
THE SIZE-CHANGE TERMINATION PRINCIPLE

FOR CONSTRUCTOR BASED LANGUAGES

PIERRE HYVERNAT

Laboratoire de Mathématiques, CNRS UMR 5126 – Université de Savoie, 73376 Le Bourget-du-Lac
Cedex, France
e-mail address: pierre.hyvernat@univ-savoie.fr
URL: http://lama.univ-savoie.fr/~hyvernat/

Abstract. This paper describes an automatic termination checker for a generic first-
order call-by-value language in ML style. We use the fact that values are built from
constructors and tuples to keep some information about how arguments of recursive calls
evolve during evaluation.

The result is a criterion for termination extending the size-change termination principle
of Lee, Jones and Ben-Amram that can detect size changes inside subvalues of arguments.
Moreover the corresponding algorithm is easy to implement, making it a good candidate
for experimentation.

Introduction

Our goal is to automatically check the termination of mutually recursive definitions written
in a first-order call-by-value language in ML style. The problem is of course undecidable and
we can only hope to capture some recursive definitions. Lee, Jones and Ben-Amram’s size-
change termination principle (SCT) is a simple, yet surprisingly strong sufficient condition
for termination of programs [6]. It relies on a notion of size of values and a static analysis
interpreting a recursive program as a control-flow graph with information about how the
size of arguments evolves during recursive calls. The procedure checking that such a graph
is “terminating” amounts to a (conceptually) simple construction of a graph of paths.

We specialize and extend this principle to an ML-like language where first-order values
have a specific shape: they are built with n-tuples and constructors. It is then possible
to record more information about arguments of recursive calls than “decreases strictly”
or “decreases”. The main requirement is that the set of possible informations is finite,
which we get by choosing bounds for the depth and the weight of the terms describing
this information. We obtain a parametrized criterion for checking termination of first-order
recursive programs. The weakest version of this criterion corresponds to the original SCT

Received by the editors June 16, 2014.
1998 ACM Subject Classification: D.3.1, F.3.2, D.2.4.
Key words and phrases: program analysis, termination analysis, size-change principle, ML.
This work was partially funded by the French ANR project récré ANR-11-BS02-0010.

LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.2168/LMCS-???

c© Pierre Hyvernat
Creative Commons

1

mailto:pierre.hyvernat@univ-savoie.fr
http://lama.univ-savoie.fr/~hyvernat/

2 PIERRE HYVERNAT

where the size of a value is its depth. An important point is that because we know some
of the constructors present in the arguments, it is possible to ignore some paths in the
control-flow graph because they cannot correspond to real evaluation steps. Moreover, it
makes it possible to inspect subvalues of the arguments and detect a “local” size change.
Another important point is that there is a simple syntax directed static analysis that can
be done in linear time.

The criterion has been implemented as part of the PML [12] language, where it plays
a central role: PML has a notion of proofs, which are special programs that need to ter-
minate. As far as usability is concerned, this criterion was a success: it is strong enough
for our purpose, its output is usually easy to predict and its implementation was rather
straightforward. The core consists of about 600 lines of OCaml code without external
dependencies.1

The paper is organized as follows: after introducing the ambient programming language
and some paradigmatic examples, we first define an abstract interpretation for calls and
look at their properties. This makes it possible to give an abstract interpretation for sets of
recursive definitions as control-flow graphs. A subtle issue arises when we try to make the
set of possible interpretations finite, making the notion of composition not associative in
general. We then describe and prove the actual criterion. We finish with an appendix giving
some technical lemmas, details about the implementation and a simple static analysis.

Comparison with other work. Two aspects of this new criterion appeared in the litera-
ture [2, 8] (see Section 2.5), but what seems to be new here is that the algorithm for testing
termination is, like for the original SCT, “finitary”. Once the static analysis is done —and
this can be as simple as a linear-time syntactical analysis of the definitions— one needs only
to compute the graph of paths of the control-flow graph and inspect its loops. This makes
it particularly easy to implement from scratch as it needs not to rely on external automatic
proof-checker [8] or integer linear programming libraries [2].

One advantage of this minimalistic approach is that a formal proof of the criterion is
probably easier, making the criterion well-suited for proof assistants based on type the-
ory like Coq [9] or Agda [11]. The closest existing criterion seems to be the termination
checker of Agda. It is based on the “foetus” termination checker [1]. The implementation
incorporates a part of SCT but unfortunately, the exact criterion isn’t formally described
anywhere.

It should be noted that native datatypes (integers with arithmetic operations for exam-
ple) are not addressed in this paper. This is not a problem as proof assistants don’t directly
use native types. Complementing the present approach with such internal datatypes and
analysis of higher-order programs [13] is the subject of future research.

Ambient Programming Language. The programming language we are considering is a
first-order call-by-value language in ML-style. It has constructors, pattern-matching, tuples
and projections. The language is described briefly in Figure 1 and the syntax should be
obvious to anyone familiar with an ML-style language. The “match” construction allows
to do pattern matching, while “πi” is used for projecting a tuple on one of its components.
The only proviso is that all constructors are unary and written as “C[u]”. Note that the f

in the grammar for expressions can either be one of the functions that are being inductively

1A standalone version is available from http://lama.univ-savoie.fr/~hyvernat/research.php

http://lama.univ-savoie.fr/~hyvernat/research.php

SIZE-CHANGE TERMINATION FOR CONSTRUCTOR BASED LANGUAGES 3

program ::= val rec def (and def)∗

def ::= f x1 x2 . . . xn = term

expr ::= xk | f | expr expr+ |
C[expr] | (expr, . . . , expr) |
match expr with branch+ | πi expr (with i > 0)

branch ::= | C[xk] -> expr | | -> expr

Figure 1: syntax of the programming language

defined, or any function in the global environment. Other features like let expressions,
exceptions, (sub)typing etc. can easily be added as they don’t interfere with the criterion.
(They might make the static analysis harder though.)

The operational semantics is the usual one and we only consider programs whose se-
mantics is well defined. This can be achieved using traditional Hindley-Milner type checking
/ type inference [10] or a constraint checking algorithm [12] ensuring that

• a constructor is never projected,
• a tuple is never matched,
• an n-tuple is only projected on its i-th component if 1 ≤ i ≤ n.

To simplify the presentation, we assume that functions have an arity and are always fully
applied. Moreover, we suppose that the arguments of functions are all first-order values.
These constraints are relaxed in the actual implementation.

An important property of this language is that non-termination can only be the result
of evaluation going through an infinite sequence of calls to recursive functions [12]. A
consequence of that is that it is not possible to use the notions described in this paper
directly for languages where a fixed point combinator can be defined without recursion.
Extensions similar to the work of Jones and Bohr for untyped languages [3] might be
possible, at the cost of a greatly increased complexity of implementation.

A first-order value is a closed expression built only with constructors and (possibly
empty) tuples. Examples include unary natural numbers built with constructors “Z” and “S”
or lists built with constructors “Nil” and “Cons”. The depth of a value is

depth(C[u])
def
= 1 + depth(u)

depth
(
(u1, . . . , un)

) def
= max

16i6n

(
1 + depth(ui)

)
.

Note that values are not explicitly typed and that depth counts all constructors. For
example, the depth of a list of natural numbers counts the Nil, Cons, S and Z constructors,
as well as the tuples coming with the Cons constructors.

To make examples easier to read, we will deviate from the grammar of Figure 1 and use
ML-like deep pattern-matching, including pattern-matching on tuples. Moreover, parenthe-
sis around tuples will be omitted when they are the argument of constructors. For example,
here is how we write the usual map function:

val rec map x = match x with Nil[] -> Nil[]

| Cons[a,y] -> Cons[f a, map y]

Without the previous conventions, the definition would look like

val rec map x = match x with | Nil[y] -> Nil[()]

4 PIERRE HYVERNAT

| Cons[y] -> Cons[(f π1y, map π2y)]

Note that because we here restrict to first-order arguments, we cannot formally make f

an argument of map. We thus assume that it is a predefined function. This constraint is
relaxed in the actual implementation.

Vocabulary and notation. We use a fixed-width font, possibly with subscripts, for syntactical
tokens: “x”, “y” or “xi” for variables, “f” or “g” for function names, “A” for a constructor,
etc. The only exception will be the letter π, used to represent a projection. Meta variables
representing terms will be written with italics: “t”, “u” or “ti” etc.

For a set of mutual recursive definitions

val rec f x1 x2 x3 = ... g t1 t2 ...

and g y1 y2 = ...

where x1, x2, x3, y1 and y2 are variables and t1 and t2 are expressions,

• “x1”, “x2” and “x3” are the parameters of the definition of f,
• “g t1 t2” is a call site from f to g,
• “t1” and “t2” are the arguments of g at this call site.

We usually abbreviate those to parameters, call and arguments.

Examples. Here are some examples of recursive (ad-hoc) definitions that are accepted by
our criterion.

• All the structurally decreasing inductive functions, like the map function given pre-
viously are accepted.
• Our criterion generalizes the original SCT (where the size of a value is its depth),

and thus, all the original examples [6] pass the test. For example, the Ackermann
function is accepted:

val rec ack x1 x2 = match (x1,x2) with

(Z[],Z[]) -> S[Z[]]

| (Z[],S[n]) -> S[S[n]]

| (S[m],Z[]) -> ack m S[Z[]]

| (S[m],S[n]) -> ack m (ack S[m] n)

• In the original SCT, the size information is lost as soon as a value increases. We do
support a local bounded increase of size as in

val rec f1 x = g1 A[x]

and g1 x = match x with A[A[x]] -> f1 x

| _ -> ()

The call from f1 to g1 (that increases the depth by 1) is harmless because it is
followed by a call from g1 to f1 (that decreases the depth by 2).
• In the definition

val rec f2 x = match x with A[x] -> f2 B[C[x]]

| B[x] -> f2 x

| C[x] -> f2 x

the size of the argument increases in the first recursive call. This alone would
make the definition non size-change terminating for the original SCT. However, the
constructors and pattern matching imply that the first recursive call is necessarily
followed by the second and third one, where the size decreases at last. This function
passes the improved test.

SIZE-CHANGE TERMINATION FOR CONSTRUCTOR BASED LANGUAGES 5

• In the definition

val rec push_left x =

match x with Leaf[] -> Leaf[]

| Node[t, Leaf[]] -> Node[t, Leaf[]]

| Node[t1, Node[t2,t3]] -> push_left Node[Node[t1,t2],t3]

the depth of the argument does not decrease but the depth of its right subtree does.
In the original SCT, the user could choose the ad-hoc notion of size “depth of the
right-subtree”. Our criterion will see that this is terminating without help.

