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ABSTRACT. This paper introduces an ML / Haskell like programming language with

nested inductive and coinductive algebraic datatypes called chariot. Functions are defined

by arbitrary recursive definitions and can thus lead to non-termination and other “bad”

behavior. chariot comes with a totality checker that tags possibly ill-behaved definitions.

Such a totality checker is mandatory in the context of proof assistants based on type theory

like Agda. Proving correctness of this checker is far from trivial and relies on

(1) an interpretation of types as parity games,

(2) an interpretation of correct values as winning strategies for those games,

(3) the Lee, Jones and Ben Amram’s size-change principle, used to check that the strategies
induced by recursive definitions are winning.

This paper develops the first two points, the last step being the subject of an upcoming

paper. A prototype has been implemented and can be used to experiment with the resulting

totality checker, giving a practical argument in favor of this principle.

INTRODUCTION

Inductive types (also called algebraic datatypes) are a cornerstone of typed functional
programming: Haskell and Caml both rely heavily on them. One mismatch between the two
languages is that Haskell is lazy while Caml is strict. A definition like

let rec nats : nat -> nat list
= fun n -> n::(nats (n+1))

is valid but useless in Caml because the evaluation mechanism will loop trying to evaluate it
completely (call-by-value evaluation), resulting in a stack overflow exception. In Haskell,
because evaluation is lazy (call-by-need), such a definition isn’t unfolded until strictly
necessary and asking for its third element will only unfold the definition three times. Naively,
it seems that types in Caml correspond to “least fixed points” while they correspond to
“oreatest fixed points” in Haskell.
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The aim of this paper is to introduce a language, called chariot,' which distinguishes
between least and greatest fixed points and where the user can nest them arbitrarily to define
new datatypes. To offer a familiar programming experience, definitions are not restricted
and any well-typed recursive definition is allowed. In particular, it is possible to write badly
behaved definitions like

val f : nat -> nat

| £0 =1
| £ (n+l) = £(£f n) -- (1) => f(£(0)) => £(1) => ...
To guarantee that a definition is correct, two independent steps are necessary:

(1) Hindley-Milner type-checking [Mil78] to guarantee that evaluation doesn’t provoke
runtime errors,

(2) a totality test to check that the definition is valid with respect to the coinductive /
inductive types it involves.

In simple cases that only involve inductive types, a typed value is total when it is finite, and
a function is total if it sends finite values to finite values, i.e. it terminates.? In the presence
of coinductive types however, values can be infinite. Totality then roughly means that the
only infinite parts of a value come from coinduction. As the examples will show, this quickly
becomes very subtle when inductive and coinductive types are interleaved.

The totality test generalizes an older termination checker [Hyv14]. Like before, any
definition that passes this test is guaranteed to be correct but because the halting problem is
undecidable, some correct definitions are rejected. In a programming context, the programmer
may choose to ignore the warning if she (thinks she) knows better. In a proof-assistant
context however, it cannot be ignored as non-total definitions lead to inconsistencies, the
most obvious example being

val magic_proof = magic_proof

which is non-terminating but belongs to all types. As we’ll see, there are subtler examples
of definitions that normalize to values but still lead to inconsistencies.

In Coq [The04], the productivity condition for coinductive definitions is ensured by
a strict syntactic condition (guardedness [Coq94]) similar to the condition that inductive
definitions need to have one structurally decreasing argument. In Agda [Nor08], the user
can write arbitrary recursive definitions and the productivity condition is ensured by the
termination checker. Agda’s checker extends the termination checker developed by A.
Abel [AA02] to deal with coinductive types, but while this is sound for simple types like
streams, it is known to be unsound for nested coinductive and inductive types [AD12,
Section 5]. Agda’s totality checker is patched to deal with such counter examples but as
far as I know, no proof of correctness is available.> This paper provides a combinatorial
characterization of totality. An upcoming paper will describe how it can be used to implement
a totality checker.

IAll the examples will now be given using the syntax of chariot which is described in sections 1.1
and 1.5. They should be readable by anyone with a modicum of experience in functional programming.
A prototype implementation in Caml is available from https://github.com/phyver/chariot for anyone
wishing to experiment with it.

