
A LINEAR CATEGORY OF POLYNOMIAL DIAGRAMS

PIERRE HYVERNAT

Abstract. We present a categorical model for intuitionistic linear logic where

objects are polynomial diagrams and morphisms are simulation diagrams. The
multiplicative structure (tensor product and its adjoint) can be defined in

any locally cartesian closed category, whereas the additive (product and co-

product) and exponential (⊗-comonoid comonad) structures require additional
properties and are only developed in the category Set, where the objects and

morphisms have natural interpretations in terms of games, simulation and

strategies.

Introduction

Categories of games abound in the literature of denotational semantics of linear
logic. We present a category based on a notion of game that differs from tradi-
tional games semantics. Objects are a kind of two players game and following a
well established tradition [Joy77], morphisms from G1 to G2 amount to strategies
(for the first player) in a game called G1 (G2. Composition of strategies is a
“relational composition”, or more precisely, “span composition”. In particular, in-
teraction is irrelevant to the definition of composition. The theory is developed in
the abstract setting of locally cartesian closed categories and polynomial diagrams
[GK09, Koc09].

The paper is organized as follows: after some preliminaries (section 1), we con-
struct a symmetric monoidal closed category around polynomial diagrams over any
locally cartesian closed category (section 2). We then restrict to the case where the
base category is the category of sets and functions and extend the SMCC structure
to a denotational model for full intuitionistic linear logic by adding a biproduct
(cartesian and cocartesian structure) and constructing an exponential comonad for
the free commutative ⊗-comonoid (section 3). The proof that the exponential struc-
ture is indeed the free commutative ⊗-comonoid involves a lot of tedious checking
and, for simplicity’s sake, is only spelt out in a simpler category.

Related Works. Part of this work is implicitly present in [Hyv05, HH06] where
polynomial endofunctors are called “interaction systems” and everything was done
with dependant type theory. The focus was on representing formal topological
spaces with dependent types. Categorically speaking, it amount to the following:
it is possible to show that the free monad construction on polynomial endofunctors
described in the second part of [GK09] gives a monad on the category of polynomial
endofunctors and simulations (Section 2.1). The category introduced in [HH06] is
“simply” the Kleisli category of the this monad.

The same kind of polynomial functors are also used by Altenkirch and Morris
(together with Ghani, Hancock and McBride) in [MA09] under the name “indexed
containers” in order to give a semantics to a large family of indexed, strictly positive
datatypes. The unindexed version was developed earlier in [AAG05].

Date: September 2012.
Key words and phrases. polynomial functors; linear logic.

1

2 PIERRE HYVERNAT

Games. The games we consider are non-initialized, state-based, 2-players, alter-
nating games. More precisely, a game is given by the following data:

• a set I of states,
• for each state i ∈ I, a set of moves A(i) for Alfred,
• for each move a ∈ A(i), another set of counter moves D(a) for Dominic,
• a function n going from counter moves to states, giving the new state after

each possible choice of counter move from Dominic. We usually write i[a/d]
instead of n(d) whenever a ∈ A(i) and d ∈ D(a).

As is customary in categories, we represent a family of sets indexed by I by an
object of the slice category Set/I . A game is thus simply given by a diagram of the
form

I D A I
n d a

.

Other names for the players would be “Player” and “Opponent” (games semantics),
“Angel” and “Demon” (process calculus), “Alice” and “Bob” (cryptography) etc.

Those games are slightly asymmetrical in that there is no actual state between A-
moves and D-moves. In particular, it is not obvious what form the familiar A/D
duality should take. Many of the usual board games such as chess or go are more
symmetric: given a state, both players could make a move. Such games are more
appropriately represented by two spans over the same set:

I D I I A I
d nd a na

.

• I represents the set of states,
• for each state i ∈ I, the fiber A(i) gives the available A-moves and the

function nA gives the new state after such a move,
• for each state i ∈ I, the fiber D(i) gives the available D-moves and the

function nD gives the new state after such a move.

We get an asymmetric alternating version as above with the plain arrows from the
following construction:

D ×I A A

I D I I

a

nd d

na

.

This kind of games could prove an interesting starting point for representing Conway
games [Joy77]. For those games, the opposite (or negation for games semantics)
amounts to interchanging the players by considering

D ×I A A

I D I I

d

na a

nd

which is not the dual of section 2.3.

Another possibility suggested by Martin Hyland would be to consider games
where the two players play simultaneously. Those games are represented by a
slice a : A → I for A-moves and a slice d : D → I for D-moves, together with a
function n : A×I D → I to get the next state. As far as our games are concerned,

A LINEAR CATEGORY OF POLYNOMIAL DIAGRAMS 3

it amounts to considering diagrams of the form

I A×I D D I
n ∆d(a) a

.

In such games, the sets of counter moves D(a) depend only on i ∈ I and not on
the actual a ∈ A(i). Here again, there is a natural notion of duality, different from
the one from section 2.3.

Strategies and Simulations. For a game I ← D → A → I as above, a “non-
losing strategy for Alfred” consists of:

• a subset of “good” states H ⊂ I,
• a function α choosing an A-move for each i ∈ H,
• such that whenever i ∈ H and d ∈ D

(
α(i)

)
, we have i[α(i)/d] ∈ H.

This means that, as long as the games start in H, Alfred always has a move to play.
Each game will either go on infinitely or stop when Dominic has no counter-move
available. Categorically speaking, such a strategy is described by a diagram

H H·A H

I D A I
n d a

h
h

γ

α

.

Dually, a “non-losing strategy for Dominic” is given by a diagram

I D A I

H H ′ H ′ H

n d a

h h

γ α
.