Idea of the Algorithm. Just like the original SCT, our algorithm works by making an ab-
stract interpretation of the recursive definitions as a control-flow graph. This is done by a
static analysis independent of the actual criterion. A simple, syntactical static analysis that
allows to deal with the examples of the paper is described in Appendix C. This control-
flow graph only represents the evolution of arguments of recursive calls. For example both
the map function and the last function

val rec last x = match x with Cons[a,Nil[]] -> a

| Cons[_,x] -> last x

have the same control-flow graph: when the function is called on a non-empty list, it makes
a recursive call to the tail of the list.

Ideally, each argument to a call should be represented by a transformation describing
how the argument is obtained from the parameters of the defined function. To make the
problem tractable, we restrict to transformations described by a simple term language. For
example, the argument of the map/last functions is described by “π2Cons

-x”: starting
from parameter x, we remove a Cons and take the second component of the resulting tuple.
When a function has more than one parameter, each argument of the called function is
described by a term with free variables among the parameter of the calling function.

Checking termination is done by finding a sufficient condition for the following property
of the control-flow graph: no infinite path of the graph may come from an infinite sequence
of real calls. The two main reasons for a path to not come from a sequence of real calls are:

• there is an incompatibility in the path: for example, it is not possible to remove
a Cons from the Nil value,
• it would make the depth of some value negative: for example, it is not possible to

remove infinitely many Cons from a given list.

In order to do that, we will identify loops that every infinite path must go through, and
check that for all these “coherent” loops, there is some part of an argument that decreases
strictly. For example, in the definition of push left (page 5), the right subtree of the
argument is decreasing, which makes the function pass the termination test.

1. Interpreting Calls

1.1. Terms and Reduction. The next definition gives a way to describe how an argument
of a recursive calls is obtained from the parameters of the calling function:

Definition 1.1. Representations for arguments are defined by the following grammar

t ∈ T ::= xk | Ct | (t1, . . . , tn)︸ ︷︷ ︸
constructors

| C-t | πit︸ ︷︷ ︸
destructors

| t1 + t2 | 0 | 〈w〉t

6 PIERRE HYVERNAT

where xk can be any variable of the ambient language, n > 0, i > 1 and w ∈ Z∞ = Z∪{∞}.
We write T (x1, . . . , xn) for the set of terms whose variables are in {x1, . . . , xn}.

We enforce linearity (or n-linearity for n-tuples) for all term formation operations with
the following equations:

C0 = 0 C(t1 + t2) = Ct1 + Ct2
(. . . ,0, . . .) = 0 (. . . , t1 + t2, . . .) = (. . . , t1, . . .) + (. . . , t2, . . .)

C-0 = 0 C-(t1 + t2) = C-t1 + C-t2
πi0 = 0 πi(t1 + t2) = πit1 + πit2
〈w〉0 = 0 〈w〉(t1 + t2) = 〈w〉t1 + 〈w〉t2 .

We also quotient T by associativity, commutativity, neutrality of 0, and idempotence of +:

t1 + (t2 + t3) = (t1 + t2) + t3 t+ 0 = t
t1 + t2 = t2 + t1 t+ t = t .

The intuition is that:

• xk is a parameter of the calling function.
• C is a constructor and (_, . . . , _) is a tuple.
• πi is a projection. It gives access to the ith component of a tuple.
• C- corresponds to a branch of pattern matching. It removes the C from a value.
• 0 is an artifact used to represent an error during evaluation. Since we only look at

well defined programs (see remark on page 3), any 0 that appears during analysis
can be ignored as it cannot come from an actual computation.
• t1 + t2 acts as a non-deterministic choice. Those sums will play a central role in our

analysis of control-flow graphs.
• 〈w〉 stands for an unknown term that may increase the depth of its argument by

at most w. For example, if w < 0, then the depth of 〈w〉v is strictly less than the
depth of v. Those terms will serve as approximations of other terms: for example,
both Ct and Dt can be approximated by 〈1〉t, but each one contains strictly more
information than 〈0〉t.

There is a natural notion of reduction on terms:

Definition 1.2. We define a reduction relation on T :

(1) C-Ct → t πi(t1, . . . , tn) → ti if 1 6 i 6 n

(2) 〈w〉Ct → 〈w + 1〉t 〈w〉(t1, . . . , tn) →
∑

16i6n〈w + 1〉ti if n > 0
(2) C-〈w〉t → 〈w − 1〉t πi〈w〉t → 〈w − 1〉t
(2) 〈w〉〈v〉t → 〈w + v〉t
(3) πiCt → 0 πi(t1, . . . , tn) → 0 if i > n
(3) C-(t1, . . . , tn) → 0 C-Dt → 0 if C 6= D

The symbol “+” for elements of Z∞ denotes the obvious addition, with∞+∞ =∞+n =∞.

This reduction extends the operational semantics of the ambient language: the two rules
from group (1) correspond to the evaluation mechanism and the four rules from group (3)
correspond to unreachable states of the evaluation machine. The five rules from group (2)
explain how approximations behave. Note in particular that:

• a 〈w〉 absorbs constructors on its right and destructors on its left,
• a 〈w〉 may approximate some projections and we don’t know which components of

a tuple it may access. This is why a sum appears in the reduction.

SIZE-CHANGE TERMINATION FOR CONSTRUCTOR BASED LANGUAGES 7

Lemma 1.3. The reduction → is strongly normalizing and confluent. We write nf(t) for
the unique normal form of t.

We write t ≈ u when t and u have the same normal form. This lemma implies that ≈
is the least equivalence relation containing reduction.

Proof of Lemma 1.3. Strong normalization is easy as the depth of terms decreases strictly
during reduction. By Newman’s lemma, confluence thus follows from local confluence which
follows from examination of the critical pairs:

D-〈w〉Ct D-〈w〉(t1, . . . , tn) C-〈w〉〈v〉t
πi〈w〉Ct πi〈w〉(t1, . . . , tn) π1〈w〉〈v〉t
〈w〉〈v〉Ct 〈w〉〈v〉(t1, . . . , tn) 〈w〉〈v〉〈u〉t .

For example, D-〈w〉Ct reduces both to 〈w − 1〉Ct and D-〈w + 1〉t. Luckily, those two terms
reduce to 〈w〉t. The same holds for the eight remaining critical pairs.

Call a term t ∈ T simple if it is in normal form and doesn’t contain + or 0. We have:

Lemma 1.4. Every term t ∈ T reduces to a (possibly empty) sum of simple terms, where
the empty sum is identified with 0.

Proof. This follows from the fact that all term constructions are linear and that the reduc-
tion is strongly normalizing. Note that because of confluence, associativity, commutativity
and idempotence of +, this representation is essentially unique.

Simple terms have a very constrained form: all the constructors are on the left and all
the destructors are on the right. More precisely:

Lemma 1.5. The simple terms of T are generated by the grammar

t ::= Ct | (t1, . . . , tn) | d | 〈w〉d (n > 0)

d ::= () | dv

dv ::= xk | πidv | C-dv

We will sometimes write d x = d1 · · · dnx for some dv ending with variable x.
The length |d | of d is the number of destructors C-/πi it contains.

We now introduce a preorder describing approximation.

Definition 1.6. The relation 4 is the least preorder on T satisfying

• 4 is contextual: if t is a term, and if u1 4 u2, then t[x := u1] 4 t[x := u2],
• 4 is compatible with ≈: if t ≈ u then u 4 t and t 4 u,
• 4 is compatible with + and 0 : 0 4 t and t 4 t+ u,
• if v 6 w in Z∞ then 〈v〉t 4 〈w〉t,
• t 4 〈0〉t.

When t 4 u, we say that “t is finer than u” or that “u is an approximation of t”.

This definition implies for example that Cx 4 〈0〉Cx ≈ 〈1〉x, and thus, by contextuality,
that Ct 4 〈1〉t for any term t. Appendix A gives a characterization of this preorder that
is easier to implement because it doesn’t use contextuality. It implies in particular the
following lemma:

Lemma 1.7. We have 〈w〉d 4 〈w′〉b if and only b is a suffix of d and w + |b | 6 w′ + |b |.
In particular, 〈w〉() 4 〈w′〉() if and only if w 6 w′.

8 PIERRE HYVERNAT

An important property is that a finer term has at least as many head constructors as
a coarser one:

Lemma 1.8. If u 6≈ 0, we have:

u 4 Cv ⇐⇒ u = Cu′ with u′ 4 v

and
u 4 (v1, . . . , vn) ⇐⇒ u = (u1, . . . , un) with u1 4 v1 . . . un 4 vn

Proof. There is a simple, direct inductive proof, but this lemma also follows from the char-
acterization of 4 in Appendix A (Lemma A.5).

The next lemma gives some facts about the preorder (T ,4) that may help getting some
intuitions.

Lemma 1.9. We have

• 0 is the least element,
• 〈∞〉() is the greatest element of T (), the set of closed terms,
• + is a least-upper bound, i.e., t1 + t2 4 u iff t1 4 u and t2 4 u,
• if t and u are simple, then t 4 u and u 4 t iff t = u.

The last point follows from Lemmas 1.7 and 1.8. The rest is direct.

1.2. Substitutions and Control-Flow Graphs. Just like a term is meant to represent
one argument of a recursive call, a substitution [x1 := u1 ; . . . ; xn := un] is meant to repre-
sent all the arguments of a recursive call to an n-ary function. In order to follow the evolu-
tion of arguments along several recursive calls, we need to compose substitutions: given some
terms t, u1, . . . ,un in T , we define t [x1 := u1 ; . . . ; xn := un] as the parallel substitution
of each xi by ui. The composition τ ◦ σ of two substitutions τ = [x1 := u1 ; . . . ; xn = un]
and σ is simply the substitution τ ◦ σ = [x1 := u1σ ; . . . ; xn := unσ].

Lemma 1.10. Composition of substitutions is associative and monotonic (for the pointwise
order) on the right and on the left: if τ1 4 τ2 then σ ◦ τ1 4 σ ◦ τ2 and τ1 ◦ σ 4 τ2 ◦ σ.

