfortunately, this operation is not functorial but only a lax-functorial:

◦ Lemma 8.4.9: for any substitution ~G and morphisms t :: F1 ( F2
and t′ :: F2( F3, we have:

� t′~G/ · t~G/ ⊆ (t′ · t)~G/;

� if |G|(Ik) is in�nite,8 equality holds.

proof: if we unfold the de�nition of t~G/ (using point 3 of lemma 8.3.22), we get:

� (a, c) ε s~G/ · t~G/ i�

(
∃b ε |F2|

(
|~G|(Ik)

)) {
(∀~f:|~G|(Ik) ↪→~I)

(
|F1|(~f)(a), |F2|(~f)(b)

)
ε s

(∀~g:|~G|(Ik) ↪→~I)
(
|F2|(~g)(b), |F3|(~g)(c)

)
ε t

8: in the sense that it is a tuple of in�nite sets
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� (a, c) ε (s · t)~G/ i�

(∀~f:|~G|(Ik) ↪→ I)
(
∃b ε |F2|(~I)

) {(
|F1|(~f)(a), b

)
ε s(

b, |F3|(~f)(c)
)
ε t .

Checking the inclusion is easy.

For the second point, let (a, c) ε (s · t)~G/; in particular, let ~h : |~G|(Ik) ∼→ ~I

(this is possible since |~G|(Ik) is in�nite), we know that

(
∃b ε |F2|(~I)

) {(
|F1|(~h)(a), b

)
ε s(

b, |F3|(~h)(c)
)
ε t .

Let b′ , |F2|(h){(b) (this is well de�ned because |F2|(~h) is a bijection); it su�ces

to show (by de�nition of s~G/ · t~G/) that{
(∃~f:|~G|(Ik) ↪→~I)

(
|F1|(~f)(a), |F2|(~f)(b′)

)
ε s

(∃~g:|~G|(Ik) ↪→~I)
(
|F2|(~g)(b′), |F3|(~g)(c)

)
ε t .

Take f , h and g , h. . .
�X

# Remark 30: if |G|(Ik) contains a �nite set, then equality needs not hold
and the inclusion can be strict. Use the following: F, G and H in PInt(1),
with t :: F ( G, s :: G ( H and K : Emb → Emb where:

- |F|(X) = |H|(X) = {∗}; F(P) = H(P) = Id;

- |G|(X) = X; G(P) = IdP(X);

- K(X, P) = (∅, Id);
- t = {(∗, i) | i ε I};
- s = {(i, ∗) | i ε I}.

It is easy to check that t and s are objects of type F ( G and G ( H
and that s~G/

· t~G/
= ∅ whereas (s · t)~G/

= {(∗, ∗)}.

Notice that when dealing with interpretations of linear logic formulas, if the substi-

tution is pointwise open (in the sense that each Gi is an open formula) or contains

exponentials, ~G(Ik) is in�nite, and equality thus holds.

§ Comprehension. Suppose F is an interface of arity n+ 1,

. Definition 8.4.10: de�ne εF , E
(
Id|T F|(~I)

)
; we have εF :: UT F( F.

In particular, for any k-ary interface G we can apply substitution on this and obtain

a parametric interface of arity n+ k:

εFIdn,G/ :: (UT F( F)Idn,G/ = (Uk T F)( (FIdn,G/) .

This is the semantics counterpart of (∀X) F(X) ` F[G/X], the so-called \comprehension

axiom".

◦ Lemma 8.4.11: for any π :: U Γ ( F, we have (εFIdn,G/) ·Λπ = πIdn,G/.
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proof: we just show one side of the inclusion:

(γ, a) ε εFIdn,G ·Λπ
⇔

(∃b) (γ, {b}≈) ε Λπ ∧ ({b}≈, a) ε εFIdn,G

⇔ { where (~f, g) : In × |G|(Ik) ↪→ In+1 }
(∃b) (γ, {b}≈) ε Λπ ∧

(
∀(~f, g)

) (
UT |F|(~f, g)({b}≈), |F|(~f, g)(a)

)
ε εF

⇒ { in particular for ~f the identity }
(∃b) (γ, {b}≈) ε Λπ ∧

(
∀g:|G|(Ik) ↪→ I

) (
{b}≈, |F|(Idn, g)(a)

)
ε εF

⇔ { de�nition of εF }
(∃b) (γ, {b}≈) ε Λπ ∧

(
∀g:|G|(Ik) ↪→ I

)
{b}≈ = {|F|(Idn, g)(a)}≈

⇒(
∀g:|G|(Ik) ↪→ I

) (
γ, {|F|(Idn, g)(a)}≈

)
ε Λπ

⇔(
∀g:|G|(Ik) ↪→ I

) (
γ, |F|(Idn, g)(a)

)
ε π

⇒ { take any g : |G|(Ik) ↪→ I }(
|U Γ |(Idn, g)(γ), |F|(Idn, g)(a)

)
ε π

⇒(
∃(~f, g) :~I× |G|(Ik) ↪→~I× I

) (
|U Γ |(~f, g)(γ), |F|(~f, g)(a)

)
ε π

⇔
(γ, a) ε πIdn,G

The converse inclusion is similar.