The simulations we will consider generalize both kind of strategies and satisfy a
property similar to what appears in the theory of labeled transition systems, but
with an additional layer of quantifiers to account for the counter moves. To make
a relation R ⊆ I1 × I2 into a simulation between games I1 ← D1 → A1 → I1
and I2 ← D2 → A2 → I2 as above, we need two functions α and β satisfying:

• whenever (i1, i2) ∈ R and a1 ∈ A1(i1), there is a move a2
def
= α(a1) ∈ A2(i2)

which simulates a1 in the following sense;
• whenever d2 ∈ D2(a2) is a response to a2, there is a response d1

def
= β(d2) ∈

D1(a1), such that
(
i1[a1/d1] , i2[a2/d2]

)
∈ R.

Strategies for Alfred or Dominic are obtained by instantiating I1 ← D1 → A1 → I1
or I2 ← D2 → A2 → I2 to the trivial game 1← 1→ 1→ 1, where 1 = {?} is the
terminal object of Set. The symmetric monoidal closed structure will in particular
imply that a simulation from G1 to G2 is simply a strategy (for Alfred) for a game
called G1(G2.

Note that the actual definition of simulation will be slightly more general in
that it considers arbitrary spans instead of relations (monic spans). For strategies,
considering some H → I instead of a subset makes it possible for the function α to
choose move depending on more than just a state.

1. Preliminaries, Polynomials and Polynomial Functors

1.1. Locally Cartesian Closed Categories. Some basic knowledge about locally
cartesian closed categories and their internal language (extensional dependent type
theory) is assumed throughout the paper. Here is a review of the notions (and

4 PIERRE HYVERNAT

notations) needed in the rest of the paper. For a category C with finite limits, we
write “1” for its terminal object and “A×B” for the cartesian product of A and B.
The “pairing” of f : C → A and g : C → B is written 〈f, g〉 : C → A×B.

If f : A→ B is a morphism, it induces a pullback functor ∆f from slices over B
to slices over A. This functor has a left adjoint Σf which is simply “pre-composition
by f”. When all the ∆f s also have a right adjoint, we say that C is locally cartesian
closed. The right adjoint is written Πf . In all the sequel, C stands for a category
which is (at least) locally cartesian closed. We thus have

Σf a ∆f a Πf .

Additional requirements will be explicitly stated.
Besides the isomorphisms coming from the adjunctions, slices enjoy two funda-

mental properties:

• the Beck-Chevalley isomorphisms:

Πg ∆l
∼= ∆k Πf and Σg ∆l

∼= ∆k Σf

whenever

· ·

· ·

g

l

f

k

is a pullback,
• distributivity: when b : C → B and a : B → A, we have a commuting

diagram

(1)

· ·

C

B A

a′

ε

b

a

u′ u
def
= Πa(b)

where ε is the co-unit of ∆a a Πa. For such a diagram, we have

Πa Σb ∼= Σu Πa′ ∆ε .

Moreover, any slice category C/I is canonically enriched over C by putting

Hom(x, y)
def
= ΠIΠx∆x(y)

whenever x, y ∈ C/I . (Here, I also stands for the unique map from I to 1.) Any C/I
is also canonically tensored over C by using the left adjoint of Hom(x, _):

A� x def
= Σx∆x∆I(A)

for any x ∈ C/I and object A.

1.2. Dependent Type Theory. In [See84], Seely showed how an extensional ver-
sion of Martin Löf’s theory of dependent types [ML84] could be regarded as the
internal language for locally cartesian closed categories. A little later, Hofmann
showed in [Hof95] that Seely’s interpretation works only “up-to canonical isomor-
phisms” and proposed a solution. Some of the proofs in this paper rely on the use of
this internal language and we use Seely’s original interpretation. Strictly speaking,
some of those morphisms constructed with type theory should be composed with
canonical “substitution” isomorphisms.

A type A in context Γ, written Γ ` A is interpreted as a morphism a : ΓA → Γ,
that is as an object in the slice over (the interpretation of) Γ. Then, a term of

A LINEAR CATEGORY OF POLYNOMIAL DIAGRAMS 5

type A in context Γ, written Γ ` t : A is interpreted as a morphism u : Γ → ΓA
such that au = 1, i.e., a section of (the interpretation of) its type. When A is a type
in context Γ, we usually write A(γ) to emphasize the dependency on the context
and we silently omit irrelevant parameters. If we write [[Γ ` A]] = a to mean that
the interpretation of type Γ ` A is a, the main points of the Seely semantics are:

[[Γ ` A]] = a [[Γ, x : A ` B(x)]] = b

[[Γ `∏x:AB(x)]] = Πa(b)
product ,

[[Γ ` A]] = a [[Γ, x : A ` B(x)]] = b

[[Γ `∑x:AB(x)]] = Σa(b)
sum ,

[[Γ ` ~u : ∆]] = f [[∆ ` A(~x)]] = u

[[Γ ` A(~u)]] = ∆f (u)
substitution .

Of particular importance is the distributivity condition (1) whose type theoretic
version is an intensional version of the axiom of choice:

(2) Γ `
∏

x:A

∑

y:B(x)

U(x, y) ∼= Γ `
∑

f :
∏

x:A B(x)

∏

x:A

U
(
x, f(x)

)
.

1.3. Polynomials and Polynomial Functors. We now recall some definitions
and results from [GK09] and refer to the original article for historical notes, details
about proofs and additional comments.

Definition 1.1. If I and J are objects of C, a (generalized) polynomial from I
to J is a diagram P in C of the shape

P = I D A J
n d a

.

We write PolyC[I, J] for the collection of such polynomials from I to J .

Definition 1.2. For each P ∈ PolyC[I, J] as in Definition 1.1, there is an associated
functor from C/I to C/J called the extension of P . It is also denoted by P and is
defined as the following composition

P = C/I C/D C/A C/J
∆n Πd Σa

.

Any functor isomorphic to the extension of a polynomial is called a polynomial
functor. We write PolyFunC[I, J] for the collection of polynomial functors.

The identity functor from C/I to itself is trivially the extension of the polynomial

I I I I
1 1 1

and it can be shown that polynomial functors compose, see [GK09] for example.
We thus obtain a category PolyFunC where objects are slice categories and mor-
phisms are polynomial functors. We also obtain a bicategory PolyC of polynomials:
composition of polynomials is associative only up-to canonical isomorphisms.