2The case of general W-types is slightly more complex: even if they can contain infinite values, those are
necessarily well-founded. The version of chariot presented here doesn’t allow such types but extending the
theory is certainly possible. A simple example is given on page 22 in the conclusion.

3Their counterexample is described in Section 1.5 on page 13. Simply put, the problem of checking termina-
tion and productivity independently is that we cannot distinguish between puxvy.F(X,Y) and vyux.F(X,Y),
which have different semantics.
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Related Works.

Clircular proofs. The main inspiration for this work comes from ideas developed by L. Santo-
canale in his work on circular proofs [San02c, San02a, San02b]. Circular proofs are defined
for a linear proof system and are interpreted in categories with products, coproducts and
enough initial algebras / terminal coalgebras. In fine, the criterion implemented in chariot
uses a strong combinatorial principle (the size-change principle) to check a sanity condition
on a kind of circular proof (a program). This is strictly stronger than the initial criterion
used by L. Santocanale and G. Fortier, which corresponds to the syntactical structurally
decreasing / guardedness condition on recursive definitions.

However, while circular proofs were a primary inspiration, the chariot language cannot
be reduced to a circular proof system. The main problem is that existing circular proof
systems are linear and do not have a simple cut-elimination procedure, i.e. an evaluation
mechanism. Cuts and exponentials would be needed to interpret the full chariot language
and while cuts can be added [FS14, Forl4], adding exponentials looks difficult and hasn’t
been done.

More recent works in circular proof theory replace L. Santocanale’s criterion by a much
stronger combinatorial condition [Doul7b, Doul7a]. It involves checking that some infinite
words are recognized by a parity automata, which is a decidable problem. The presence
of parity automata points to a relation between this work and the present paper, but the
different contexts make it all but obvious.

Size-change principle. The second idea will be developed in an upcoming paper and consists
of adapting the size-change principle (SCP) from C. S. Lee, N. D. Jones and A. M. Ben-
Amram [LJBAO1] to the task of checking general totality. This problem is subtle as totality
is strictly more than termination and productivity.* Moreover, while the principle used to
check termination of ML-like recursive definitions [Hyv14] was inherently untyped, totality
checking needs to be somewhat type aware. For example, in chariot, records are lazy and
are used to define coinductive types. The definition
val inf = Node { Left = inf; Right = inf } -- infinite binary tree

yields an infinite binary tree and depending on the types of Node, Left and Right, the
definition may be correct or incorrect (c.f. page 13)!

Charity. The closest ancestor to chariot is the language charity® [CF92, Coc96], developed
by R. Cockett and T. Fukushima. It lets the programmer define types with arbitrary nesting
of induction and coinduction. Values in these types are defined using categorical principles.

e Inductive types are initial algebras: defining a function from an inductive type amounts
to defining an algebra for the corresponding operator.

e Coinductive types are terminal coalgebras: defining a function to an inductive type amount
to defining a coalgebra for the corresponding operator.

It means that recursive functions can only be defined via eliminators. By construction, they
are either “trivially” structurally decreasing on their argument, or “trivially” guarded. The
advantage is that all functions are total by construction and the disadvantage is that the
language is not Turing complete.

4A nice counter example, due to N. A. Danielsson and T. Altenkirch [AD12] is given on page 13.
5By the way, the name chariot was chosen as a reminder of this genealogy.
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Guarded recursion. Another approach to checking correctness of recursive definitions is
based on “guarded recursion”, initiated by H. Nakano [Nak00] and later extended in several
directions [CBGB16, Gual8|. In this approach, a new modality “later”, written “>”, is
introduced. The type “cT” gives a syntactical way to talk about terms that “will later, after
some computation, have type T”. This work is quite successful and has been extended to
very expressive type systems. The drawbacks are that this requires a non-standard type
theory with a not quite standard denotational semantics (topos of trees). Moreover, it makes
programming more difficult as it introduces new constructors for types and terms. Finally,
these works only consider greatest fixed points (as in Haskell) and are thus of limited interest
for systems like Agda or Coq.