Proof. Associativity is obvious. Monotonicity on the left follows from the fact that 4 is
contextual. For monotonicity on the right, we show “t1 4 t2 implies t1[x := u] 4 t2[x := u]”
by induction on t1 4 t2. The only interesting case is when t1 4 t2 because t1 = t[y := v1]
and t2 = t[y := v2] and v1 4 v2. By induction hypothesis, we have v1[x := u] 4 v2[x := u].
There are two cases:

• if x = y, we have ti[x := u] = t[x := vi][x := u] = t
[
x := vi[x := vi]

]
and we

get t1[x := u] 4 t2[x := u] by contextuality applied to the induction hypothesis;
• if x 6= y, we have ti[x := u] = t[y := vi][x := u] = t[x := u]

[
y := vi[x := u]

]
, and

here again, we get t1[x := u] 4 t2[x := u] by contextuality applied to the induction
hypothesis.

SIZE-CHANGE TERMINATION FOR CONSTRUCTOR BASED LANGUAGES 9

We can now define what the abstract interpretations for our programs will be:

Definition 1.11. A control-flow graph for a set of mutually recursive definitions is a labeled
graph where:

• vertices are function names,
• if the parameters of f are y1, . . . , ym and the parameters of g are x1, . . . , xn, the

labels of arcs from f to g are substitutions [x1 := u1 ; . . . ; xn := un], where each ui
is a term in T (y1, . . . , ym).

That a control-flow graph is safe (Definition 1.13) means that it gives approximations
of the real evolution of arguments of the recursive calls during evaluation. Since we are in a
call-by-value language, those arguments are first-order values of the ambient language (see
page 2) which can be embedded in T ().

Definition 1.12. A value is a simple term of T (), i.e., a simple closed term. An exact
value is a value which doesn’t contain any 〈w〉, with w ∈ Z∞.

First-order values of the ambient language correspond precisely to exact values in T .
We can now define safety formally:

Definition 1.13. Let G be a control-flow graph for some recursive definitions,

(1) suppose we have a call site from f to g:

val rec f x1 x2 ... xn =

... g u1 ... um

...

An arc f
σ−→ g in G safely represents this particular call site if for every substitu-

tion ρ of the parameters by exact values ρ = [x1 := v1 ; . . . ; xn := vn], we have

[y1 := [[u1]]ρ ; . . . ; ym := [[um]]ρ] 4 σ ◦ ρ
where each [[ui]]ρ is the value of ui given by the operational semantics of the language,
in the environment where each variable xi has value ρ(xi).

(2) A set of mutually recursive definitions is safely represented by a control-flow graph
if each call site is safely represented by at least an arc in the graph.

For example, the recursive definitions for f1 and g1 from page 4 and the Ackermann
function are safely represented by the following control-flow graphs:

f1 g1

σ1 = [x := Ax]

σ2 =
[
x := A-A-x

]
ack

[
x1 := S-x1 ; x2 := SZ()

]

[
x1 := S-x1 ; x2 := 〈∞〉()

]

[
x1 := SS-x1 ; x2 := S-x2

]
.

The arc σ2 safely represents the call

... match x with A[A[y]] -> f1 y

10 PIERRE HYVERNAT

because any value v of x reaching the call must be of the form AAv′. We thus have [[x]] = v
and [[y]] = v′ in this environment. We have that

[x := [[y]]] =
[
x := v′

]
4 σ2 ◦ [x := [[x]]] =

[
x := A-A-AAv′

]
≈
[
x := v′

]
.

The “x2 := 〈∞〉()” in the loop for the Ackermann function is needed because we don’t know
how to express the second argument at the call site ack m (ack S[m] n). The upper arc
safely represents this call site because for all possible values of m and n, the semantics of
ack S[m] n (a natural number) is approximated by 〈∞〉().

1.3. Collapsing. For combinatorial reasons, we will need the labels of the control-flow
graph (substitutions) to live in a finite set. The two main obstructions for the finiteness
of T are that the depth of terms is unbounded and that there are infinitely many possible
weights for the approximations 〈w〉s. Define the constructor depth and the destructor depth
of a term with

depthC
(
Ct
) def

= 1 + depthC(t)

depthC
(
(t1, . . . , tn)

) def
= max

1≤i≤n

(
1 + depthC(ti)

)
depthC

(
d
) def

= 0

depthC
(
〈w〉d

) def
= 0

and the destructor depth of simple terms as:

depthD
(
Ct
) def

= depthD(t)

depthD
(
(t1, . . . , tn)

) def
= max

1≤i≤n

(
depthD(ti)

)
depthD

(
d
) def

= |d |
depthD

(
〈w〉d

) def
= |d | .

The depth of a sum of simple terms is the maximum of the depth of its summands. This
allows to define the following restriction for terms:

Definition 1.14. We write TD,B for the subset of all t ∈ T s.t.

• t is in normal form
• for each 〈w〉 appearing in t, we have w ∈ ZB = {−B, . . . , 0, 1, . . . , B − 1,∞},
• the constructor depth and the destructor depth of t are less or equal than D.

The aim is to send each element of T to an approximation that belongs to TD,B.
Given B > 0 (fixed once and for all), it is easy to collapse all the weights in Z∞ into the
finite set ZB: send each w to dwe

B
, with

dwe
B

def
=

−B if w < −B
w if −B 6 w < B

∞ if w > B .

SIZE-CHANGE TERMINATION FOR CONSTRUCTOR BASED LANGUAGES 11

This gives rise to a function from simple terms to simple terms with bounded weights: using
the grammar of simple terms from Lemma 1.5, we define

dCte
B

def
= Cdte

B

d(t1, ..., tn)e
B

def
=

(
dt1eB, ..., dtneB

)⌈
〈w〉d

⌉
B

def
= 〈dwe

B
〉 d⌈

d
⌉
B

def
= d .

Ensuring that the depth is bounded is more subtle. Given D > 0 (fixed once and for all)
and t ∈ T in normal form, we want to bound the constructor depth and the destructor depth
by D. This is achieved with the following definition acting on simple terms and extended
by linearity. Because of (∗), the clauses are not disjoint and only the first appropriate one
is used:

(Ct)�i
def
= C(t�i−1) if i > 0

(t1, . . . , tn)�i
def
=

(
t1�i−1

, . . . , tn�i−1

)
if i > 0(

〈w〉d
)
�i

def
= 〈w〉

(
d �D

)
if i > 0

d �i
def
= d �D

t�0
def
= nf(〈0〉t)�D (∗)(

〈w〉d
)
�D

def
= 〈w〉

(
d �D

)
(∗∗)

d �D
def
= d if |d | 6 D(

C-d
)
�D

def
= 〈−1〉

(
d �D

)
if |C-d | > D(

πid
)
�D

def
= 〈−1〉

(
d �D

)
if |πid | > D .

Note that we need to compute a normal form for clause (∗), and that since the normal form
of 〈0〉t doesn’t contain any constructor (recall that approximations absorb constructors on
their right), each summand of the result will match the left side of clause (∗∗).

The function t 7→ t�D does several things:

• it keeps the constructors up to depth D (the first four clauses),
• it removes the remaining constructors with t 7→ 〈0〉t (clause (∗)),
• it keeps a suffix of at most D destructors in front of each variable and incorporates

the additional destructors into the preceding 〈w〉 (the last three clauses).

For example, we have (
ABCD〈w〉X-Y-Z-x

)
�2

= AB〈w + 1〉Y-Z-x

and (
A(x, B〈w〉X-Y-y)

)
�1

= A〈1〉x + A〈w + 1〉Y-y .

Lemma 1.15. The collapsing function t 7→ dt�DeB is inflationary and monotonic:

• t 4 dt�DeB,
• if t 4 u then dt�DeB 4 du�DeB,

More precisely, both functions t 7→ dte
B

and t 7→ t�D are inflationary and monotonic.

Proof. By definition of 4, d_e
B

is inflationary and monotonic. It follows from the fact
that d_e : Z∞ → ZB is itself inflationary and monotonic.

12 PIERRE HYVERNAT

That _�D is inflationary relies on the fact that t 4 〈0〉t, C-t 4 〈−1〉t and πit 4 〈−1〉t;
it is a direct inductive proof. The proof that _�D is monotonic is a tedious inductive proof.
It is omitted for sake of brevity.

Together, these facts imply that d_�DeB is both inflationary and monotonic.

The next lemma justifies the use of this collapsing function.

Lemma 1.16. For each t ∈ T , we have dt�DeB ∈ TD,B. Moreover, dt�DeB is the least term
in TD,B that approximates t. In particular, the function t 7→ dt�DeB is idempotent⌈

dt�DeB�D
⌉
B

= dt�DeB .

Proof. It is easy to show that both d_e
B

and _�D are idempotent. Idempotence of d_�DeB
follows from the fact that dt�DeB�D = dt�DeB. That dt�DeB ∈ TD,B follows directly from

the definitions. Since it is not needed in this paper, the proof that dt�DeB is the least term
in TD,B that approximates t is omitted.

An interesting corollary of Lemma 1.16 is that collapsing is monotonic with respect to
the bound D and B:

Corollary 1.17. If 0 6 D 6 D′ and 0 < B 6 B′, then
⌈
t�D′
⌉
B′
4 dt�DeB.

Definition 1.18. If σ = [x1 := t1 ; . . . ; xn := tn] and τ = [y1 := u1 ; . . . ; ym := um] are

substitutions, then τ � σ is defined as the pointwise collapsing
⌈
(τ ◦ σ)�D

⌉
B

.

This collapsed composition “�” is a binary operation on TD,B. Unfortunately, it is not
associative! For example, when B = 2, the composition

[r := 〈−1〉x] � [x := 〈1〉y] � [y := 〈1〉z]

can give [r := 〈1〉z] or [r := 〈∞〉z] depending on which composition we start with. Simi-
larly, when D = 1, the composition

[r := C-x] � [x := Cy] � [y := Dz]

can give [r := Dz] or [r := 〈1〉z]. There is a special case: when D = 0 and B = 1, the
operation � is becomes associative! This was the original case of SCT [6]. In general, we
have:

Definition 1.19. Two terms u and v are called compatible, written u ¨ v, if there is
some t 6≈ 0 that is finer than both, i.e., such that t 4 u and t 4 v. Two substitutions are
compatible if they are pointwise compatible.

Lemma 1.20. If σ1, . . . , σn is a sequence of composable substitutions, and if τ1 and τ2 are
the results of computing σn � . . . � σ1 in different ways, then τ1 ¨ τ2.

Proof. We have σn ◦ . . . ◦ σ1 4 τ1 and σn ◦ . . . ◦ σ1 4 τ2.

In order to simplify notations, we omit parenthesis and make this operation associate

on the right: σ1 � σ2 � σ3
def
= σ1 � (σ2 � σ3).