Proposition 1.1. Polynomial functors commute with connected limits.

The simplest example of functor which is not polynomial is the finite multiset
functor, seen as a functor from Set/1 ∼= Set to itself: this functor doesn’t commute
with connected limits. When C is Set, the converse of proposition 1.1 also holds,
giving a more “extensional” characterization of polynomial functors:

6 PIERRE HYVERNAT

Proposition 1.2. A functor P : Set/I → Set/J is polynomial iff it commutes with
all connected limits.

There are several other characterizations of polynomial functors on Set, all nicely
summarized in [GK09].

2. Polynomials and Simulations: SMCC Structure

We will now construct a category where polynomials play the rôle of objects.
More precisely, we will consider “endo-polynomials”, i.e., diagrams of the form

I D A I
n d a

.

We simply call such a diagram a polynomial over I and think of them as games, as
described on page 2.

2.1. Simulations. The morphisms between two such polynomials over I and J
will be spans between I and J , with some additional structure.

Definition 2.1. If P1 and P2 are two polynomial functors over I1 and I2 respec-
tively, a simulation from P1 to P2 is a diagram

P1 : I1 D1 A1 I1

R R·D2 R·A1 R

P2 : I2 D2 A2 I2

n1 d1 a1

n2 d2 a2

r1

r2

r1

r2

γ

β

α

.

We can internalize the notion of simulation using the language of dependent
types:

Proposition 2.1. A simulation from P1 to P2 is given by: (refer to Definition 2.1)

(1) i1 : I1, i2 : I2 ` R(i1, i2) for the span,
(2) i1, i2, r : R(i1, i2), a1 : A1(i1) ` α(i1, i2, r, a1) : A2(i2) for the morphism α,
(3) i1, i2, r, a1, d2 : D2

(
i2, α(...)

)
` β(i1, i2, r, a1, d2) : D1(i1, a1) for the mor-

phism β,
(4) i1, i2, r, a1, d2 : D2

(
i2, α(...)

)
` γ(..., d2) : R

(
i2[a1/β(...)], i2[α(...)/d2]

)
for

the morphism γ,

Putting all this together and rewriting it more concisely, a simulation is given by:

• i1 : I1, i2 : I2 ` R for the span,
• i1, i2 ` π :

∏
a1

∑
a2

∏
d2

∑
d1

R
(
i1[a1/d1], i2[a2/d2]

)
, where for k = 1, 2

the types are ak : Ak(ik) and dk : Dk(ik, ak).

Proof. We’ll only show the beginning in order to give a taste of the manipulations
involved. Let’s first fix some notation: the simulation is given by the diagram

I1 D1 A1 I1

R · A1·R R

I2 D2 A2 I2

n1 d1 a1

n2 d2 a2

s

t

s

t

y

x

γ

β

α

.

A LINEAR CATEGORY OF POLYNOMIAL DIAGRAMS 7

The following pullbacks will be useful in the sequel:

A1·R A1 × I2 A1

R I1 × I2 I1

〈y, tx〉

a1×1x

〈s, t〉

π1

a1

π1

A1·R·A2 A1·R A2

A1·R R I2

u v

f

x

a2

t
.

Interpreting the above types in C gives:

(1) ` I1 is “I1”,
(2) i1 : I1 ` I2 is “π1 : I1 × I2 → I1”,
(3) i1, i2 : I2 ` R(i1, i2) is “〈s, t〉 : R→ I1 × I2”,
(4) i1, i2, r : R(i1, i2) ` A1(i1) is “x : A1·R→ R”,
(5) i1, i2, r, a1 : A1(i1) ` A2(i2) is “f : A1·R·A2 → A1·R”.

The term i1, i2, r, a1 ` α(i1, i2, r, a1) : A2(i2) thus corresponds to a section ϕ of f .
The sections of f are in 1-1 correspondence with the morphisms α : A1·R→ A2

s.t. tx = bα: given such an α, construct γ as the mediating arrow in

A1·R

A1·R·A2 · A2

A1·R · I2

u v

f

x

b

t

α

1

γ

.

The lower triangle shows that this γ is a section.
The inverse of this construction is given by γ 7→ vuγ. Because of the upper

triangle above, this is indeed a left inverse of the “mediating arrow” transformation.
This is also a right inverse: let γ be s.t. fγ = id. We have bvuγ = txfγ = tx and
so, if we use α

def
= vuγ in the above diagram, the mediating arrow will necessarily

be γ.
The rest is similar. �

Defining the composition of simulations using type theory isn’t too difficult, but
here is the diagrammatic representation of such a composition:

I1 D1 A1 I1

R Y X R

I2 D2 A2 I2

T V U T

R′ Y ′ X ′ R′

I3 D3 A3 I3

.

8 PIERRE HYVERNAT

The plain arrows show the polynomials P1, P2 and P3 and the initial two simulation
diagrams. The dashed diagonal arrows are computed from the two simulations by
pullbacks and the dashed horizontal arrows are mediating morphisms. To show that
the “background layer” forms a simulation from P1 to P3, we need to show that the
squares (U,A1, I1, T) and (V,U,A3, D3) are pullbacks. For (U,A1, I1, T), we know
by the pullback lemma that (U,X, I2, R

′) is a pullback by pasting (U,X,A2, X
′)

and (X ′, A2, I2, R
′). A second application of the pullback lemma on (U,X,R, T)

and (T,R, I2, R,) shows that (U,X,R, T) is also a pullback. Finally, a third ap-
plication shows that (U,A1, I1, T) is a pullback, as expected. The same reasoning
shows that the square (V,U,A3, D3) is also a pullback.