Sized types. This approach extends type theory with a notion of “size” that annotate types.
It has been successful and is implemented in Agda [AbelO, Abel2]. It is possible to specify
that the map function on list has type Vn,1ist™(T) — 1list"™(T'), where 1ist™(T) is the
type of lists with n elements of type T. These extra parameters give information about
recursive functions and make it easier to check termination. A drawback is that functions on
sized-types must take extra size parameters. This complexity is balanced by the fact that
most of them can be inferred automatically and are thus mostly the libraries’ implementers’
job: in many cases, sizes are invisible to the casual user. Note however that sizes only
help showing termination and productivity. Developing a totality checker is orthogonal to
designing an appropriate notion of size and the totality checker described in this paper can
probably work hand in hand with standard size notions.

It should also be noted that the interaction between sizes and Agda’s complex types
is unclear and that, like for the actual termination checker, no corresponding proof of
correctness has ever been written.

Fized points in game semantics. An important tool in this paper is the notion of parity game.
P. Clairambault [Clal3] explored a category of games enriched with winning conditions for
infinite plays. The way the winning condition is defined for least and greatest fixed points is
reminiscent of L. Santocanale’s work on circular proofs and the corresponding category is
cartesian closed. Because this work is done in a more complex setting and aims for generality,
it seems difficult to extract a practical test for totality from it. The present paper aims for
specificity and practicality by devising a totality test for the usual semantics of recursion.

SubML. C. Raffalli and R. Lepigre used the size-change principle to check correctness of
recursive definitions in the language SubML [LR19]. Their approach uses a powerful but
non-standard type theory with many features: subtyping, polymorphism, sized-types, control
operators, some kind of dependent types, etc. On the downside, it makes their type theory
more difficult to compare with other approaches. Note that like in Agda or chariot, they
do allow arbitrary definitions that are checked by an incomplete totality checker. One
interesting point of their work is that the size-change termination is only used to check
that some object (a proof tree) is well-founded: even coinductive types are justified with
well-founded proofs.
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Plan of the Paper. We start by introducing the language chariot and its denotational
semantics in Section 1. We assume the reader is familiar with functional programming,
recursive definitions and their semantics, Hindley-Milner type checking, algebraic datatypes,
pattern matching, etc. The notion of totality is also given there. We then describe, in
Section 2, a combinatorial approach to totality that comes from L. Santocanale’s work on
circular proofs. This reduces checking totality of a definition to checking that the definitions
gives a winning strategy in a parity game associated to the type of the definition.

The actual totality checker using the size-change principle will be described in an
upcoming paper [Hyv25].

1. THE LANGUAGE AND ITS SEMANTICS

1.1. Type Definitions. Datatypes in chariot come in two flavors: those corresponding to
sum types (i.e. colimits) and those corresponding to product types (i.e. limits).

e an inductive type is specified by a list of constructors whose codomain is the type being
defined,

e a coinductive type is specified by a list of destructors whose domain is the type being
defined.

They are respectively introduced by the keywords “data” and “codata” and may have
parameters. Type parameters are written with a quote as in Caml. Here are some examples:

codata unit where -- unit type: no destructor, see below

codata prod(’x,’y) where Fst : prod(’x,’y) -> 'Xx -- pairs

| Snd : prod(C’x,’y) -> 'y
data nat where Zero : unit -> nat -- unary natural numbers
| Succ : nat -> nat

data list(’x) where Nil : unit -> list(’x) -- finite lists
| Cons : prod(’x, list(’x)) -> list(’x)

codata stream(’x) where Head : stream(’x) -> 'x -- infinite streams
| Tail : stream(’x) -> stream(’x)

Elements of a codata type are written using a structure notation, by giving values to all
fields in any order, as in {Fst = u;Snd = v} and the unit type given above contains a single
value {}. The data type without constructor isn’t as useful as it doesn’t contain any value!
Examples will sometimes use shortcuts, allowed in the implementation, and write Zero
(instead of Zero{}) or Cons(x,xs) (instead of Cons{Fst=x;Snd=xs}).

We also introduce a notion of “rank”, which correspond to the order in which the type
definitions are introduced. Larger ranks may use smaller ranks in their definition, like 1ist
requiring prod.

