A commutative product for sets

Pierre Hyvernat January 2004

If S is a set, we write $\mathcal{M}_f(S)$ for the set of all finite multisets with elements in S. There are two equivalent ways to define them:

- as functions $f: S \to \mathbf{N}$ such that $\sum_{s \in S} f(s)$ is finite;
- as families $(s_i)_{i \in I}$ with finite index I quotiented by $(a_i)_{i \in I} \simeq (b_j)_{j \in J}$ iff $(\forall i \in I) a_i = b_{\sigma i}$ for some bijection $\sigma : I \to J$. We write $[a_i]_{i \in I}$ for the equivalence class of $(a_i)_{i \in I}$ w.r.t. \simeq .

We prefer the latter as it has a more "constructive" feeling.

Definition. Suppose $(A_i)_{i \in I}$ is a finite family of subsets of some set S, we construct the set $\bigwedge_{i \in I} A_i$ of multisections on (A_i) as follows:

•
$$\bigwedge_{i \in I} A_i \subseteq \mathcal{M}_f(S);$$

• $(a_j)_{j\in J} \in \bigwedge_{i\in I} A_i$ iff $(\forall j \in J) \ a_j \in A_{\sigma j}$ for some bijection $\sigma : J \to I$. We also use the N-ary notation $A_1 * A_2 * \ldots A_N$.

It is easy to see that this operation is well defined w.r.t. the relation \simeq and that is is commutative in the sense that if $(A_i) \simeq (B_j)$, then $\bigwedge_i A_i = \bigwedge_j B_j$. In other words \bigwedge is a well defined operator $\bigwedge : \mathcal{M}_f(\mathcal{P}(S)) \to \mathcal{P}(\mathcal{M}_f(S))$. For those familiar with categorical notions, \bigwedge is even a natural transformation between the functors $\mathcal{M}_f \mathcal{P}$ and \mathcal{PM}_f . This operation is a commutative version of the usual (finite) cartesian product \prod .

One property of the cartesian product is that the operation is injective on families of non-empty subsets:

Lemma. Suppose $(A_i)_{i \in I}$ and $(B_i)_{i \in I}$ are two finite families of non-empty subsets of S; suppose moreover that $\prod_i A_i = \prod_i B_i$, then $A_i = B_i$ for all $i \in I$.

A similar result holds for \bigwedge , although is not as obvious!

Proposition. Suppose $(A_i)_{i \in I}$ and $(B_i)_{i \in I}$ are two finite families of non-empty subsets of S; suppose moreover that $\bigwedge_i A_i = \bigwedge_i B_i$, then $(A_i) \simeq (B_i)$.

The proof goes as follows: suppose $\bigwedge A_i = \bigwedge B_j = P$;

- we first show that there is one set in common in (A_i) and B_j : $A \in (A_i)$ and $A \in (B_j)$;
- we define an operation of division such that $(A * \bigwedge B_j)/A = \bigwedge B_j$;
- this implies that $\bigwedge_{i\neq 1} A_i = P/A = \bigwedge_{j\neq 1} B_j$;
- a trivial induction concludes the proof.

Lemma. Suppose $\bigwedge A_i \subseteq \bigwedge B_i$, then $\forall j \exists i \ A_i \subseteq B_j$.

proof: by contradiction, suppose that $\exists j \forall i \quad \neg(A_i \subseteq B_j)$. Let j_0 be such a j. We have that $\forall i \exists a_i \in A_i, a_i \notin B_{j_0}$. This implies that $[a_i] \in \bigwedge A_i$, but $[a_i]$ cannot be in $\bigwedge B_j$!

Contradiction.

QED

Lemma. Suppose $\bigwedge A_i = \bigwedge B_i$, then there is a pair (i, j) s.t. $A_i = B_j$.

proof: by the above lemma, we can construct an infinite chain $A_{i_1} \supseteq B_{j_1} \supseteq \ldots A_{i_n} \supseteq B_{j_n} \ldots$ Since there is only a finite number of A_i 's and B_j 's, there is a cycle. This imply that some $A_{i_n} = B_{j_n}$.