As in the case of spans, composition of simulations is only associative up to
isomorphism. We will thus need to consider equivalence classes of such simulations.
Two simulations

I1 D1 A1 I1

R · · R

I2 D2 A2 I2

r1

r2

r1

r2

γ

β

α

and

I1 D1 A1 I1

R′ · · R′

I2 D2 A2 I2

r′1

r′2

r′1

r′2
γ′

β′

α′

are equivalent if there are isomorphisms making the following diagram commute:

I1 D1 A1 I1

R′ · · R′

R · · R

I1 D2 A2 I2

∼σ
R ∼σD ∼σ

A
∼σ
R

r′1 β r′1

r1

β

r1

r2 α r2

γ

γ′

r′2 α′

r′2

.

Such isomorphisms are in fact induced by a single span isomorphism

R

I1 I2

R′

r1 r2

r′1 r′2

∼ σ
R .

We can now define:

Definition 2.2. PSimC is the category of polynomial endofunctors diagrams (sim-
ply called polynomials) and equivalence classes of simulation diagrams as in Defi-
nition 2.1.

2.2. Tensor Product and SMCC Structure. The tensor is just a “pointwise
cartesian product”:

Definition 2.3. The polynomial P1 ⊗ P2 is defined as

P1 ⊗ P2
def
= I1 × I2 D1 ×D2 A1 ×A2 I1 × I2

n1×n2 d1×d2 a1×a2
.

A LINEAR CATEGORY OF POLYNOMIAL DIAGRAMS 9

In terms of games, Alfred and Dominic play synchronously in the two games P1

and P2 at the same time. Composition and simulation diagrams lift pointwise,
making it straightforward to check that

Lemma 2.1. _⊗ _ is a bifunctor in the category PSimC. It has a neutral element
given by 1← 1→ 1→ 1 where 1 is the terminal element of C.

We will now prove that:

Proposition 2.2. The category PSimC with ⊗ is symmetric monoidal closed, i.e.,
there is a functor _(_ from PSimop

C × PSimC to PSimC with an adjunction

PSimC[P1 ⊗ P2 , P3] ∼= PSimC[P1 , P2(P3] ,

natural in P1 and P3.

Let’s start by giving a definition of P2 (P3 using the internal language of
LCCC. A purely diagrammatic definition of P2(P3 will follow.

Definition 2.4. The polynomial P2(P3 is defined as:

(1) ` I2 × I3,
(2) i2, i3 `

∑
f :A2(i2)→A3(i3)

∏
a2:A2(i2)

D3

(
i3, f(a2)

)
→ D2(i2, a2),

(3) i2, i3 , f, ϕ `
∑
a2:A2(i2)

D3

(
i3, f(a2)

)
,

(4) i2, i3 , f, ϕ , a2, d3 `
(
i2[a2/ϕ(a2)(d3)], i3[f(a2)/d3]

)
: I2 × I3,

where the types of variables are as follows: f is of type A2(i2) → A3(i3), ϕ
is of type

∏
a2:A2(i2)

D3

(
i3, f(a2)

)
→D2(i2, a2), a2 is of type A2(i2) and d3 is of

type D3

(
i3, f(a2)

)
.

Proof of proposition 2.2. There is a canonical natural isomorphism

SpanC[I1, I2 × I3] ∼= SpanC[I1 × I2, I3] ∼= C/I1×I2×I3
and we use it implicitly. In order to show the adjunction, we need to find a natural
isomorphism between

∏

a1,a2

∑

a3

∏

d3

∑

d1,d2

R
(
i1[a1/d1] , i2[a2/d2] , i3[a3/d3]

)

meaning that R is a simulation from P1 ⊗ P2 to P3 and
∏

a1

∑

f,ϕ

∏

a2,d3

∑

d1

R
(
i1[a1/d1] , i2[a2/ϕ(a2)(d3)] , i3[f(a2)/d3]

)
,

meaning that R is a simulation from P1 to P2(P3. The types are as follows:

• ak : Ak(ik) for k = 1, 2, 3,
• dk : Dk(ak) for k = 1, 2, 3,
• f : A2(i2)→ A3(i3),
• ϕ :

∏
a2
D3

(
f(a2)

)
→ D2(a2).

This is just a sequence of “distributivity” (type theoretic axiom of choice, page 5)
and obvious isomorphisms changing the order of independent variables:

(1) from
∏
a2

∑
a3

to
∑
f

∏
a2

, to get
∏
a1

∑
f

∏
a2

∏
d3

∑
d1,d2

. . .

(2) from
∏
d3

∑
d2

to
∑
g

∏
d3

, to get
∏
a1

∑
f

∏
a2

∑
g

∏
d3

∑
d1

. . .

(3) from
∏
a2

∑
g to

∑
ϕ

∏
a2

, to get
∏
a1

∑
f

∑
ϕ

∏
a2

∏
d3

∑
d1

. . .

The “. . . ” use exactly the appropriate substitutions to make the last line into what
was needed: a3

def
= f(a2), d2

def
= g(d3) and g

def
= ϕ(a2). �

For completeness, here is the diagrammatic definition of P2(P3:

10 PIERRE HYVERNAT

Lemma 2.2. The polynomial P2(P3 is given by

• · •

· · (iii)

· · · ·

D2×D3 A2×D3 A2×A3 (i)

I2×I3 A2×I3 I2×I3

(ii)

d′′′2 a′′2

d′′2

d′2 a′2

d2×1 1×d3

a2×1

ϕ

f

e
ε

e′′ e′

ε
g

g′

ε

1×a3

n2×n3

.

where the 1s are appropriate identities and squares (i), (ii) and (iii) are distribu-
tivity squares as in diagram (1), i.e., the εs are appropriate counits of the adjunc-
tion ∆_ a Π_.

It is not too difficult to show that this corresponds to the type theoretic definition.
However, an elegant and direct proof that this is indeed the right adjoint for _⊗P2

is still to be found. One easy thing is the following (compare it with the second
part of Proposition 2.1)

Lemma 2.3. The extension of P2(P3 is

P2(P3 = Πa2×1 Σ1×a3 Π1×d3 Σd2×1 ∆n2×n3

= Πa2×1 1⊗ P3 Σd2×1 ∆n2×1 .