Definition 1.1. the sets D, of definitions of rank r and T,.(Py, ..., P,) of type expressions
of rank r with parameters among Py, ..., P, are defined by mutual induction:

(1) For r > 0, the set D, contains all definitions of the form
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data SC’x, 'y, ...) where and codata S(C’x, 'y, ...) where
| ¢ «+ T7 -> SCx, 'y, ...) | Dy : SCx, 'y, ...) > 1T}
| Co = T > SCx, 'y, ...) | Dp, : SCx, 'y, ...) > T}
where

e S is the name of the type being defined,
e cach C; is the name of a constructor,
e each D; is the name of a destructor,

e cach 7; is an element of 7,_1(SCx, 'y, ...),’x y,...).
(2) The set 7,.(P,..., P,) where the P; are syntactical parameters is defined by the grammar
TeT(P,...,P,) == P | TT,...,Tp)
where

e T is the name of a type in some D,. of arity m, with r’ < r,
e cach T; belongs to 7.(P1,...,Pp).

(3) The rank of a definition [resp. type expression] is the smallest r such that the definition
is in D, [resp. the type expression is in some 7,(...)].

(4) The head rank of a type expression is the rank of the definition of its head type
constructor; or 0 if the type expression is a parameter.

Strictly speaking, each name T is indexed by its definition and each constructor /
destructor name is indexed by its corresponding type name. In practice, chariot forbids
the reuse of names so that there is no ambiguity about which definition defines a given type,
or about which type corresponds to a given constructor / destructor.’

Note that to make the theory slightly simpler, constructors always have a single argument.
Of course, the implementation of chariot allows constructors of arbitrary arity and the
theory can be extended to deal with this.

Destructors act as projections and because of the universal property of terminal coalge-
bras, we think about elements of a codatatype as records. This is reflected in the syntax of
terms. For example, the following defines (recursively) the stream with infinitely many Os.
(The syntax for recursive definitions will be formally given in Definition 1.9.)

val zeros : stream(nat)
| zeros = { Head = Zero ; Tail = zeros }

The denotational semantics of a codata is going to be a coinductive type (greatest fixed-
point) while the semantics of a data is going to be an inductive type (least fixed-point). In
order to have a sound operational semantics, codata should not be fully evaluated. The
easiest way to ensure that is to stop evaluation on records: evaluating “zeros” will result
in “{Head = [O; Tail = }” where the “[0” are non evaluated chunks. The copattern
view [APTS13] is natural here. The definition of zeros using copatterns (allowed in chariot)
looks like

val zeros : stream(nat)
| zeros.Head = Zero
| zeros.Tail = zeros

6Extending the definition to mutual type definitions is left as an exercise for the diligent reader! It is
straightforward if one keeps in mind that all types in a mutual definition are data or codata and that they
all have the same parameters “(’x, 'y, ...)".
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We can interpret the clauses as a terminating rewriting system. In particular, the term
zeros doesn’t reduce by itself. Because this paper is only interested in the denotational
semantics of definitions, the details of the evaluation mechanism are fortunately irrelevant.

We will use the following conventions:

e outside of actual type definitions (given using chariot’s syntax), type parameters will be
written without quote: x, x1, ...

e an unknown datatype will be written T, (x1,...,X;) and an unknown codatatype will be
written T, (X1,...,Xg),
e an unknown type of unspecified polarity will be written T(xy,...,Xg).

1.2. Values. Any finite list of recursive definitions only involves a finite number of types,
with a finite number of constructors and destructors. We thus fix, once and for all, a finite
set of constructor and destructor names. Because we deal with semantically infinite values,
the next definition is of course coinductive.

Definition 1.2.

(1) The set of values with leaves in X1,..., X,, written V(X1,...,X,,) is defined coinduc-
tively by the grammar

v = L | = | Cv | {Di=w1;...;Dp =3}

where

each x is in one of the X,

each C belongs to a fixed finite set of constructors,

each D; belongs to a fixed finite set of destructors,

the order of fields inside records is unimportant,

k can be 0.

(2) If the X; are ordered sets, the order on V(Xi,..., X)) is generated by
o | < w for all values v,
o if z <2’ in X, then x <2/ in V(Xq,...,X,),
e “<” is contextual: if u < v then C[x := u] < C[x := v] for any value C containing a

formal variable x (substitution is defined in the obvious way).

The set of values (first point in Definition 1.2) is defined coinductively but the order on
values (second point in Definition 1.2) is defined inductively. Reasoning about about the
order is usually done using simple inductive proofs.