SIZE-CHANGE TERMINATION FOR CONSTRUCTOR BASED LANGUAGES 13

2. Size-Change Combinatorial Principle

2.1. Combinatorial Lemma. The heart of the criterion is the following combinatorial
lemma

Lemma 2.1. Let G be a control-flow graph; then, for every infinite path of composable
substitutions

f0
σ0−→ f1

σ1−→ . . .
σn−→ fn+1

σn+1−→ . . .

in the control-flow graph G, there is a node f such that the path can be decomposed as

f0
σ0−→ . . .

σn0−1−→︸ ︷︷ ︸
initial prefix

f
σn0−→ . . .

σn1−1−→︸ ︷︷ ︸
τ

f
σn1−→ . . .

σn2−1−→︸ ︷︷ ︸
τ

f . . .

where:

• all the σnk+1−1 � . . . � σnk
are equal to the same τ : f→ f,

• τ is coherent: τ � τ ¨ τ .

The proof is the same as the original SCT [6], with only a slight modification to deal
with the fact that � isn’t associative.

Proof. This is a consequence of the infinite Ramsey theorem. Let (σn)n>0 be an infinite
path as in the lemma. We associate a “color” c(m,n) to each pair (m,n) of natural numbers
where m < n:

c(m,n)
def
=

(
fm , fn , σn−1 � · · · � σm

)
.

Since the number of constructors and the arity of tuples that can arise from compositions
in a control flow graph is finite, the number of possible colors is finite. By the infinite
Ramsey theorem, there is an infinite set I ⊆ N such all the (i, j) for i < j ∈ I have the
same color (f, f’, τ). Write I = {n0 < n1 < · · · < nk < · · · }. If i < j < k ∈ I, we have:(

f , f′ , τ
)

=
(
fi , fj , σj−1 � · · · � σi

)
=

(
fj , fk , σk−1 � · · · � σj

)
=

(
fi , fk , σk−1 � · · · � σi

)
which implies that f = f′ = fi = fj = fk and

τ = σj−1 � · · · � σi
= σk−1 � · · · � σj
= σk−1 � · · · � σj � σj−1 � · · · � σi

τ � τ =
(
σk−1 � · · · � σj

)
�
(
σj−1 � · · · � σi

)
.

In the original SCT principle, composition was associative and we had τ � τ = τ . Here
however, τ and τ � τ differ only in the order of compositions, and we only get that τ ¨ τ � τ
(Lemma 1.20).

14 PIERRE HYVERNAT

2.2. Graph of paths. The graph of paths of a control-flow graph G is the graph G+ with
the same vertices as G and where arcs between a and b in G+ correspond exactly to paths
between a and b in G. In our case, the graph is labeled with substitutions and the label of
a path is the composition of the labels of its arcs.

Definition 2.2. If G is a control-flow graph, the graph G+, the graph of paths of G, is the
control-flow graph defined as follows:

• G0 = G,
• in Gn+1, the arcs from f to g are

Gn+1(f, g) = Gn(f, g) ∪
{
σ � τ | τ ∈ Gn(f, h), σ ∈ G(h, g)

}
where h ranges over all vertices of G,
• G+ =

⋃
n>0G

n.

By definition, each path σ1 · · ·σn in G corresponds to an arc in G+
D,B that is labelled

with σn � . . . � σ1. (Recall that “�” associates on the right.) The restrictions of the
sets TD,B(x1, . . . , xm) to terms that can appear in compositions of arcs in a control-flow
graph G are finite because the number of variables and constructors in G is finite and the
arity of tuples is bounded. We thus have:

Lemma 2.3. G+ is finite and can be computed in finite time. More precisely, Gn = Gn+1

for some n, and G+ is equal to this Gn.

As an example, here are the first steps of the computation of the graph of paths of the
control-flow graph for the functions f1 and g1 (page 4) when D = B = 1. The initial
control-flow graph G given by the static analysis is given on page 9. The graph G0 = G
contains only two arcs:

• σ1
def
= [x := Ax] from f1 to g1;

• σ2
def
= [x := A-A-x] from g1 to f1.

The graph G1 is then

f1 g1σ3 =
[
x := A-x

]
σ4 =

[
x := A〈−1〉A-x

]
σ1 = [x := Ax]

σ2 =
[
x := A-A-x

]
where the loop σ3 on the left is obtained as σ2 � σ1 and the loop σ4 on the right is obtained
as σ1 � σ2. The next iteration gives the following arcs for G2:

• σ5
def
= σ1 � σ3 which gives [x := AA-x] from f1 to g1,

• σ1 � σ2 which gives σ4 around g1,

• σ6
def
= σ2 � σ4 which gives [x := 〈−1〉A-x] from g1 to f1,

• σ2 � σ1 which gives σ3 around f1.

The next graph G3 contains a single new loop: [x := 〈−1〉A-x] around f1 and the next one
has a last arc [x := A〈−1〉A-x] from f1 to g1. This graph G4 with 8 arcs is the graph of
paths of the starting control-flow graph.

SIZE-CHANGE TERMINATION FOR CONSTRUCTOR BASED LANGUAGES 15

2.3. Size-Change Termination Principle. First, a small lemma:

Lemma 2.4. If v ∈ T () is an exact value, then:

• the normal form of 〈0〉v is of the form
∑

i〈wi〉() where maxi
(
wi
)

= depth(v),
• 〈depth(v)〉() 4 nf(〈0〉v) 4 〈depth(v)〉(),
• if v 4 〈w〉() then w > depth(v).

Proof. The first point is a simple inductive proof on v, and the second point follows directly.
For the third point, suppose that v 4 〈w〉(). By contextuality of 4 (refer to Defini-

tion 1.6), we get 〈0〉v 4 〈0〉〈w〉() ≈ 〈w〉() and so, by the second point and transitivity,
that 〈depth(v)〉() 4 〈w〉(). We conclude by Lemma 1.9.

A subvalue of a value can be accessed by a sequence of destructors. For example, the
right subtree of a binary tree can be accessed with π2Node

- in the sense that π2Node
-v

reduces exactly to the right subtree of v. By the previous lemma, we can get the depth
of the right subtree by precomposing a value with 〈0〉π2Node

-. A decreasing parameter is
a subvalue of a parameter whose depth decreases strictly over a given recursive call. For
example, in the call

val rec push_left x =

match x with Node[t1, Node[t2,t3]] -> push_left Node[Node[t1,t2],t3]

| ...

the right subtree of x is decreasing, while neither its left subtree nor t itself are decreasing.
In the control-flow graph, this call site becomes a loop labeled with

τ =

 x := Node
(
Node

(
π1Node

-x︸ ︷︷ ︸
t1

, π1Node
-π2Node

-x︸ ︷︷ ︸
t2

)
, π2Node

-π2Node
-x︸ ︷︷ ︸

t3

) .

Looking at 〈0〉π2Node
-x[τ] to get the depth of the right subtree of the argument after the

recursive call, we obtain

〈0〉π2Node
-x[τ] ≈ 〈0〉π2Node

-π2Node
-x 4 〈−2〉π2Node

-x .

This means that the depth of the right subtree of the argument x has decreased by (at
least) 2 after the recursive call.

Definition 2.5. Let τ = [x1 := t1 ; . . . ; xn := tn] be a loop in a control-flow graph. A
decreasing parameter for τ is a branch of destructors: ξ = 〈0〉d xi such that 0 6≈ ξ[τ] 4 〈w〉ξ
with w < 0 and d minimal, i.e., no strict suffix of d satisfies the same condition. A loop is
called decreasing when it has a decreasing parameter.

The minimality condition is purely technical: without it, the loop τ = [x := A〈−1〉A-x]
would have ξ = 〈0〉X-A-x as a decreasing argument because ξ[τ] ≈ 〈−2〉A-x. The problem is
that X has nothing to do with the definition and X-A- might not even represent a subvalue
of the parameter! A good decreasing parameter would be 〈0〉A-x. The minimality condition
is necessary to prove the following lemma:

Lemma 2.6. If ξ is a decreasing parameter for τ and 0 6≈ σ 4 τ ◦ρ then 0 6≈ ξ[σ] 4 ξ[τ ◦ρ]
and in particular, ξ[τ ◦ ρ] 6≈ 0.

Proof. Suppose that ξ = 〈0〉d1 · · · dnxi. The “inequality” follows from monotonicity. The
important point is that under the hypothesis, we have 0 6≈ ξ ◦ σ. The term ξ[σ] is equal
to 〈0〉d1 · · · dnσ(xi). Suppose by contradiction that this reduces to 0. Suppose also that σ
is in normal form.

16 PIERRE HYVERNAT

There is only one reduction sequence of 〈0〉d1 · · · dnσ(xi) and for it to give 0, this
reduction sequence needs to use a reduction step from group (3) of Definition 1.2. In other
words, a destructor of d1 · · · dn has to reach an incompatible constructor in σ(xi).

Since σ 4 τ ◦ ρ by hypothesis, we have that σ(xi) 4 τ ◦ ρ(xi) = τ(xi)ρ. By Lemma 1.8
we know that all the head constructors of τ(xi)ρ also appear in σ(xi). It is not difficult to
see that the head constructors appearing in the normal form of τ(xi) also appear in τ(xi)[ρ].
This phenomenon is general and doesn’t depend on τ or ρ. It comes from the fact that
applying a substitution to a term in normal form doesn’t interfere with its constructors...

All the constructors of τ(xi) thus appear in σ(xi). Since d1 · · · dn reaches an incompati-
ble constructor in σ(xi), the only way for d1 · · · dn to not reach an incompatible constructor
in τ(xi) is to reach the end of the constructors in τ(xi) before the end of d1 · · · dn. There
are two cases:

• either d1 · · · dn reaches an approximation:

〈0〉d1 · · · dnτ(xi) → . . .
... n− k reductions

→ 〈0〉d1 · · · dk〈w′〉b xi
≈ 〈w′ − k〉b xi
4 〈w〉d xi with w < 0 .

By Lemma 1.7 we get that d is a suffix of b , and w′ − k + |d | 6 w + |b |. But then,
we have 〈0〉dk+1 · · · dnτ(xi)→∗ 〈w′〉b xi, and we have that dk+1 · · · dn is a suffix of b ,
and w′ + |d k+1 . . . dn| 6 w + |b|. This implies that the sequence d1 · · · dn wasn’t
minimal as we have 〈0〉dk+1 · · · dnτ(xi) 4 〈w〉dk+1 · · · dnxi.
• The other possibility is that d reaches directly a branch of destructors:

〈0〉d1 · · · dnτ(xi) → . . .
... n− k reductions

→ 〈0〉d1 · · · dkb xi
4 〈w〉d xi with w < 0 .