Proof. This is just a rewriting of the definition using Beck-Chevalley and distribu-
tivity as appropriate. Using the notation from Lemma 2.2:

P2(P3 = Σf Σϕ Πa′′2 Πd′′′2
∆e ∆e′′ ∆ε ∆n2×n3

= Σf Σϕ Πa′′2 ∆ε Πd′′2 ∆e′′ ∆ε ∆n2×n3

= Σf Πa′2 Σg′ Πd′′2 ∆e′′ ∆ε ∆n2×n3

= Σf Πa′2 Σg′ ∆e′ Πd′2 ∆ε ∆n2×n3

= Σf Πa′2 ∆ε Σg Πd′2 ∆ε ∆n2×n3

= Πa2×1 Σ1×a3 Π1×d3 Σd2×1 ∆n2×n3
.

The second equality follows from a Beck-Chevalley isomorphism:

Σd2×1∆1×n3
= ∆1×n3

Σd2×1 .

�

2.3. Linear Negation. Of particular interest is the dual of P : P⊥
def
= P (1

where 1 is the neutral element for ⊗.

1 1 1 1
1 1 1

.

In the denotational model for intuitionistic linear logic, this polynomial is the most
natural choice for the “⊥” object. The polynomial P⊥ is thus the “linear negation”
of P . By simplifying definition 2.4 in this case, we obtain:

A LINEAR CATEGORY OF POLYNOMIAL DIAGRAMS 11

Definition 2.5. Given a polynomial P = (I ← D → A → I), the polynomial P⊥

is defined by:

(1) ` I,
(2) i : I `∏a:A(i)D(i, a),

(3) i : I, f :
∏
a:A(i)D(i, a) ` A(i),

(4) i : I, f :
∏
a:A(i)D(i, a), a : A(i) ` n

(
i, a, f(a)

)
: I.

Note that this negation isn’t involutive.
The dual G⊥ of a game G is rather different from the usual operation consisting

of interchanging the players as is done in games semantics. The main property is
that a strategy (for Alfred) in G⊥ is exactly a strategy for Dominic in G.

Simplifying the diagrammatic definition of ((Lemma 2.2), we find that P⊥ is

• •

I D A I

(i)

n

ε

d a

where square (i) is a distributivity square. The middle arrow is thus of the form ∆_a.
It is worth noting that for any polynomial P , the polynomial P⊥ has the form of
“simultaneous games” described on page 3.

3. Additive and Exponential Structure

To go further, we will need more structure from C. To avoid spelling out the
exact requirements (extensivity, existence of certain colimits etc.), we now work in
the category of sets and functions C = Set, where we certainly have all we need.

3.1. Enriched Structure. Because ∅ is initial in Set, there is an “empty” simu-
lation between any two polynomial functors. It is given by the diagram

P1 : I1 D1 A1 I1

∅ ∅ ∅ ∅

P2 : I2 D2 A2 I2

n1 d1 a1

n2 d2 a2

!

!

!

!

!

!

!

.

This is true for any C having an initial object 0 because in an LCCC, we necessarily
have 0×I X ∼= 0.

Moreover, each Set/X is a cocomplete category and span composition is continu-
ous on both sides, making the SpanSet enriched over (large) sup-monoids. Because
a colimit of simulations is easily made into a simulation, this implies that PSimSet

is also enriched over sup-monoids.

Proposition 3.1. PSimSet is enriched over large sup-monoids.

3.2. Additive Structure. The category Set is extensive. This means in particular
that a slice f ∈ Set/B+C can be uniquely (up-to isomorphism) written as fB + fC
for some fB ∈ Set/B and fC ∈ Set/C . In other words, + is an equivalence of
categories Set/B+C

∼= Set/B × Set/C . Extensivity implies that in SpanSet:

• ∅ is a zero object,
• the coproduct of X and Y is given by X + Y (disjoint union),
• X + Y is also the product of X and Y ,

12 PIERRE HYVERNAT

Moreover, the infinite coproduct from Set
∑
k∈K Xk lifts to the infinite coproduct

and product in SpanSet. We have:

Lemma 3.1. The forgetful functor U : PSimSet → SpanSet sending a polynomial to
its domain and a simulation to its underlying span has a left and a right adjoint.

Proof. The object part of the adjoints L a U a R for set I are given by

L(I)
def
= I ∅ ∅ I

! ! !
and R(I)

def
= I ∅ I I

! ! 1
.

The rest is simple verification. �

Because the forgetful functor U has a left adjoint, it must preserve the product
(and so, the coproduct as well). The product of P1 and P2 is thus a polynomial
over I1 + I2.

Definition 3.1. If P1 and P2 are polynomials over I1 and I2, we write P1⊕P2 for

P1 ⊕ P2
def
= I1 + I2 D1 +D2 A1 +A2 I1 + I2

n1+n2 d1+d2 a1+a2
.

The polynomial 0 is the unique polynomial with domain and codomain ∅.
We have

Lemma 3.2. The bifunctor ⊕ is both a product and a coproduct in PSimSet. The
polynomial 0 is a zero object.

Proof. The “injections” are given by

I D A I

I D A I

I+J D+E A+B I+J .

n d a

n+m d+e a+b

1

inl

1

inl

n

1

inl

and similarly for the “right” injection. Because all the six squares are in fact
pullbacks, this also defines the projections by mirroring everything horizontally.

Now, because Set is extensive, any simulation from P1⊕P2 to P3 is of the form:

I1+I2 D1+D2 A1+A2 I1+I2

R1+R2 U+V X+Y R1+R2

I3 D3 A3 I3

(i)

n1+n2 d1+d2 a1+a2

n3 d3 a3

r1+r2

[r1,3, r2,3]

r1+r2

[r1,3, r2,3]

γ1+γ2

β1+β2

[α1, α2]

where [_, _] is the “copairing” and all the remaining morphisms are either of the
form [f, g] or f + g.1 It is easy to split this into two simulations: one from P1 to P3

and the other from P2 to P3. Checking that those are simulations is straightforward.
Conversely, we can construct a simulation as above from any two simulations. The
constructions are inverse to each other (up-to isomorphism).