1.3. Semantics in Domains. There is a natural interpretation of types in the category
of algebraic DCPOs where morphisms are continuous functions that are not required to
preserve the least element. An algebraic DCPO is an order with the following properties:

e cvery directed set has a least upper bound (DCPO),
e it has a basis of compact elements (algebraic).

Unless specified otherwise, “domain” will always refer to an algebraic DCPO. Recall that any
partial order can be completed to a DCPO whose compact elements are exactly the element
of the partial order. This ideal completion formally adds limits of all directed sets. The
following can be proved directly but is also a direct consequence of this general construction.
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Lemma 1.3. If the X;s are domains, then (V(Xl, o Xn), < ) is a domain.

Given a type definition of arity n in D,, its semantics sends the sets X1,..., X, to a
subset of values in V(X1,...,X,).

Definition 1.4. We define, by mutual induction, the interpretation of type definitions and
type expressions:

e Let T € D, be a type definition of arity n. The interpretation of T, written [T[, sends any
sequence X = Xi,..., X, of n sets to a subset of V(X ). It is defined coinductively by
the following “typing” rules:

(1)

L[ (X)
(2) M€
w: 1] (X)

u: [S] ([[Tu]] (Y)jY)
Cu: [T,](X)
wp : [S1] ([T ](X), X)) ooo we: [Sk] ([TW] (X)), X)
{D1 = ULy «-- Dk = uk} : [[TV]] (Y)
are exactly the D; : T, (X) — S;, for 1 < < k.
e the interpretation of a type expression 7' € 7,.(X) is defined by induction:
—if T = x;, then [T] (X ) = X;, o o
— if T =T(S1,...,Sm) then [T](X) = [T] ([S:] (X), ..., [Sn] (X)).

when C: S — T,(X) is a constructor of T,,"

if the destructors of T,

The following is easily proved by induction on 7.

Proposition 1.5. Let X = X1,..., X,, be domains, if T is a type then

(1) with the order inherited from X (point (2) in Definition 1.2), [T] (X) is a domain,
(2) X w [T] (X)) is functorial.
(3) for a datatype T, (X) with constructors C; : S; — T,(X), we have

Ll (X) = (1o U {cmwlwels] (I (X),X)}

=1,k
= ([ (1] (), %) + -+ + [Sd] ([T,] (), X))
(4) for a codatatype T, (X) with destructors D; : S; — T, (X), we have

[T,] (X) = {J_}U{{...;Di:ui;...}|i:1,...,k:anduie[[Si]}([[Ty]](Y),Y)}
(182 (IT1 (X),X) x -+ x [Se] ([1,] (), X) )

The operations + and x are the set theoretic operations (disjoint union and cartesian
product), and S is the usual notation for S'U{_L}. This shows that the semantics of types
are fixed points of standard operators. For example, [nat] is the domain of “lazy natural
numbers”:

L

12

€1

"There and in point (4), the interpretation [T7] is already defined as its rank is strictly smaller than 7.
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Succ(Succ Zero)

~

Succ Zero Succ(Succ 1)
~ e
Zero Succ L
O P
4

and the following are different elements of [stream(nat)]:

o |,

e {Head = Succ ;Tail = 1}

e {Head = Zero;Tail = {Head = Zero;Tail = {Head = Zero;... }}}

1.4. Semantics in Domains with Totality. We use domains to be able to use Kleene’s
fixed point theorem to define the interpretation of recursive definitions (next section).
Unfortunately, those domains cannot distinguish greatest and least fixed point: the functors
defined by types are algebraically compact [Bar92], i.e. their initial algebras and terminal
coalgebras are isomorphic. For example, the interpretation of [nat] automatically contains
the infinite value Succ(Succ(Succ(...))): it is the limit of | < Succ L < Succ(Succ L) < ---.
We thus add a notion of totality® on top of the domains.

Definition 1.6.

(1) A domain with totality (D,|D|) is a domain D together with a subset |D| C D.

(2) An element of D is called total when it belongs to |D|.

(3) A function f from (D, |D|) to (E,|E|) is a function from D to E. It is total if f(|D|) C |E|,
i.e. if it sends total elements to total elements.

(4) The category Tot has domains with totality as objects and total continuous functions as
morphisms.