By Lemma 1.7, d is a suffix of d1 · · · dk· b and |d | 6 w+|b |+k. The sequence d1 · · · dn
isn’t minimal because we have 〈0〉dk+1 · · · dnτxi ≈ 〈0〉b xi with dk+1 · · · dn a suffix
of b and |dk+1 · · · dn| 6 w + |b |, i.e., 〈0〉dk+1 · · · dnτ(xi) 4 〈w〉dk+1 · · · dnxi.

We can now state, and prove, the size-change termination principle.

Proposition 2.7 (Size-Change Termination Principle with Constructors). If G safely rep-
resents some recursive definitions and all coherent loops τ ¨ τ � τ in G+ are decreasing,
then the evaluation of the functions on values cannot produce an infinite sequence of calls.

Proof. Suppose the conditions of the proposition are satisfied and suppose that function h

on values v1, . . . , vm provokes an infinite sequence of calls c1 · · · cn · · · . Write ρn for the
arguments of call cn. The ρn’s contain first-order values and in particular, ρ0 corresponds
to the initial arguments of h: ρ0 = [x1 := v1 ; . . . ; xm := vm]. Let σ1 · · ·σn · · · be the
substitutions that label the arcs of G corresponding to the calls c1c2 · · · . We can use

SIZE-CHANGE TERMINATION FOR CONSTRUCTOR BASED LANGUAGES 17

Lemma 2.1 to decompose this sequence as:

h
σ0−→ . . . −→︸ ︷︷ ︸
initial prefix

f
σn0−→ . . . −→︸ ︷︷ ︸

τ

f
σn1−→ . . . −→︸ ︷︷ ︸

τ

f . . .

where:

• all the σnk+1−1 � . . . � σnk
are equal to the same τ : f→ f,

• τ is coherent: τ ¨ τ � τ .

The control-flow graph G is safe and we thus have

ρn+1 4 σn ◦ ρn
Since ◦ is monotonic, we also get

ρn1 4 σn1−1 ◦ · · · ◦ σn0 ◦ ρn0 .

By associativity of ◦, and because collapsing and composition are monotonic, we get

ρn1 4 (σn1−1 � · · · � σn0) ◦ ρn0 = τ ◦ ρn0 .

Repeating this, we obtain:
ρnk

4 τ ◦ · · · ◦ τ︸ ︷︷ ︸
k

◦ ρn0 .

By hypothesis, τ has a decreasing parameter: some ξ = 〈0〉d x s.t. ξ[τ] 4 〈w〉ξ with w < 0.
We thus have

ξ[ρnk
] 4 ξ[τ ◦ · · · ◦ τ ◦ ρn0] 4 · · · 4 〈w + · · ·+ w〉ξ[ρn0] .

By Lemma 2.6, the right side cannot be 0. By Lemma 2.4, it is approximated by 〈w′〉(),
where w′ is equal to the depth of the value d ρn0(x). We can choose k large enough to ensure
that −kw is strictly more than w′. Lemma 2.4 also implies that ξ[ρnk

] approximates 〈w′′〉(),
where w′′ is equal to depth

(
d ρnk

(x)
)
. But then, we have

〈w′′〉() 4 ξ[ρnk
] 4 〈kw〉ξ[ρn0] 4 〈kw + w′〉()

where w′′ = depth(ξ[ρnk
]) > 0 and kw + w′ < 0. This contradicts Lemma 2.4.

Definition 2.8. A control-flow graph G that satisfies the condition of Proposition 2.7 is
said to be size-change terminating for D and B.

We have:

Proposition 2.9. If G is size-change terminating for some D > 0 and B > 0, then G is
also size-change terminating for all D′ > D and B′ > B.

Proof. Let G be a control-flow graph, and let B′ > B and D′ > D. Suppose that G is size-
change terminating for D and B; we want to show that it is also size-change terminating
for D′ and B′.

Let τ ′ be a coherent loop in G+
D′,B′ . By construction, τ ′ = σ1 �D′,B′ · · · �D′,B′ σn for a

path σ1 . . . σn in G. We can define τ = σ1 �D,B · · · �D,B σn, which is a loop in G+
D,B.

Since collapsing is monotonic (Lemma 1.17), we have that τ ′ 4 τ . We also have
that τ ′ �D′,B′ τ ′ 4 τ �D,B τ and because τ ′ is coherent, τ is also coherent. By hypothesis, τ
has a decreasing parameter ξ: we have ξ[τ] 4 〈w〉ξ, with w < 0. As τ ′: ξ[τ ′] 4 ξ[τ] 4 〈w〉ξ,
there is a minimal suffix of ξ that is a decreasing argument for τ ′.

18 PIERRE HYVERNAT

2.3.1. The Algorithm. The procedure checking if a set of mutually recursive definitions is
terminating is thus:

1- static analysis: compute a safe representation of the recursive definitions as a
control-flow graph G. The simple static analysis described in Appendix C is enough
for all the examples in the paper and can be done in linear time.

2- choose bounds B and D: in our implementation, the bounds do not depend
on G and are B = 1, D = 2 by default. The user can also change them by in-
serting pragmas together with the code of the recursive definitions.

3- compute the graph of paths: compute the graph of paths G+ of G incremen-
tally, with the bounds B and D. This step can take an exponential amount of space,
as the example of the function perms (page 20) demonstrates.

4- check coherent loops: check that all the coherent loops of the graph G+ com-
puted previously are decreasing. If so, the functions of the definitions terminate;
otherwise, the procedure cannot answer.

For this, it must be possible:
• to check the coherence relation ¨,
• to look for decreasing arguments of a loop.

Some implementation details are given in Appendix B

Failure of Completeness. The original SCT satisfied a notion of completeness stating roughly
that “all infinite paths are infinitely decreasing iff all coherent loops have a decreasing pa-
rameter”. We capture more programs (Section 2.5) than the original SCT, but completeness
doesn’t hold anymore. Here is a counter example for D = 0 and B = 2:

val rec h1 x = match x with A[A[A[x]]] -> h2 x

and h2 x = h3 A[X]

and h3 x = h1 A[X]

The corresponding control-flow graph is

h1

h3h2

[x := A-A-A-x]

[x := Ax]

[x := Ax]

For every conceivable definition of “decreasing path”, all the infinite paths in this graph
should decrease infinitely. However, because of the consecutive “[x := Ax]” arcs, we will
get a “[x := 〈∞〉x]” arc in the graph of paths, corresponding to their composition. This
will propagate and give coherent loops [x := 〈∞〉x] around each node. This graph is not
size-change terminating for D = 0 and B = 2.

The previous example is size-change terminating whenever B > 2; but completeness
doesn’t even hold if we can choose the bounds B and D. Call a graph G decreasing if no
infinite path comes from actual computation, i.e. if all infinite path evaluate to 0. More
precisely, it means that for every infinite path (σk)k>0 and substitution ρ of values, there is
a finite prefix σ1 · · ·σn s.t. ρ ◦ σ1 ◦ · · ·σn ≈ 0. The combing function transforming a binary
tree into a right-leaning tree terminates for a subtle reason. Its definition is

SIZE-CHANGE TERMINATION FOR CONSTRUCTOR BASED LANGUAGES 19

val rec comb x = match x with

Leaf[] -> Leaf[]

| Node[t,Leaf[]] -> Node[comb t,Leaf[]]

| Node[t1,Node[t2,t3]] -> comb Node[Node[t1,t2],t3]

and it is safely represented by the graph with a single node comb and two loops:

• [x := π1Node
-x]

•
[
x := Node

(
Node(π1Node

-x, π1Node
-π2Node

-x), π2Node
-π2Node

-x
)]

.

This graph is terminating in the above sense precisely because comb terminates. It can
however be shown that for every choice of D and B, this graph is never size-change termi-
nating. The reason is that for any bound D and sequence d1 · · · dD of length D, there is a
tree t for which the depth of the subtree d1 · · · dDt increases arbitrarily during a sequence
of recursive calls. For example, at D = 4 for π1Node

-π2Node
-, consider the tree on the left:

T

second call−→
T

.

By the second recursive call, the tree on the right will be used as the new argument.
While π1Node

-π2Node
- corresponds to the empty tree on the left, it corresponds to T on

the right! Note that it is the conjunction of the two recursive calls that makes this possible:
for π2Node

-π2Node
-, we need to use the second call and then the first call:

T

second call−→

T

first call−→
T

.

This implies that there can be no decreasing argument in the argument of comb!

Surprisingly, adding a second argument representing the size of the tree makes the
function size-change terminating, i.e., the following definition is size-change terminating
even though the second argument doesn’t decrease at the second call site.

val rec comb_size t s = match t,s with

Leaf[],_ -> Leaf[]

| Node[t,Leaf[]],S[n] -> Node[comb_size t n,Leaf[]]

| Node[t1,Node[t2,t3]],n -> comb_size Node[Node[t1,t2],t3],n

| _,_ -> raise Error[]

In other words, we can define the combing function as

val comb t = comb_size t (size t)

and have the system automatically infer that it is terminating.

2.4. Complexity. Lee, Jones and ben Amram showed that deciding whether a graph is
size-change terminating in the original sense is P-space hard [6]. We can encode the same
P-space complete problem as an instance of our version of size-change termination for D = 0
and B = 1. By monotonicity (Lemma 2.9), all other instances of size-change termination
are P-space hard.

It is not difficult to construct ad-hoc small programs that require an exponential amount
of space, even when D = 0 and B = 1. The simplest is probably the following:

20 PIERRE HYVERNAT

val rec perms x1 x2 x3 x4 =

g (perms x2 x1 x3 x4)

(perms x1 x3 x2 x4)

(perms x1 x2 x4 x3)

(perms x4 x2 x3 x1)

where g is a previously defined function. The initial control-flow graph will contain a single
node with 4 loops, and the graph of paths will contain 24 loops: one for each permutation
of the parameters x1 through x4. More generally we can construct, for each n, a program
of size n2 for which the graph of paths will contain n! loops. However, just like with the
original SCT, checking termination of definitions written by hand with reasonable bounds B
and D seems to remain practical.

2.5. Comparison with other SCT-Based Criterion. In the original SCT, an arc in
the control-flow graph was a bipartite graph with the parameters of the calling function on
the left and the arguments of the called function on the right. A link from x to u can have
label:

• ↓, meaning that the size of u is strictly smaller than the size of x,
• ↓=, meaning that the size of u is smaller or equal than the size of x.