1A small lemma is necessary for square (i).

A LINEAR CATEGORY OF POLYNOMIAL DIAGRAMS 13

This shows that ⊕ is a coproduct. Because PSimSet is enriched over (large)
commutative monoids coproduct is also a product.

The proof that the polynomial 0 is a zero object is left to the reader. �

This proof also extends to infinite coproducts:

Lemma 3.3. For a set K and polynomials Pk for k ∈ K, the polynomial

⊕

k∈K
Pk

def
=

∐
k Ik

∐
kDk

∐
k Ak

∐
k Ik

∐
k nk

∐
k dk

∐
k ak

is both the cartesian product and coproduct of the polynomials Pk in PSimSet.

3.3. Exponentials. Whenever the infinite coproduct distributes over a binary ten-
sor �: ∐

k≥0
(X � Ik) ∼= X �

∐

k≥0
Ik

the free �-monoid over I and free commutative �-monoid over I are given by
∐

k≥0
I�k and

∐

k≥0
Sk(I)

where Sk(I) is the coequalizer of the k! symmetries on I�k.
For the cartesian product × on the category Set, we obtain finite words and

finite multisets, i.e. equivalence classes of words under permutations:

I∗
def
=

∐

k≥0
Ik

and

Mf (I)
def
=

∐

k≥0
Mk

f (I)
def
=

∐

k≥0
Ik/Sk

where Sk is the group of permutations of {1, . . . , k}, acting in an obvious way on Ik.

The next lemma is probably folklore among the right people, but I could find no
proof in the literature. A proof is given in appendix on page 19.

Lemma 3.4. The operation Mf (_) is the object part of a monad on SpanSet. This
monad gives the free commutative ×-monoid in SpanSet. Because SpanSet is self-
dual, this is also the free commutative ×-comonoid comonad.

The unit and multiplication are inherited from Set:

wA
def
=

1

1 Mf (A)

ε1

cA
def
=

Mf (A)×Mf (A)

Mf (A)×Mf (A) Mf (A)

]1

where ε picks the empty multiset and] is the union of multisets.

Just as in SpanSet, the infinite product (which is also the coproduct) distributes
over the binary tensor in PSimSet:⊕

k≥0
Q⊗ Pk ∼= Q⊗

⊕

k≥0
Pk .

We can thus use the dual formula to get the free commutative ⊗-comonoid.

!P =
⊕

k≥0
P k

14 PIERRE HYVERNAT

where P k is the equalizer of all the symmetries on P⊗k. Because the forgetful
functor U is a right adjoint, it preserves products and equalizers. Because U is
monoidal, the above formula implies that it preserves the free comonoid. Thus, the
polynomial !P has domain Mf (I) whenever P has domain I.

Definition 3.2. If P is a polynomial, define !P to be the following polynomial

!P
def
= Mf (I) D∗ A∗ Mf (I)

cn∗ d∗ ca∗

where c takes a word to its orbit.

Note that this is not a pointwise application of Mf , which would give

Mf (I) Mf (D) Mf (A) Mf (I)
Mf (n) Mf (d) Mf (a)

.

Proposition 3.2. The free commutative ⊗-comonoid comonad on SpanSet lifts to
the category PSimSet. Its action on objects is given by P 7→!P .

Just as in SpanSet it is sufficient to check that

P k
def
= Mk

f (I) Dk Ak Mk
f (I)

cnk dk cak

is the equalizer of the symmetries. Both the diagrammatic proof and the type
theoretic proof are possible but very tedious and we will only show that P k is the
equalizer of the symmetries in the category PSimSet∼, obtained from PSimSet by
identifying any two simulations when their spans are isomorphic. This makes the
forgetful functor U : PSimSet∼ → SpanSet faithful, simplifying the argument.

First, some notation:

• tuples are denoted using the Gothic alphabet: u ∈ Uk, i ∈ Ik etc.
• any permutation σ ∈ Sk induces a natural transformation _k → _k,
• c : _∗ →Mf (_) is the natural transformation sending a tuple to its orbit,
• for any set X, s :Mf (X)� X∗ is a section of cX : X∗ �Mf (X);2

and a preliminary lemma:

Lemma 3.5. In Set, suppose h : Uk → Uk sends any element of Uk to a permu-
tation of itself, i.e.,

Uk Mk
f (U)

Uk

c

h
c

.

For any g : V → U , we can find a ρ : V k → V k with the same property, i.e.,
with cρ = c such that:

Mk
f (V) V k Uk

V k Uk

fk

fk

ρ h

c

c

.

2this transformation cannot be made natural

A LINEAR CATEGORY OF POLYNOMIAL DIAGRAMS 15

Proof. Define ρ : v 7→ σfk(v)(v), where σu is any permutation s.t. fk(u) = σu(u).
This ρ makes the diagram commute. To show that the square is a pullback, we
construct mediating arrows as follows: given

X

V k Uk

V k Uk

fk

ρ

fk

h

g1

g2

γ

we put γ(x)
def
= σ−1g1(x)

(
g2(x)

)
. We have

fkγ(x) = fkσ−1g1(x)g2(x) = σ−1g1(x)f
kg2(x) = σ−1g1(x)g1h(x) = g1(x)

where the last equality comes from hg1(x) = σg1(x)
(
g1(x)

)
. For the second triangle:

ργ(x) = σfkγ(x)γ(x) = σg1(x)γ(x) = σg1(x)σ
−1
g1(x)

g2(x) = g2(x) .

