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If S is a set, we write My (S) for the set of all finite multisets with elements in S. There
are two equivalent ways to define them:
o as functions f: S — N such that ) __¢ f(s) is finite;
« as families (s;);e; with finite index I quotiented by (a;)ier = (b;) e iff (Vi € I) a; = by
for some bijection o : I — J. We write [a;];cs for the equivalence class of (a;);er w.r.t. ~.
We prefer the latter as it has a more “constructive” feeling.

Definition. Suppose (A;)icr is a finite family of subsets of some set S, we construct the set
Nicr Ai of multisections on (A;) as follows:

o Nier Ai © Mg (5);

o (aj)jer € Nigy Ai iff (Vj € J) a; € Ay for some bijection o : J — 1.
We also use the N-ary notation Ay x A % ... Apn.

It is easy to see that this operation is well defined w.r.t. the relation ~ and that is is commutative
in the sense that if (4;) ~ (B;), then \; A; = /\; B;. In other words A is a well defined operator

A : Ms(P(S)) — P(M;g(S)). For those familiar with categorical notions, A is even a natural
transformation between the functors M;P and PM;. This operation is a commutative version
of the usual (finite) cartesian product [].

One property of the cartesian product is that the operation is injective on families of
non-empty subsets:

Lemma. Suppose (4;)ics and (B;);es are two finite families of non-empty subsets of S; suppose
moreover that [[, A; =[], B, then A; = B; for all i € I.

A similar result holds for A, although is not as obvious!

Proposition. Suppose (4;)ic; and (B;)ier are two finite families of non-empty subsets of S;
suppose moreover that \, A; = )\, B;, then (A;) ~ (B;).

The proof goes as follows: suppose A A, = A\ B; = P;
« we first show that there is one set in common in (4;) and B;: A € (4;) and A € (B;);
 we define an operation of division such that (A * A B;)/A = A\ Bj;
o this implies that A, 4; = P/A= A\, B;;
e a trivial induction concludes the proof.

Lemma. Suppose \ A; C \ B;, thenVj 3 A; C B;.

proof: by contradiction, suppose that 3j Vi —(A; C B;). Let jo be such a j.
We have that Vi 3a; € A;,a; ¢ Bj,. This implies that [a;] € A A;, but [a;] cannot be in A B;!
Contradiction.

QED
Lemma. Suppose \ A; = A\ B;, then there is a pair (i,j) s.t. A; = Bj.

proof: by the above lemma, we can construct an infinite chain A;; D Bj, D ... 4;, D Bj, ...
Since there is only a finite number of A4;’s and B;’s, there is a cycle. This imply that some
A;, = Bj,.

QED

in



Definition. Let E C M;(S); define:
e foraeS: E/la={p|p+la] € E};
o for ACS: E/A={,cq E/a.

Lemma. Forall By,B; ... By C S (non empty), we have (BoxBy*...%*Bx)/Bg = By*...xBy.

proof: the D inclusion is immediate. Let’s show the converse inclusion:
let [b1,...bn] € (Bo* By * ... x By)/Bo; suppose by contradiction that [b;] ¢ A B;.
Let a € By, we have [a,b1,...by] € Bg * A\ B;. Without loss of generality, we can suppose
b1 € By, a € By and b; € B; for all i > 2. (x)
Since by € By, we have [by,b1,ba,...bn] € By * /\ B;, i.e. there is a bijection o : {0,... N} —
{0,... N} s.t. by; € B;. (To make notation simpler, we put by = b;.)
Define (k;) by induction as follows:

. ko = O’O;

. ki+1 = (Tki.
Let K = min{i | k; = 0 or k; = 1}. It exists. (TODO: more details?); let I = {ko,...kx}.
Now, rearrange the columns of the following table:

{0,...N}
By B ... B ... By ... By
boo bo1 ... b1 ... b1 ... bon
{1,1,...N}
into
{0YUT={0,ko,...kx } {1,...N\I=T
By Bk, ... DBix., DBix ... By
b, br, ... bk b1 ... b
{1}uI={1,ko,...kK } {1,...N}\I=T

From this (right hand part), we can deduce that [b;],.; € A\;.7 Bi- By hypothesis (x), we also
have that [blicr € A;c; Bi (because 1 ¢ I). This implies that [b;]ic(1,.. v} € /\ie{l,...N} B;!
Contradiction.

QED

The proof of the proposition is now immediate: by induction on N.

e N = 0: trivial;

e N > 0: suppose A\ A; = A B;; this implies that [A4;];<n and [B;];<n are in fact of the form
[C] + [Aili<n and [C] + [Bi]i<n. Apply the lemma to get A,y As = A\,on Bi, then the
induction hypothesis to obtain [A;];«n = [Bili<n. From this, we can easily conclude that
[C] + [Aili<n = [C] + [Bili<n-

One interesting point of this operation is that it is to the cartesian product what the union
is to the disjoint sum:
e if A and B are disjoint, then A U B (disjoint union) is isomorphic to A ¢ B (sum or
coproduct).
o if A and B are disjoint, then A * B (disjoint commutative product) is isomorphic to A x B
(usual product).
For both % and U, the operations are truly commutative (real equalities rather than isomor-
phisms) whereas both x and @ are only commutative up to isomorphisms.

One problem remains, namely that  is not really associative!
Remark. The above proposition doesn’t hold if one replaces equalities by inclusions (even

though it holds for the usual cartesian product). The simplest counter-example is probably the
following: {1,3} % {2} C {1,2} = {2, 3}.