�X

§ Equations for Substitution. We can now check that substitution does behave as

expected:

1) (T F)~G/ = T(F~G,Id/): this means that T binds the last variable of the interface (it

is unchanged by substitution);

2) (Λt)~G/ = Λ(t~G,Id/) this is similar, at the level of morphisms (proofs);

3) (Et)~G,Id/ = E(t~G/): the operation E acts like the identity substitution

proof: let's check the last equality: let t :: F( TG. That the typing is correct follows

directly from point 1.

(b, a) ε (εt)~G,Id/

⇔(
∀(~f, g):~G(~I)× I ↪→~I× I

)
|U F( G|(~f, g)(b, a) ε εt

⇔ { in particular, for g the identity function: }(
∀(~f):~G(~I) ↪→~I

) (
|F|(~f)(b), |G|(~f, Id)(a)

)
ε εt

⇔(
∀(~f):~G(~I) ↪→~I

) (
|F|(~f)(b), {|G|(~f, Id)(a)}≈

)
ε t

⇔(
∀(~f):~G(~I) ↪→~I

) (
|F|(~f)(b), |TG|(~f){a}≈

)
ε t

⇔(
∀(~f):~G(~I) ↪→~I

)
|F( TG|(b, {a}≈) ε t

⇔
(b, {a}≈) ε t~G/

⇔
(b, a) ε E(t~G/)

�X
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To be complete, one also needs to check that substitution commutes with the logical

connectives. For example, we have:

(F⊗H)~G/ = F~G/ ⊗H~G/

(t⊗ t′)~G/ = t~G/ ⊗ t
′
~G/

(where t :: F ( G and t′ :: F′ ( G′ and t⊗ t′ :: F⊗ F′ ( G⊗G′).

8.4.4 Subinvariance by Cut-Elimination

Interpreting second order linear logic is rather easy now: just lift all the logical

connectives to parametric interfaces. The only mild di�culty is getting the handling

of free variables right. Let ~X be a (�nite) list of n unique variables names and

suppose F is a second order linear formula, with all its free variables in ~X. We can

interpret the formula F by an n-ary interface [[F]]
~X : Embn → Emb inductively:

� for �rst order constructions, use de�nition 8.3.10;

� if F is of the form (∀X)G for a new variable name X, put [[F]]
~X , T[[G]]

~X,X;

� for an existential quanti�er, use (∃X) F =
(
(∀X) F⊥

)⊥
.

Of course, the interesting part is interpreting proofs: for �rst order rules, follow

section 7.1. This only leaves the two rules

` Γ , F

` Γ , (∀X) F
where X is not free in Γ

` Γ , F[G/X]

` Γ , (∃X) F
where G is a formula.

For the �rst rule, we use the Λ operation (page 181):

� if the proof is
π′ ` Γ , F

π ` Γ , (∀X) X
, use [[π]] , Λ[[π′]]

Correctness is fairly straightforward.

Interpreting the existential rule is slightly trickier, but there is no room for

improvisation:

� if the proof is
π′ ` Γ , F[G/X]

π ` Γ , (∃X) F
and all the free variables of G not in ~X

appear in ~Y, of length k, we have:

- [[Γ, (∃X) F]]
~X = [[Γ ]]

~X &(
T[[F⊥]]

~X,X
)⊥

;

- [[Γ, F[G/X]]]
~X,~Y = U

k[[Γ ]]
~X &

[[F]]
~X,X

Idn,G/.

(Note that we need to \pad" the context with some U's to get an interface of appropriate arity.)

We have:

εF
⊥

Idn,G/ :: Uk T(F⊥)( (F⊥Idn,G/)

⇔ { the action of ⊥ on morphism is just the converse operation on relations: r 7→ r∼ }(
εF

⊥

Idn,G/

)∼
:: (FIdn,G)( U

k
T(F⊥)

⊥

⇔(
εF

⊥

Idn,G/

)∼
:: [[F[G/X]]]

~X,~Y ( U
k[[(∃X) F]]

~X.