Such a graph is said to be fan-in free if no u on the right is the target of more than one
arc. We can encode such a bipartite graph as a substitution σ = [y1 := t1 ; . . . ; ym := tm]
where:

• tk = 〈−1〉xi if there is an arc ↓ from xi to ui,
• tk = 〈0〉xi if there is an arc ↓= from xi to ui,
• tk = 〈∞〉() otherwise.

It can be checked that when D = 0 and B = 1, composition and the size-change termina-
tion condition on G+ correspond exactly to composition and the size-change termination
condition from [6]. Note in particular that composition is associative in this context. Our
criterion with D = 0 and B = 1 is roughly equivalent to the original SCT for fan-in free
graph and with “depth” as the notion of size where all arcs have been initially collapsed.
A small lemma stating that checking all coherent loops τ ¨ τ � τ is equivalent to checking
only the idempotent loops τ = τ � τ is necessary. (A more general conjecture which we have
been unable to prove is that for checking size-change termination for arbitrary D and B, it
is always sufficient to only check that idempotent loops have a decreasing argument.)

SCT with Difference Constraints. A. Ben-Amram considered a generalisation of the original
SCT which, in our terminology, could be seen as choosing the bounds D = 0 and B = ∞
by allowing unbounded weights in the control-flow graphs [2]. The general problem is
undecidable, but the restriction to fan-in free graph is decidable. The cost of this generality
is the introduction of arithmetic in the decision procedure: deciding if a graph is size-change
terminating involves integer linear programming. Our control-flow graphs are fan-in free and
the criterion avoids arithmetics by putting a bound on the weights. We lose completeness
as shown by the example on page 18, but this doesn’t seem to be a problem in practice
because the user may increase the bound B (at the cost of speed) and we’ve rarely found
it necessary to go beyond 2 or 3. It would nevertheless be interesting to see if the approach
of [2] can be combined with our approach to get a criterion for B =∞ and arbitrary D.

SIZE-CHANGE TERMINATION FOR CONSTRUCTOR BASED LANGUAGES 21

Using “Calling Contexts”. P. Manolios and D. Vroon generalized the SCT principle by
adding “calling contexts” to the control-flow graph [8]. A calling context from f to g

amounts to:

• a substitution describing the arguments of g as terms with free variables among the
parameters of f,
• a set of expressions whose free variables are among the parameters of f.

The substitutions are built from the ambient language, as are the expressions in the set.
The intuition of having such a calling context from f to g is that if all the expressions of
the set evaluate to True, then there can be a call to g from f, and the arguments of g are
given by the substitution.

This is much more expressive than our approach as the contexts may contain terms
representing arbitrary conditions, like “Prime(x)” expressing that a parameter is a prime
number. The drawback is that because the conditions contain free variables, an automatic
theorem prover is necessary to decide when they evaluate to True. This version has been
formalized and implemented [4, 5] in Isabelle [14], a proof assistant based on higher-order
logic. The formalization relies Isabelle’s “automatic” tactic for checking those conditions.

Our approach uses a similar idea but restricts to the “constructors/destructors con-
texts” that were necessary to build the arguments of a call. This simplifies the problem
so that everything can be handled combinatorially in a uniform way and makes it more
appropriate for a proof assistant based on type theory like Coq, or the Agda programming
language.

2.6. Extensions.

Linear Norms. A lot of attention in the literature on termination has been devoted to
finding a good norm for values [7]. At the moment, the norm used in this paper is very
simple: each constructor has weight 1, as can be seen from the reduction 〈w〉Ct→ 〈w+ 1〉t.
Choosing different weights for constructors could be useful in cases such as

val rec f = fun

A[A[A[A[A[B[x]]]]]] -> f A[A[A[A[A[C[C[x]]]]]]]

| A[A[A[A[A[C[x]]]]]] -> f A[A[A[A[A[x]]]]]

| _ -> A[]

This function is size-change terminating if the bound D is greater than 7. If the definition
contained other recursive calls, it can make the testing procedure use more resources than
reasonable. Giving a weight of 3 to B and 1 to C would make this function size-change
terminating, even when D = 0. Trying to choose the appropriate weights automatically
might not be worth the trouble but this is still an interesting question.

Counting abstractions. The PML language for which this criterion was developed is more
complete than the ambient language presented here. In particular, function abstractions
and partially applied functions are allowed. Like OCaml, PML only computes weak-head
normal forms and the function

val rec glutton x = glutton

22 PIERRE HYVERNAT

terminates: when applied to n arguments, it discards all of them and stops on the weak-head
normal form fun x -> glutton.

We can make such functions size-change terminating by adding a virtual parameter xac
to all functions. This parameter counts the difference between the number of abstraction
and the number of applications above the call-site: it gives the “applicative context” of
the call. This parameter records an additional constructor “App” introduced by function
application and removed (“App-”) by function abstraction. The previous function is

val rec glutton = fun x -> glutton

which contains an abstraction and no application. The corresponding arc in the control-flow
graph will thus be [xac := App-xac], where xac is the virtual parameter giving the applicative
context of the call. This virtual parameter makes the definition size-change terminating (for
any choice of bounds B and D).

This is interesting because dummy abstractions and applications is the usual way to
freeze evaluation and define “infinite” data structures in OCaml.2 In this context, the size-
change termination principle can be used to detect some notion of productivity. For example,
let the type of infinite streams of integers be the coinductive type S = unit -> int*S
where unit is the type with a single constructor U[]. The stream of all even integers can
be defined with

val rec arith n d = fun _ -> (n, arith (n+d) d)

val even = arith Z[] S[S[Z[]]]

The call “arith n r” constructs the stream of integers in arithmetic progression, starting
from n with common difference d. (“ ” stands for a dummy variable and “+” stands for the
addition of unary natural numbers.) The following definition then corresponds to the map
function on streams:

val rec map_stream f s = fun _ ->

match s U[] with

(n, s) -> (f n, map_stream f s)

Like glutton, the functions arith and map stream have a deficit of applications: the call-
sites are bellow 3 abstractions but only 2 applications. The parameter xac is thus represented
by App-App-App-App Appxac ≈ App-xac. Those functions are size-change terminating with
this extension: their control-flow graphs consist of a single node with label

• [xac := App-xac ; n := 〈∞〉() ; d := d] for arith
• [xac := App-xac ; f := f ; s := 〈∞〉()] for map stream.

It is possible to mix finite (inductive) and infinite (coinductive) structures: here is the
function that removes a given number of 0s in a stream of integers.

val rec remove_zeros n s =

match n with

Z[] -> s

| S[m] -> (match s U[] with

(Z[], s) -> remove_zeros m s

| (S[h], s) -> fun _ -> (S[h], remove_zeros n s))

The function remove zeros is size-change terminating with this extension and works for
arbitrary streams, i.e., even for those that do not contain any 0. Its control-flow graph
contains two loops:

• [xac := xac ; n := S-n ; s := 〈∞〉()]
• [xac := App-xac ; n := n ; s := 〈∞〉()].

2Refer to the implementation of the “Lazy” module.

SIZE-CHANGE TERMINATION FOR CONSTRUCTOR BASED LANGUAGES 23

A more complete investigation of this phenomenon is pending...

2.6.1. Higher-Order Arguments. The PML language for which the size-change termination
principle was implemented allows higher-order arguments for functions. It is not possible
to just ignore higher order arguments: the definition

val app_zero f = f Z[]

val rec f x = app_zero f

might be seen as terminating!
To deal with those, the simplest is to have the static analysis to tag each instance

of a recursively defined function appearing as an argument of another function as non
terminating. This makes it possible to define all the usual functions that have functions in
their parameters, like the real map function:

val rec map f x = match x with Nil[] -> Nil[]

| Cons[a,y] -> Cons[f a, map f y]

whose control-flow graph consists of a single loop [f := f ; x := π2Cons
-x]. It is also possible

to think of smarter static analysis that would see that the definition

val phi f = fun n -> math n with Z[] -> Z[]

| S[m] -> n + f m

val rec f x = phi f x

is size-change terminating. The PML language uses a constraint checking algorithm to check
that the definitions are well formed, i.e., that their semantics is well defined. This algorithm
builds a kind of data-flow graph to compute an accessibility relation between different parts
of the code and check, for example, that tuples never reach a “match” [12]. The static
analysis is inferred from this data-flow graph, and it detects that the function phi defined
previously acts in such a way that “phi f u” may only yield a call “fS-u”. Because of this
the control-flow graph of the function f will contain a single loop [x := S-x], and will thus
pass the termination test.

Unfortunately, we currently don’t have a proof that this static analysis is safe! We are
currently working on this aspect and are trying to unify the “data-flow graph” used for
checking that a definition is well-formed and the “control-flow graph” used for the SCT.

Finishing the proof that this analysis is safe is interesting because it allows for a very
powerful static analysis. As an example, the following piece of code is accepted as termi-
nating in the PML language:

val rec map f l = (* map on lists *)

match l with

Nil[] -> Nil[]

| Cons[a,l] -> Cons[f a, map f l]

type rec rose_tree A = [Node[A * list(rose_tree A)]]

val rec rmap f t = (* map on rose trees *)

match t with

Node[a,l] -> Node[f a , map (rmap f) l]

The data-flow analysis detects that the list l contains trees that are smaller than t and that
those elements are fed to the partially applied rmap f. The control flow-graph for rmap con-
tains a single loop [f := f; t := π1Cons

-π2Node
-t]. This will be enough for the termination

criterion to accept the function.

24 PIERRE HYVERNAT

References

1. Andreas Abel and Thorsten Altenkirch, A predicative analysis of structural recursion, Journal of Func-
tional Programming 12 (2002), 1–41.

2. Amir Ben-Amram, Size-change termination with difference constraints, ACM Transactions on Program-
ming Languages and Systems 30 (2008), no. 3, 1–31.

3. Neil D. Jones and Nina Bohr, Call-by-value termination in the untyped lambda-calculus, Logical Methods
in Computer Science 4 (2008), no. 1.

4. Alexander Krauss, Certified size-change termination, 11th International Conference on Automated De-
duction, LNAI, Springer-Verlag, July 2007.

5. Alexander Krauss and Armin Heller, A mechanized proof reconstruction for SCNP termination, Pre-
sented in the Tenth International Workshop on Termination WST’09, Leipzig, 2009.

6. Chin Soon Lee, Neil D. Jones, and Amir Ben-Amram, The size-change principle for program termination,
Symposium on Principles of Programming Languages, vol. 28, ACM press, january 2001, pp. 81–92.

7. Naomi Lindenstrauss and Yehoshua Sagiv, Automatic termination analysis of logic programs, Proceed-
ings of the Fourteenth International Conference on Logic Programming, MIT Press, 1997, pp. 63–77.

