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If S is a set, we write Mf (S) for the set of all finite multisets with elements in S. There
are two equivalent ways to define them:

• as functions f : S → N such that
∑

s∈S f(s) is finite;
• as families (si)i∈I with finite index I quotiented by (ai)i∈I ' (bj)j∈J iff (∀i ∈ I) ai = bσi

for some bijection σ : I → J . We write [ai]i∈I for the equivalence class of (ai)i∈I w.r.t. '.
We prefer the latter as it has a more “constructive” feeling.

Definition. Suppose (Ai)i∈I is a finite family of subsets of some set S, we construct the set∧
i∈I Ai of multisections on (Ai) as follows:

•
∧

i∈I Ai ⊆Mf (S);
• (aj)j∈J ∈

∧
i∈I Ai iff (∀j ∈ J) aj ∈ Aσj for some bijection σ : J → I.

We also use the N -ary notation A1 ∗A2 ∗ . . . AN .

It is easy to see that this operation is well defined w.r.t. the relation' and that is is commutative
in the sense that if (Ai) ' (Bj), then

∧
i Ai =

∧
j Bj . In other words

∧
is a well defined operator∧

: Mf

(
P(S)

)
→ P

(
Mf (S)

)
. For those familiar with categorical notions,

∧
is even a natural

transformation between the functors MfP and PMf . This operation is a commutative version
of the usual (finite) cartesian product

∏
.

One property of the cartesian product is that the operation is injective on families of
non-empty subsets:

Lemma. Suppose (Ai)i∈I and (Bi)i∈I are two finite families of non-empty subsets of S; suppose
moreover that

∏
i Ai =

∏
i Bi, then Ai = Bi for all i ∈ I.

A similar result holds for
∧

, although is not as obvious!

Proposition. Suppose (Ai)i∈I and (Bi)i∈I are two finite families of non-empty subsets of S;
suppose moreover that

∧
i Ai =

∧
i Bi, then (Ai) ' (Bi).

The proof goes as follows: suppose
∧

Ai =
∧

Bj = P ;
• we first show that there is one set in common in (Ai) and Bj : A ∈ (Ai) and A ∈ (Bj);
• we define an operation of division such that (A ∗

∧
Bj)/A =

∧
Bj ;

• this implies that
∧

i 6=1 Ai = P/A =
∧

j 6=1 Bj ;
• a trivial induction concludes the proof.

Lemma. Suppose
∧

Ai ⊆
∧

Bi, then ∀j ∃i Ai ⊆ Bj .

proof: by contradiction, suppose that ∃j ∀i ¬(Ai ⊆ Bj). Let j0 be such a j.
We have that ∀i ∃ai ∈ Ai, ai /∈ Bj0 . This implies that [ai] ∈

∧
Ai, but [ai] cannot be in

∧
Bj !

Contradiction.

QED

Lemma. Suppose
∧

Ai =
∧

Bi, then there is a pair (i, j) s.t. Ai = Bj .

proof: by the above lemma, we can construct an infinite chain Ai1 ⊇ Bj1 ⊇ . . . Ain ⊇ Bjn . . .
Since there is only a finite number of Ai’s and Bj ’s, there is a cycle. This imply that some
Ain = Bjn .

QED
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Definition. Let E ⊆Mf (S); define:
• for a ∈ S: E/a = {µ | µ + [a] ∈ E};
• for A ⊆ S: E/A =

⋂
a∈A E/a.

Lemma. For all B0, B1 . . . BN ⊆ S (non empty), we have (B0∗B1∗. . .∗BN )/B0 = B1∗. . .∗BN .

proof: the ⊇ inclusion is immediate. Let’s show the converse inclusion:
let [b1, . . . bN ] ∈ (B0 ∗B1 ∗ . . . ∗BN )/B0; suppose by contradiction that [bi] /∈

∧
Bi.

Let a ∈ B0, we have [a, b1, . . . bN ] ∈ B0 ∗
∧

Bi. Without loss of generality, we can suppose
b1 ∈ B0, a ∈ B1 and bi ∈ Bi for all i ≥ 2. (∗)

Since b1 ∈ B0, we have [b1, b1, b2, . . . bN ] ∈ B0 ∗
∧

Bi, i.e. there is a bijection σ : {0, . . . N} →
{0, . . . N} s.t. bσi ∈ Bi. (To make notation simpler, we put b0 = b1.)
Define (ki) by induction as follows:

• k0 = σ0;
• ki+1 = σki.

Let K = min{i | ki = 0 or ki = 1}. It exists. (TODO: more details?); let I = {k0, . . . kK}.
Now, rearrange the columns of the following table:

{0,...N}︷ ︸︸ ︷
B0 B1 . . . Bl . . . Bl′ . . . BN

bσ0 bσ1 . . . b1 . . . b1 . . . bσN︸ ︷︷ ︸
{1,1,...N}

into
{0}∪I={0,k0,...kK}︷ ︸︸ ︷

B0 Bk0 . . . BkK−1 BkK

bk0 bk1 . . . bkK
b1︸ ︷︷ ︸

{1}∪I={1,k0,...kK}

{1,...N}\I=I︷ ︸︸ ︷
. . . Bl . . .
. . . b1 . . .︸ ︷︷ ︸
{1,...N}\I=I

From this (right hand part), we can deduce that [bi]i∈I ∈
∧

i∈I Bi. By hypothesis (∗), we also
have that [bi]i∈I ∈

∧
i∈I Bi (because 1 /∈ I). This implies that [bi]i∈{1,...N} ∈

∧
i∈{1,...N} Bi!

Contradiction.
QED

The proof of the proposition is now immediate: by induction on N .
• N = 0: trivial;
• N > 0: suppose

∧
Ai =

∧
Bi; this implies that [Ai]i≤N and [Bi]i≤N are in fact of the form

[C] + [Ai]i<N and [C] + [Bi]i<N . Apply the lemma to get
∧

i<N Ai =
∧

i<N Bi, then the
induction hypothesis to obtain [Ai]i<N = [Bi]i<N . From this, we can easily conclude that
[C] + [Ai]i<N = [C] + [Bi]i<N .

One interesting point of this operation is that it is to the cartesian product what the union
is to the disjoint sum:

• if A and B are disjoint, then A ∪ B (disjoint union) is isomorphic to A ⊕ B (sum or
coproduct).

• if A and B are disjoint, then A ∗B (disjoint commutative product) is isomorphic to A×B
(usual product).

For both ∗ and ∪, the operations are truly commutative (real equalities rather than isomor-
phisms) whereas both × and ⊕ are only commutative up to isomorphisms.

One problem remains, namely that ∗ is not really associative!

Remark. The above proposition doesn’t hold if one replaces equalities by inclusions (even
though it holds for the usual cartesian product). The simplest counter-example is probably the
following: {1, 3} ∗ {2} ⊆ {1, 2} ∗ {2, 3}.
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