QED

Definition. Let $E \subseteq \mathcal{M}_f(S)$; define:

• for $a \in S$: $E/a = \{\mu \mid \mu + [a] \in E\};$

• for $A \subseteq S$: $E/A = \bigcap_{a \in A} E/a$.

Lemma. For all $B_0, B_1 \dots B_N \subseteq S$ (non empty), we have $(B_0 * B_1 * \dots * B_N)/B_0 = B_1 * \dots * B_N$.

proof: the \supseteq inclusion is immediate. Let's show the converse inclusion:

let $[b_1, \ldots, b_N] \in (B_0 * B_1 * \ldots * B_N)/B_0$; suppose by contradiction that $[b_i] \notin \bigwedge B_i$.

Let $a \in B_0$, we have $[a, b_1, \ldots b_N] \in B_0 * \bigwedge B_i$. Without loss of generality, we can suppose $b_1 \in B_0$, $a \in B_1$ and $b_i \in B_i$ for all $i \ge 2$. (*)

Since $b_1 \in B_0$, we have $[b_1, b_1, b_2, \ldots b_N] \in B_0 * \bigwedge B_i$, *i.e.* there is a bijection $\sigma : \{0, \ldots N\} \rightarrow \{0, \ldots N\}$ s.t. $b_{\sigma i} \in B_i$. (To make notation simpler, we put $b_0 = b_1$.)

Define (k_i) by induction as follows:

• $k_0 = \sigma 0;$

• $k_{i+1} = \sigma k_i$.

Let $K = \min\{i \mid k_i = 0 \text{ or } k_i = 1\}$. It exists. (TODO: more details?); let $I = \{k_0, \dots, k_K\}$. Now, rearrange the columns of the following table:

$\{0, \dots N\}$												
B_0	B_1		B_l		$B_{l'}$		B_N					
$b_{\sigma 0}$	$b_{\sigma 1}$		b_1		b_1		$b_{\sigma N}$					
{1,1,N}												

into

_	{0}L	$JI = \{0, $	$k_0,, k_K$	$\{1,N\} \setminus I = \overline{I}$				
B_0	B_{k_0}		$B_{k_{K-1}}$	B_{k_K}	· · · ·	B_l		
b_{k_0}	b_{k_1}		b_{k_K}	b_1		b_1	,	
	{1}L	$JI = \{1,$	$k_0,, k_K$		{1,.	$N\}$	$I = \overline{I}$	

From this (right hand part), we can deduce that $[b_i]_{i\in\overline{I}} \in \bigwedge_{i\in\overline{I}} B_i$. By hypothesis (*), we also have that $[b_i]_{i\in I} \in \bigwedge_{i\in I} B_i$ (because $1 \notin I$). This implies that $[b_i]_{i\in\{1,\ldots,N\}} \in \bigwedge_{i\in\{1,\ldots,N\}} B_i$! Contradiction.

\mathbf{QED}

The proof of the proposition is now immediate: by induction on N.

- N = 0: trivial;
- N > 0: suppose $\bigwedge A_i = \bigwedge B_i$; this implies that $[A_i]_{i \le N}$ and $[B_i]_{i \le N}$ are in fact of the form $[C] + [A_i]_{i < N}$ and $[C] + [B_i]_{i < N}$. Apply the lemma to get $\bigwedge_{i < N} A_i = \bigwedge_{i < N} B_i$, then the induction hypothesis to obtain $[A_i]_{i < N} = [B_i]_{i < N}$. From this, we can easily conclude that $[C] + [A_i]_{i < N} = [C] + [B_i]_{i < N}$.

One interesting point of this operation is that it is to the cartesian product what the union is to the disjoint sum:

- if A and B are disjoint, then $A \cup B$ (disjoint union) is isomorphic to $A \oplus B$ (sum or coproduct).
- if A and B are disjoint, then A * B (disjoint commutative product) is isomorphic to $A \times B$ (usual product).

For both * and \cup , the operations are truly commutative (real equalities rather than isomorphisms) whereas both \times and \oplus are only commutative up to isomorphisms.

One problem remains, namely that * is not really associative!

Remark. The above proposition doesn't hold if one replaces equalities by inclusions (even though it holds for the usual cartesian product). The simplest counter-example is probably the following: $\{1,3\} * \{2\} \subseteq \{1,2\} * \{2,3\}$.