8. Panagiotis Manolios and Daron Vroon, Termination analysis with calling context graphs, Computer
Aided Verification (Thomas Ball and Robert Jones, eds.), Lecture Notes in Computer Science, vol.
4144, Springer Berlin / Heidelberg, 2006, pp. 401–414.

9. The Coq development team, The coq proof assistant reference manual, LogiCal Project, 2004.
10. Robin Milner, A theory of type polymorphism in programming, Journal of Computer and System Sciences

17 (1978), 348–375.
11. Ulf Norell, Dependently typed programming in agda, In Lecture Notes from the Summer School in Ad-

vanced Functional Programming, 2008.

12. Christophe Raffalli, Realizability for programming languages, course notes for the École jeunes chercheurs
du GDR IM, submitted, 2010.

13. Damien Sereni and Neil D. Jones, Termination analysis of higher-order functional programs, Proceedings
of the Third Asian conference on Programming Languages and Systems (Berlin, Heidelberg), APLAS’05,
Springer-Verlag, 2005, pp. 281–297.

14. Markus Wenzel, The isabelle/isar reference manual, 2007.

SIZE-CHANGE TERMINATION FOR CONSTRUCTOR BASED LANGUAGES 25

Appendix A. Other Definition of the Approximation Preorder

We give a more concrete characterization of the approximation preorder. This is crucial in
the implementation of the termination test but is also used in the proof of Lemma 1.7. The
proofs are rather verbose and not very surprising.

Definition A.1. The relation v is the relation on terms in normal forms generated by

u v v

Cu v Cv
(1)

u1 v v1 . . . un v vn
(u1, . . . , un) v (v1, . . . , vn)

(2)

nf
(
〈0〉u

)
v nf

(
〈w〉v

)
u v nf

(
〈w〉v

) (3)

∀i = 1, . . . , n ∃j = 1, . . . ,m 〈wi〉di v 〈w′j〉bj∑n
i=1〈wi〉di v

∑m
j=1〈w′j〉bj

(4)

d is a suffix of b and w′ + |d | 6 w + |b |

〈w′〉b v 〈w〉d
(5)

d v d
(6)

where we identify 0 and the empty sum.
We will usually drop the nf(_) and reason up-to ≈.

Lemma A.2. For every u v v and w ∈ Z∞, we have 〈w〉u v 〈w〉v.

Proof. By induction on the proof that u v v:

• if the last rule used for u v v was (1), then u = Cu and v = Cv and we have u v v.
By induction, we have 〈w〉u v 〈w〉v for all w ∈ Z∞. From this, we conclude
that 〈w〉Cu ≈ 〈w + 1〉u v 〈w + 1〉v ≈ 〈w〉Cv.
• If the last rule was (2), then u = (u1, . . . , un) and v = (v1, . . . , vn) and ui v vi for

all i = 1, . . . , n. By induction, we get 〈w〉ui v 〈w〉vi for all i = 1, . . . , n and w ∈ Z∞.
We thus have 〈w〉(u1, . . . , un) ≈

∑
i〈w + 1〉ui v

∑
i〈w + 1〉vi ≈ 〈w〉(v1, . . . , vn).

• If the last rule was (3), then v ≈ 〈w′〉v and 〈0〉u v 〈w′〉v. By induction, we
get 〈w〉u ≈ 〈w〉〈0〉u v 〈w〉〈w′〉v for all w ∈ Z∞.
• If the last rule was (4), then u =

∑
i〈wi〉di and v =

∑
j〈w′j〉bj and forall i, there is a j

s.t. 〈wi〉di v 〈w′j〉bj . By induction, for all i, there is a j s.t. 〈w〉〈wi〉di v 〈w〉〈w′j〉bj .

This implies that
∑

i〈w〉〈wi〉di v
∑

j〈w〉〈w′j〉bj and because the left side is equal

to 〈w〉u and the right side is equal to 〈w〉v, we get 〈w〉u v 〈w〉v.
• If the last rule was (5), then u = 〈w′′〉b and v = 〈w′〉d with d a suffix of b

and w′′ + |b | 6 w′ + |d |. We have 〈w〉〈w′′〉b ≈ 〈w + w′′〉b v 〈w + w′〉d ≈ 〈w〉〈w′〉d
because d is a suffix of b and w + w′′ + |b | 6 w + w′ + |d |.
• If the last rule was (6), then u = v = d . We have < w > d v 〈w〉d because d is a

suffix of d and w + |d | 6 w + |d |.

26 PIERRE HYVERNAT

Lemma A.3. The relation v is transitive.

Proof. We prove that u1 v u2 and u2 v u3 implies u1 v u3 (where each ui is in normal form)
by induction on the proofs of u2 v u3 and u1 v u2. We look at the last rule of u2 v u3:

• If the last rule was (1), then u2 is of the form Cv2, and the last rule of u1 v u2 is
necessarily (1). We thus have v1 v v2 v v3, which implies by induction, that v1 v v3.
This implies that Cv1 v Cv3.
• If the last rule of u2 v u3 is (2), the proof is similar.
• If the last rule in u2 v u3 was (3), we have u3 = 〈w〉v3 and 〈0〉u2 v 〈w〉v3. By

Lemma A.2, we have 〈0〉u1 v 〈0〉u2, and we know by induction that 〈0〉u1 v 〈w〉v3.
We get u1 v 〈w〉v3 by rule (3).
• If the last rule in u2 v u3 was (4), then u2 is of the form

∑
j〈w2,j〉d2,j and u3 is of

the form
∑

k〈w3,k〉d3,k and we have ∀j,∃k, 〈w2,j〉d2,j v 〈w3,k〉d3,k . We look at the
last rule of the proof that u1 v u2:

– if u1 v u2 ended with (3), we have 〈0〉u1 v 〈0〉u2 ≈ u2 v u3. By induction
hypothesis, 〈0〉 v u3 ≈ 〈0〉u3. We conclude that u1 v u3 by rule (3).

– if u1 v u2 ended with (4), then u1 is of the form
∑

i〈w1,i〉d1,i and for all i, there

is a j s.t. 〈w1,i〉d1,i v 〈w2,j〉d2,j . By the previous remark about u2 v u3, we

thus have ∀i,∃k〈w1,i〉d1,i v 〈w3,k〉d3,k . We conclude that u1 v u3 by rule (4).
– if u1 v u2 ended with (5), then u2 is a sum with a single summand and we

have u1 v u2 v 〈w3,k〉d3,k for some k. We have u1 v 〈w3,k〉d3,k by induction

and we get u1 v
∑

k〈w3,k〉d3,k by rule (4).

• If the last rule in u2 v u3 was (5), then u3 = 〈w3〉d3 and u2 = 〈w2〉d2 . We look at
the last rule of the proof that u1 v u2:

– the proof that u1 v u2 ended with (3). We have 〈0〉u1 v 〈w2〉d2 v 〈w3〉d3 ,
and thus, by induction, that 〈0〉u1 v 〈w3〉d3 . We can use rule (3) to deduce
that u1 v 〈w3〉d3 .

– the proof that u1 v u2 ended with rule (4), with u1 =
∑

i〈w1,i〉d1,i . We thus

have 〈w1,i〉d1,i v 〈w2〉d2 for all is. By induction, we get u1,i v 〈w3〉d3 for

all is, and we can conclude that
∑

i u1,i v 〈w1〉d3 .

– the proof that u1 v u2 ended with rule (5). We have u1 = 〈w1〉d1 and we
get 〈w1〉d1 v 〈w3〉d3 by rule (5).

• If the last rule of u2 v u3 is (6), then the last rule of u1 v u2 is necessarily (6). We
have u1 = u2 = u3 = d . Transitivity holds by rule (6).

Lemma A.4. For every u in normal form, we have:

(1) for every sequence of destructors d1 · · · dk, we have d1 · · · dku v 〈−n〉u,
(2) for every sequence of destructors d1 · · · dk, if u v v, then d1 · · · dku v d1 · · · dkv,
(3) for every t1 v t2, u[x := t1] v u[x := t2].

Proof. The first point is a simple induction on k:

• if k = 0], the result amounts to u v 〈0〉u. It follows from rule (3), (4) and (5).
• if d = d1 · · · dk· dk+1: suppose that dk+1 = C-. We look at u:

– if u = Cv, we have d1 · · · dk· C-Cv ≈ d1 · · · dkv v 〈−k〉v ≈ 〈−k− 1〉Cv, where the
“inequality” comes from the induction hypothesis.

SIZE-CHANGE TERMINATION FOR CONSTRUCTOR BASED LANGUAGES 27

– if u = D 6= C or u = (v1, . . . , vn), we have d1 · · · dk+1u ≈ 0 v 〈−k − 1〉u by
rule (4) of the definition of v.

– if u = b x we need to show that d1 · · · dk+1· b x v 〈−k− 1〉b x. By rule (3) of the
definition of v, it is enough to show that 〈0〉d1 · · · dk+1· b x v 〈−k− 1〉b x. This
holds by rule (5).

– if u = 〈w〉b x we need to show d1 · · · dk+1〈w〉b x ≈ 〈w−k−1〉b x is approximated
by 〈−k − 1〉〈w〉b x ≈ 〈w − k − 1〉b x. This holds by rule (5).

The proof is similar when dk+1 = πi.

The second point is an induction on the proof that t1 v t2. If k = 0, the result holds
trivially. Otherwise, let’s assume that the sequence of destructors is of the form d1 · · · dkC-.

• If the proof that t1 v t2 ended with rule (1), with the same constructor C, we
have u = Cu′ and v = Cv′ with u′ v v′. By induction, we can thus conclude
that d1 · · · dkC-u ≈ d1 · · · dku′ v d1 · · · dkv′ ≈ d1 · · · dkC-v.
• If the proof that t1 v t2 ended with rule (1) but with a different constructor, or

with rule (2), both d1 · · · dkC-u and d1 · · · dkC-v reduce to 0, and we conclude with
rule (4).
• If the proof that u v v ended with (3), we know that v ≈ 〈w〉v′ and 〈0〉u v 〈w〉v′.

We have d1 · · · dkC-〈0〉u ≈ 〈−k−1〉u v d1 · · · dkC-〈w〉v′ ≈ 〈w−k−1〉v′ by induction.
By the previous point, we also have d1 · · · dkC-u v 〈−k − 1〉u, and by transitivity,
we conclude that d1 · · · dkC-u v d1 · · · dkC-〈w〉v′.
• If the proof that u v v ended with (4), we just need to apply the induction hypothesis

and rule (4).
• If the proof that u v v ended with (5) or (6), we can conclude directly.