We can compose that with [[π′]] and obtain(
εF

⊥

Idn,G/

)∼ · [[π′]] :: U
k[[Γ, (∃X) F]]

~X
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which implies that
(
εF

⊥

Idn,G/

)∼ · [[π′]] :: [[Γ, (∃X) F]]
~X.

We de�ne [[π]] to be precisely this object. The previous computation showed correct-

ness of the interpretation.

§ Failure of Cut-Elimination. We thus obtain a denotational model of second order

linear logic: formulas are interpreted by parametric interfaces, and proofs are inter-

preted by objects of (variable) type, i.e. \parametric safety properties". We have

shown (for a subtheory of �rst order linear logic, namely simply typed λ-calculus)

that the �rst order interpretation is invariant under cut elimination and it is easy to

extend that to any PInt(n). However, invariance may fail when eliminating second

order cut:

π ` Γ , F

` Γ , (∀X) F

π′ ` F⊥[G/X] , ∆

` (∃X) F⊥ , ∆

` Γ , ∆

reduces to

π[G/X] ` Γ , F[G/X] π′ ` F⊥[G/X] , ∆

` Γ , ∆

(where π[G/X] is the obvious proof where X as been replaced by G)

The respective interpretations of those proofs are

� π1 , [[π′]] · (εF⊥Idn,G/)
∼ ·Λ[[π]];

� and π2 , [[π′]] · [[π[G/X]]].

By lemma 8.4.11, we have that π1 = [[π′]] · [[π]]Idn,G/; and by lemma 8.4.9, we can

easily show (by induction) that [[π[G/X]]] ⊆ [[π]]Idn,G/. We thus obtain:

π2 = [[π′]] · [[π[G/X]]] ⊆ [[π′]] · [[π]]Idn,G/ = π1 .

We cannot guarantee that this inclusion is an equality. It means that it is a priori pos-

sible for the interpretation of proofs to decrease during cut elimination. The problem

is not too serious because equality will hold as soon as the formula G is \in�nite"

(for example when it contains free variables or exponentials). In particular, if one

interprets system-F in this way, the only \�nite" formula is the empty type (∀α)α. It

is not known at the moment if objects of variable type coming from real proofs may

actually decrease during cut elimination.9

9: Note that this problem is independent of interfaces: it is a question on the relational model.
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This work was concerned with the notion of interaction system, a graph like

structure with a notion of signed transitions between states. Those transitions are

alternating between \Angel" and \Demon" transitions; the latter depending on the

former. The point of departure was constructive topology, since this structure ade-

quately describes a formal space in type theory, or in constructive predicative math-

ematics. However, the main motivation remained the computational relevance of

interaction systems to describe programming interfaces and programs ful�lling those

interfaces. In this respect, most of the early intuitions about interaction systems can

be attributed to Peter Hancock.

Prior to that, the abstract structure of interaction systems was studied in chap-

ters 2 and 3, and this was put into application to show that the category of interaction

systems forms a non trivial denotational model of linear logic (chapter 6). Some of

the additional structure of interaction systems can be interpreted in a similar way

by showing that they also model the operation of di�erentiation of the di�erential

λ-calculus (section 6.4). However, if the computational content of interaction system

is not needed, the presentation of the model can be simpli�ed by replacing the notion

of interaction system by the notion of predicate transformers. This is what is done

in chapter 7 and the result is a concise and elegant denotational model of full propo-

sitional linear logic. This model is then extended to second order using traditional

technology: this is the content of chapter 8.

Future Work

Many things remain to be done, ranging from very concrete to very abstract. One long

term goal is to reconcile the �rst part ( ∗ monad and ∞ comonad) with the second

part (? monad and ! comonad), for which no common ground has been found. In

particular, as surprising as it may seem, the notion of sequential composition is not

used anywhere in the second part!

From an abstract point of view, generalizing the notion of interaction systems

or predicate transformers could be enlightening. Two directions are the following:

� consider that S has some structure (order, group or even small category). For

example, it would be interesting to see if there is a notion of interaction systems

allowing to represent functors from Ŝ to itself. (Where Ŝ is the category of

presheaves over a small category.)