Moreover, for any other mediating γ′, we must have

g2(x) = ργ′(x) = σfkγ′(x)γ
′(x) = σg1(x)γ

′(x)

which implies that γ′ = γ. �

Proof of Proposition 3.2. We need to show that P k is the equalizer of the symme-
tries on P⊗k. We first need to make ĉ into a simulation from P k to P⊗k, i.e., we
need to define α, β and γ filling the diagram

P k : Mk
f (I) Dk Ak Mk

f (I)

Ik Y X Ik

P⊗k : Ik Dk Ak Ik
nk dk ak

c

1

c

1

γ

β

α

.

The set X is (isomorphic to)
{

(i, a)
∣∣ i ∼ ak(a)

}
and the function α sends (i, a)

to σi,a(a) where σi,a is a permutation such that σi,a
(
ak(a)

)
= i; and the set Y

is (isomorphic to)
{

(i, a, d)
∣∣ i ∼ ak(a), dk(d) = a

}
. The function β sends (i, a, d)

to σ−1i,a (d) and the function γ sends (i, a, d) to nk(d).

Now, given a simulation from Q to P⊗k

(3)

Q : J E B J

R · · R

P⊗k : Ik Dk Ak Ik
nk dk ak

j

f

j

f

γ

β

l α

16 PIERRE HYVERNAT

which equalizes the symmetries, we need to construct a simulation from Q to P k.
That (3) equalizes the symmetries implies in particular that

(4) ∀σ ∈ Sk ∃H

R

Ik J

R

f j

σf j

∼H .

The simulation from Q to P k =Mk
f (I)← Dk → Ak →Mk

f (I) is constructed in
several steps as indicated by the small numbers in parenthesis:

J E B J

R′
(1) Y (6) X(3) R′

(1)

R · · R

Mk
f (I) Dk Ak Ik

Ik Dk Ak Ik

Mk
f (I)s

c

s

ρρ′cnk

cnk dk ak

(2) (2)

m(5)

F (9)

G(8)

(10)

α′
(4)α′′

(7)

δ(6)

δ′(6)

dk ak

γ

j

f

β

l

α

j

f

where the bottom layer comes from Lemma 3.5 and:

(1) R′ is constructed by pullback;
(2) is obtained by composition;
(3) X is obtained by pullback;
(4) α′ is the mediating arrow, where (3)→ Ik is (3)→ R′ →Mk

f (I)→ Ik;
(5) m is the mediating arrow;
(6) Y , δ and δ′ are constructed by pullback;
(7) α′′ is the mediating arrow;
(8) G sends y to cnkα′′(y);
(9) F sends y to H−1fγδ′(y)

(
γδ′(y)

)
, where for i ∈ Ik, Hi is the automorphism in

diagram (4) corresponding to σi, chosen such that σi = sc(i);
(10) is the mediating arrow corresponding to F and G.

We only need to check that (8) and (9) make the appropriate diagram commute, i.e.,
that sG = fF :

sG(y) = scnkα′′(y)

= scnkρ′α′′(y)

= scnklδ′(y)

(?) = scfγδ′(y)

= σfγδ′(y)fγδ
′(y)

= fH−1fγδ′(y)γδ
′(y)

= fF (y)

A LINEAR CATEGORY OF POLYNOMIAL DIAGRAMS 17

where equality (?) comes from diagram (3). Because square (δ, α′, α′′, dk) is a
pullback, this gives a simulation from Q to P k.

That this simulation is the mediating arrow for the equalizer diagram in PSimSet∼
follows from the fact that its corresponding span is indeed the mediating span
in SpanSet, together with the fact that the forgetful functor U : PSimSet∼ → SpanSet
is faithful.

�

Concluding Remarks

Toward Differential Logic. As noted in section 3.1, the category PSimSet is
enriched over large commutative monoids. Moreover, PSimSet has enough duality to
make !P into a commutative ⊗-monoid. These are key features when one interprets
differential logic [ER03, ER06]. However, trying to lift the differential structure
of Rel, the category of sets and relations to the category SpanSet fails as the candidate
for the deriving transformation [BCS06]:

∂X : X ⊗ !X → !X∂X
def
=

X ×Mf (X)

X ×Mf (X) Mf (X)

1 @

is only lax natural. It is the only obstruction to get a differential category in
the sense of Blute, Cockett and Seely [BCS06] as the four coherence conditions
seem to hold both in SpanSet and in PSimSet, even if the full proof for the later
is rather long. (As with Proposition 3.2, the proof is much simpler for the cate-
gory PSimSet∼.) Whether lax naturality is enough to model differential logic is still
to be investigated.

Extensional Version: Polynomial Functors and Simulation Cells. This
work was very “intensional” in that it only dealt with polynomial diagrams and not
at all with polynomial functors. The different notions presented here have a more
“extensional” version which does not rely on knowing a particular representation
of the polynomial functors. In particular, the tensor and the linear arrow of two
polynomial functors can be defined by universal properties. The corresponding
category FSimC, has polynomial functors as objects, and morphisms (simulations)
are given by cells of the form

C/I1 C/J1

C/I2 C/J2

P1

P2

L Lα

where L is a “linear” polynomial functor. Composition is simply obtained by past-
ing such cells vertically. See the upcoming [Hyv12] for details.

References

[AAG05] Michael Abott, Thorsten Altenkirch, and Neil Ghani, Containers - constructing strictly

positive types, Theoretical Computer Science 342 (2005), 3–27.
[BCS06] Richard F. Blute, J. Robin B. Cockett, and Robert A. G. Seely, Differential categories,

Mathematical Structures in Computer Science 16 (2006), 1049–1083.
[ER03] Thomas Ehrhard and Laurent Regnier, The differential lambda calculus, Theoretical

Computer Science 309 (2003), no. 1, 1–41.

18 PIERRE HYVERNAT

[ER06] , Differential interaction nets, Theoretical Computer Science 364 (2006), 166–

195.