The proof is similar when the sequence of destructors ends with πi.

The third point is a simple inductive proof on u:

• if u is Cv or (v1, . . . , vn), we just need the induction hypothesis and rules (1) or (2).
• If u is 〈w〉d y with y 6= x, we just need rule (5). If y = x, we need the induction

hypothesis and Lemma A.2.
• If u is d y with y 6= x, we just need rule (6). If y = x, we use the previous point.

The relation v isn’t quite the same as 4 because it doesn’t interact with +. For
example, we don’t have x v x + y or Cx + Dx v 〈1〉x. However, we have:

Lemma A.5. We have u 4 v if and only if u can be written as
∑

i ui and v can be written
as
∑

j vj with ∀i,∃j, ui v vj.

Proof. To show that if u 4 v then u and v can be written as sums as in the lemma, we
define a new relation u v′ v as “u can be written as

∑
i ui, v can be written as

∑
j vj

and ∀i,∃j, ui v vj”. We need to prove that (refer to Definition 1.6 page 7):

• v′ is a preorder,
• v′ is contextual,
• v′ is compatible with ≈,
• v′ is compatible with +,
• if w 6 w′ in Z∞, then 〈w〉t v′ 〈w′〉t,
• t v′ 〈0〉t.

28 PIERRE HYVERNAT

Since 4 is the least such relation, we will get that u 4 v implies u v′ v. We only sketch the
proofs:

• v′ is transitive because v is transitive (Lemma A.3).
• v′ is reflexive because v is reflexive on simple terms (easy inductive proof).
• v′ is contextual because v is contextual (Lemma A.4).
• v′ is compatible with ≈ because by definition, v is compatible with ≈.
• v′ is compatible with + by definition.
• That 〈w〉t v 〈w′〉t when w 6 w′ in Z∞ is an easy inductive proof. It lifts to v′.
• We have t v 〈0〉t by Lemma A.2, and this property lifts to v′.

The proof that ∀i,∃j, ui v vj implies that
∑

i ui 4
∑

j vj is left as an exercise. It
amounts to showing that all the rule for v are valid for 4 and that ∀i,∃j, ui 4 vj im-
plies

∑
i ui 4

∑
j vj .

Note that some care is needed to use this lemma to decide approximation on arbitrary
terms. Since + is associative, commutative and idempotent, there is a choice to make when
writing v as a sum. For example, we have A(x, y) + B(x, z) 4 v = 〈2〉x + 〈2〉y + 〈2〉z + 〈1〉()
because we can write v as “

(
〈2〉x + 〈2〉y

)
+
(
〈2〉x + 〈2〉z

)
+ . . . ”, and we have:

• A(x, y) v 〈2〉x + 〈2〉y,
• B(x, y) v 〈2〉x + 〈2〉z.

Appendix B. Implementation Issues

In order to make the presentation readable, the paper followed a rather abstract description
of the criterion. The initial goal was to get a concrete termination checker for the PML
language [12] and ease of implementation was very important. The code for the criterion
can be found at http://lama.univ-savoie.fr/~hyvernat/Files/basic-SCT.tar.gz: it
consists of the implementation done for the PML language with a very simple static analysis
for a very simple language. (There are no dependencies for this.) The full code of PML can
be found at http://lama.univ-savoie.fr/~pml/.

The main points that make the task relatively straightforward are the following:

(1) we only manipulate terms in normal forms and use a representation similar to the
grammar given in Lemma 1.5,

(2) computing if t 4 u and if t ¨ u is easy for those terms,
(3) checking if a loop is decreasing (Definition 2.5) is easy.

Even for terms in normal forms, we need a uniform way to deal with sums. As n-tuples
are n-linear, applying linearity to get sums of simple terms can lead to an exponential blow-
up and was ruled out. We instead start by making sure the initial control-flow graph doesn’t
contain any sum. In order to do that, we replace each arc labeled by a sum with as many
arcs as summands. No exponential blow-up occurs in practice because PML’s static analysis
doesn’t introduce sums. Then, sums only appear through collapsing of compositions, i.e.
from the reduction rule 〈w〉(t1, . . . , tn) →

∑
i〈w + 1〉ti. Those sums can always be pushed

under all constructors and all summands start with a 〈w〉. We thus use the following
grammar for terms:

t ::= Ct | (t1, . . . , tn) | d |
∑

i〈wi〉di
d ::= x | πid | C-d

http://lama.univ-savoie.fr/~hyvernat/Files/basic-SCT.tar.gz
http://lama.univ-savoie.fr/~pml/

SIZE-CHANGE TERMINATION FOR CONSTRUCTOR BASED LANGUAGES 29

where the sums are not empty. Note that () isn’t part of the grammar. It was only used as
a presentational artifact and can be removed from the implementation. Its only concrete
use was to represent an argument whose shape in unknown: 〈∞〉(). In the implementation,
we use

∑
16i6a〈∞〉xi instead, where a is the arity of the calling function.

All the substitutions are in normal form and composition needs to do some reduction.
This is done using the rules from Definition 1.2, with a particular proviso for group (3):

• rules πiCt → 0, C-(t1, . . . , tn) → 0 and πi(t1, . . . , tn) → 0 (when i > n) all raise
an error TypingError. Encountering such a reduction means that the definitions
where not valid to begin with and that the initial type-checking / constraint solving
of the definitions is broken.
• the rule C-Dt → 0 raises an exception ImpossibleCase. Even safe definitions may

introduce such reductions, but we know that evaluation will never go along such a
path: evaluation of match v with ... may only enter a branch if the corresponding
pattern matches v. Compositions raising this exception are simply ignored.

B.1. Order, Compatibility and Decreasing Arguments. When the terms are gen-
erated by the above grammar, we can give an inductive definition of both the order and
the compatibility relation. The inductive definition of the order corresponds in fact to
Definition A.1: v is exactly the restriction of 4 on the terms used in the implementation.

Checking compatibility for arbitrary terms can be subtle. For example, we have(
〈0〉s, (u, v)

)
+
(
〈0〉t, (u, v)

) ¨ (
(s, t), 〈0〉u

)
+
(
(s, t), 〈0〉v

)
even though no summand on the left is compatible with a summand on the right. However,
for the restriction used in the implementation, we can give a purely inductive definition of
compatibility:

Lemma B.1. Compatibility on terms given by the grammar on page 28 is generated by the
following rules:

u ¨ v

Cu ¨ Cv
(1)

u1 ¨ v1 . . . un ¨ vn

(u1, . . . , un) ¨ (v1, . . . , vn)
(2)

u ¨∑m
j=1〈wj〉dj

Cu ¨∑m
j=1〈wj〉dj

(3) and symmetric

∀i = 1, . . . , n ui ¨∑m
j=1〈wj〉dj

(u1, . . . , un) ¨∑m
j=1〈wj〉dj

(4) and symmetric

∃i = 1, . . . , n ∃j = 1, . . . ,m 〈wi〉di ¨ 〈w′j〉bj∑n
i=1〈wi〉di ¨∑m

j=1〈w′j〉bj
(4)

d is a suffix of b or b is a suffix of d

〈w′〉b ¨ 〈w〉d (5)
d ¨ d

(6)

Both definitions can be implemented easily using ML pattern matching.

30 PIERRE HYVERNAT

Looking for decreasing arguments in a substitution is simple: the minimality condition
means that a decreasing argument is a subterm of one component of the substitution. It is
thus enough to check all subterms!

B.2. Complexity. We saw in section 2.4 that the problem of deciding size-change termi-
nation is P-space hard. In practice, we have found the algorithm described on page 18 to
perform quite well. In our experience, we have found that checking termination of functions
written by hand in PML doesn’t require too much resources. There are concrete examples
where D needs to be more than 4, but choosing a bound B greater than 1 is very rarely
necessary. The default is to have D = 2 and B = 1, and let the user change the bounds.
With this default, termination checking is an order of magnitude faster than sanity checking
of the definitions, except for those examples specifically designed to stress the system.

There are however two points that help make the criterion perform well, especially when
the bounds B and D are greater than their default values:

• we make sure that sums are minimal by keeping only maximal summands: d is
equivalent (“4 and <”) to d + 〈12〉d + 〈−1〉C-d and is a much better choice because
it keeps the size of the graph smaller.
• since everything is monotonic with respect to 4, we don’t need to keep arcs that

are approximated by another arc (“subsumption”).

These points are trivial to implement and lower the complexity of the algorithm in practice.

Appendix C. Static Analysis

The simplest interesting static analysis only records pattern matching and projection: for
each call-site “g u1 ... um” in the definition of “f x1 ... xn”, we construct the sub-
stitution [y1 := u1; . . . ; ym := um] where each ui ∈ T (x1, . . . , xn) is

• a simple term without 〈w〉s if ui is syntactically built from projections and pattern-
matching variable coming from x1, . . . , xn;
• 〈∞〉() otherwise.

For example, all the examples map, f1, g1, f2 and push left (page 3 and 4) yield substitu-
tions without 〈∞〉(). For the ack function however, the three recursive calls are represented
by:

• [x1 := S-x1; SZ()],
• [x1 := SS-x1; x2 := S-x2],
• [x1 := S-x1; x2 := 〈∞〉()].

The “〈∞〉()” comes from the call “ack m (ack ...)”: because the second argument is an
application, it isn’t syntactically built from the parameters. Note that this doesn’t prevent
the criterion from tagging the ack function as terminating.

It should be noted that this static analysis is entirely syntactical and can be done in
linear time in the size of the recursive definitions. This is similar to the static analysis
done in http://lama.univ-savoie.fr/~hyvernat/Files/basic-SCT.tar.gz. The only
differences are that:

• the syntax of the definitions is much simpler,
• we use 〈∞〉x1 + · · ·+ 〈∞〉xa instead of 〈∞〉().

http://lama.univ-savoie.fr/~hyvernat/Files/basic-SCT.tar.gz

	Introduction
	Ambient Programming Language
	Examples

	1. Interpreting Calls
	1.1. Terms and Reduction
	1.2. Substitutions and Control-Flow Graphs
	1.3. Collapsing

	2. Size-Change Combinatorial Principle
	2.1. Combinatorial Lemma
	2.2. Graph of paths
	2.3. Size-Change Termination Principle
	2.4. Complexity
	2.5. Comparison with other SCT-Based Criterion
	2.6. Extensions

	References
	Appendix A. Other Definition of the Approximation Preorder
	Appendix B. Implementation Issues
	B.1. Order, Compatibility and Decreasing Arguments
	B.2. Complexity

	Appendix C. Static Analysis