� consider S to be an object in a locally cartesian closed category, or more gen-
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erally a category with families ([30]). Such a category has as internal language

dependent type theory ([81] and [49]). In this context, an interaction system

becomes the following:

- an object S in C;

- an object A in C/S;

- an object D in C/ΣSA;

- a morphism n in C
(
ΣSΣAD , S

)
.1

When C is Set, we recover the notion studied in this thesis. The notion of mor-

phism would be given by a span (relation) with some morphisms giving the

translations from A1 to A2 and from D2 to D1. Since the intuitionistic part of

the category Int was developed in dependent type theory, it probably lifts to the

context of category with families.

This point is closely related to the work on containers done in Nottingham

(see [1]), but taking advantage of the linear structure of \dependent contain-

ers", aka interaction systems.

Such extensions could in particular shed some light on proposition 2.5.23 (equivalence

between interaction systems and predicate transformers), which is highly surprising.

It is not expected that such a thing will hold in more general contexts like the one

described above.

Another direction would be to use the fact that Int is enriched over complete

sup-lattices to give models for the untyped di�erential λ-calculus. There, one wants

to interpret arbitrary Taylor expansions, which is impossible to in the �niteness space

model. The desciption of the model for untyped λ-calculus can be found in [54].

On the purely logical side, it would be interesting to see if we can have a \weak"

completeness result for multiplicative linear logic: something along the lines of \if x

is a safety property in F for all valuation, then x is a union of interpretations of proofs

of F".

Trying to see if we can make precise the intuition of \synchrony" used in the

multiplicative/exponential connectives. Could process algebra and interaction system

learn from each other?

From a purely concrete point of view, trying to use interaction systems (or a

variant) to describe some concrete interface should also be done. Another long term

goal would be to see if the technology of interaction systems can be used to help

developing programs satisfying various speci�cation.

etc.

etc.

etc.

1: Recall that it is customary, for an object B of C/A, to write ΣAB for the codomain of B.
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Résumé en français :

Cette th�ese, s'int�eresse aux syst�emes d'interaction, une notion visant �a mod�eliser les interactions

entre un syst�eme informatique et son environnement.

La premi�ere partie d�eveloppe, dans le cadre de la th�eorie des types de Martin-L�of, la th�eorie

de base des syst�emes d'interaction et des constructions inductives et co-inductives qu'ils perme-

ttent. On trouve dans cette partie une �etude des liens entre syst�emes d'interaction et topologies

formelles et une formulation (en terme de syst�emes d'interaction) d'un th�eor�eme de compl�etude

vis-�a-vis d'une s�emantique topologique des th�eories g�eom�etriques (lin�eaires).

Dans cette �etude, la notion compl�etement standard de simulation, joue un rôle fondamental

car elle permet de d�e�nir la notion de morphisme entre syst�emes d'interaction. Ceci permet

d'�etablir une �equivalence entre la cat�egorie ainsi d�e�nie et une autre cat�egorie, beaucoup plus

simple �a d�ecrire, celle des transformateurs de pr�edicats.

En traduisant dans ce nouveau vocabulaire les constructions pr�ec�edentes, on observe que les

transformateurs de pr�edicats forment un nouveau mod�ele de la logique lin�eaire, qui est d�ecrit

puis �etendu au second ordre.

En�n, les propri�et�es particuli�eres des syst�emes d'interaction / transformateurs de pr�edi-

cats sont mises �a pro�t pour donner une interpr�etation du λ-calcul di��erentiel. Cela suppose

d'introduire du non d�eterminisme, ce que les syst�emes d'interaction et les transformateurs de

pr�edicats permettent de faire.
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des types dpendants, topologie constructive, interaction, simulation, transformateurs de prdi-

cats, second-ordre

Titre original en anglais : A Logical Investigation of Interaction Systems

Résumé en anglais :

The topic of this thesis is the study of interaction systems, a notion modeling interactions

between a program and its environment.

The �rst part develops the general theory of those interaction systems in Martin-L�of de-

pendent type theory. It introduces several inductive and coinductive de�nitions of interest on

those interaction systems. We study in particular the strong link between interaction systems

and formal topology and give an application by formulating a completeness theorem (in terms

of interaction systems) with respect to a topological semantics for (linear) geometric theories.

In all the thesis, a central notion is that of simulations: it allows to de�ne the notion

of morphism between interaction systems. It is possible to prove an equivalence between this

category and the simpler category of predicate transformers.

We can then translate the constructions from the �rst part in this new context and obtain

a new denotational model for linear logic. This model is then extended to second-order.

Finally, speci�c properties of interaction systems / predicate transformers are used to give a

model of the di�erential λ-calculus. This presupposes the addition of non-determinism, which

is fully supported by interaction systems / predicate transformers.
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