[GK09] Nicola Gambino and Joachim Kock, Polynomial functors and polynomial monads,
To appear in Mathematical Proceedings of the Cambridge Philosophical Society,

arXiv:0906.4931v2, 2009.
[HH06] Peter Hancock and Pierre Hyvernat, Programming interfaces and basic topology, Annals

of Pure and Applied Logic 137 (2006), no. 1-3, 189–239. MR MR2182103

[Hof95] Martin Hofmann, On the interpretation of type theory in locally cartesian closed cat-
egories, CSL ’94: Selected Papers from the 8th International Workshop on Computer

Science Logic (London, UK), Springer-Verlag, 1995, pp. 427–441.

[Hyv05] Pierre Hyvernat, A logical investigation of interaction systems, Thèse de doctorat, In-
stitut mathématique de Luminy, Université Aix-Marseille II, 2005.

[Hyv12] , A linear category of polynomial functors (extensional part), In preparation,

2012.
[Joy77] André Joyal, Remarques sur la théorie des jeux à deux personnes, Gazette des sciences

mathématiques du Quebec 1 (1977), no. 4, 175.

[Koc09] Joachim Kock, Notes on polynomial functors, preliminary draft, 2009.
[MA09] Peter Morris and Thorsten Altenkirch, Indexed containers, Twenty-Fourth IEEE Sym-

posium in Logic in Computer Science (LICS 2009), 2009.
[ML84] Per Martin-Löf, Intuitionistic type theory, Bibliopolis, Naples, 1984, Notes by Giovanni

Sambin. MR 86j:03005

[See84] Robert A. G. Seely, Locally cartesian closed categories and type theory, Mathemat-
ical Proceedings of the Cambridge Philosophical Society 95 (1984), no. 1, 33–48.

MR MR727078 (86b:18008)

A LINEAR CATEGORY OF POLYNOMIAL DIAGRAMS 19

Appendix A. Free Commutative ×-Monoid in SpanSet

Lemma A.1. The operation Mf (_) is the object part of a monad on SpanSet.
This monad gives the free commutative ×-monoid in SpanSet. Because SpanSet is
self-dual, this is also the free commutative ×-comonoid comonad.

Proof. Because the coproduct distributes over ×, and because coproducts in SpanSet
are computed as in Set, we only need to show that Mk

f (I) is the coequalizer of

all the symmetries on Ik. Let c : I∗ � Mf (I) be the function sending a word
to its corresponding multiset, and let s : Mf (I) � I∗ be a section of c, i.e., a
function choosing a representative for each equivalence class. This gives rise to a
pair retraction/section in SpanSet:

Ik Mk
f (I)|

ĉ
is

Ik

Ik Mk
f (I)

1 c

and

Mk
f (I) Ik|

ŝ
is

Mk
f (I)

Mk
f (I) Ik

1 s

.

We’ll show that ĉ is the coequalizer of the symmetries: consider

(5) Ik
... k! symmetries

... Ik Mk
f (I)

J

|
φ

|
ĉ|

σ

|
σ′

?ψ

where the σs are spans with the identity for right leg and permutations for left leg.
It is immediate that ĉ coequalizes them. Suppose moreover that φ = Ik ← R→ J
coequalizes them, i.e.,

(6) ∀σ ∈ Sk ∃H

R

Ik J

R

f j

σf j

∼H .

To close the triangle in (5), put ψ
def
= φŝ. We need to check that ψĉ = φ, i.e.,

that φŝĉ = φ. We have

φŝĉ =

R′

Ik R

Ik Ik J

π1 π2

1 sc f j

where

R′
def
=

{
(i, r) ∈ Ik ×R

∣∣∣ sc(i) = f(r)
}
.

20 PIERRE HYVERNAT

To show that this span is equal to φ, we need to find an isomorphism between R
and R′ s.t.

(7)

R′

Ik J

R

π1 jπ2

f j

∼ε .

To do that, note that for any word i ∈ Ik, the word sc(i) is a permutation of i. For
any such i, choose some σi ∈ Sk s.t. sc(i) = σi(i), and define ε to be the function

r 7→
(
f(r) , H−1f(r)(r)

)

where Hi is the automorphism on R corresponding to the permutation σ−1i in (6).
That π1ε = f is trivial, and that jπ2ε = j follows from diagram 6. The inverse of ε
is the function (i, r) 7→ Hi(r):

r 7→
(
f(r), H−1f(r)(r)

)
7→ Hf(r)H

−1
f(r)(r) = r

and

(i, r) 7→ Hi(r) 7→
(
fHi(r), H

−1
fHi(r)

Hi(r)
)

= (i, r)

where the equality follows from

fHi(r) = σ−1i f(r) = σ−1i sc(i) = σ−1i σi(i) = i .

Because ŝ is a section of ĉ, this ψ is unique: if ψ′ĉ = φ, we have ψ′ = ψ′ĉŝ = φŝ.
This concludes the proof.

�

Laboratoire de Mathématiques, CNRS UMR 5126 – Université de Savoie, 73376 Le
Bourget-du-Lac Cedex, France

E-mail address: pierre.hyvernat@univ-savoie.fr

URL: http://lama.univ-savoie.fr/~hyvernat/

mailto:pierre.hyvernat@univ-savoie.fr
http://lama.univ-savoie.fr/~hyvernat/

	Introduction
	Related Works
	Games
	Strategies and Simulations

	1. Preliminaries, Polynomials and Polynomial Functors
	1.1. Locally Cartesian Closed Categories
	1.2. Dependent Type Theory
	1.3. Polynomials and Polynomial Functors

	2. Polynomials and Simulations: SMCC Structure
	2.1. Simulations
	2.2. Tensor Product and SMCC Structure
	2.3. Linear Negation

	3. Additive and Exponential Structure
	3.1. Enriched Structure
	3.2. Additive Structure
	3.3. Exponentials

	Concluding Remarks
	Toward Differential Logic
	Extensional Version: Polynomial Functors and Simulation Cells

	References
	Appendix A. Free Commutative -Monoid in SpanSet