To interpret (co)datatypes inside the category Tot, it is enough to describe the associated
totality predicate. The following definition corresponds to the natural interpretation of
inductive / coinductive types in the category of sets.

Definition 1.7. Totality is defined by mutual induction on type definitions and type
expressions.

o If T € D, is a type definition of arity n, and if X is a sequence of n sets,
— totality for a datatype T, is defined with (p is the least fixed point operator)

(X)) = ux. | {Ciu ) ue |Si|(X,7)}
i=1,...k
where C; : §; — T for i = 1,...,k are the constructors for T,
— totality for a codata type T, is defined with (v is the greatest fixed point operator)
T|(X) = l/X.{{Dl = ui...;Dp = up} ’ i=1,... kandu € |SZ-|(X,Y)}
where D; : T'— S;, i =1,...,k are the destructors for T,.

o If T is a type expression,
— If T'=x; then |T|(X) = X;

80ur notion seems unrelated to intrinsic notions of totality that exist in effective domain theory. [Ber93]
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~ I T =T1(3), then [T|(X) = [T/(|S1/(X). ... [t (X)).

Because these operators act on subsets of the set of all values and are monotonic, the
least and greatest fixed points exist by the Knaster-Tarski theorem.

Lemma 1.8. If T € 7,() is a closed type expression, then ([T],|T|) is a domain with
totality. Moreover, each t € |T| is maximal in [T7].

Proof. Let v € |T|(X ), we show that we can (coinductively) type it using the rules from

Definition 1.4.

o If T =x;, then v € |T|(X) = X;, so that we can use rule (2) to show that v € [T] (X ).

o If T = T,(5,...), then |T|(X) = pX.U, {Cu | v € |S;i|(X,X)}, so that v is of the
form Cju with u € |S;|(T,(T), X ). We can use rule (3) and continue coinductively.

o If T =T,(S1,...), then |T|(X) = vX.{{D1 = u1;...;Dp = up} | Vi,u; € [5i|(X,X)} so
that v is of the form {D; = uy;...;Dx = ux} where each u; € |S;|(|T|(X ), X ). We can
use rule (4) and continue coinductlvely.

Note that we don’t use the fact that |T,| is a least fixed point or that |T,| is a greatest fixed

point.
To show that elements of |T'| are maximal, we need to show “if v < v and u doesn’t
contain |, then u = v”. This is a trivial proof by induction on v < v. []

1.5. Recursive Definitions. Like in Haskell, recursive definitions are given by lists of
clauses. Here are two examples: the Ackermann function (using some syntactic sugar for
the constructors Zero and Succ)

val ack ® n = n+1
| ack (m+1) ® = ack m 1
| ack (m+1) (n+1) = ack m (ack (m+1) n)

and the map function on streams:

val map : ("a -> ’b) -> stream(’a) -> stream(’b)
| map £ { Head = x ; Tail = s } = { Head = £ x ; Tail = map f s }

Higher order parameters in recursive functions are allowed in the implementation but they
are ignored by the totality checker. Examples such as map above do use such higher order
parameters but for simplicity’s sake, they are not formalized in the paper.”

Definition 1.9. A recursive definition is introduced by the keyword val and consists of a
finite list of clauses of the form

| £p1 ... pu = w
where
e f is one of the function names being mutually defined,
INote that we can’t simply ignore higher order parameters as they can hide some recursive calls:

val app f x = f x --non recursive
val g x = app g x --non terminating

The implementation first checks that all recursive functions are fully applied. If that is not the case, the
checker aborts and gives a negative answer.
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e cach p; is a finite linear pattern
p n= x; | Cp | {D1=p1;...;Dp = pi}

where each x; is a variable name that appear at most once in p (linearity),
e and u is a finite term

u 0= X; ’ Cu ‘ {Dlzul;...;Dk:uk} ‘ guy ... ug

where k can be equal to 0, each x; is a variable name, and each g is function name
(recursive or otherwise).

The order of clauses is important and all clauses for a definition are grouped together.

If a type is explicitly given, as in the definition of map above, the definition is typed
checked. Otherwise, as in the ack definition above, the function’s type is inferred. We’ll
always assume the definitions are correct with respect to standard Hindley-Milner type
checking [Mil78]. This includes in particular checking that clauses of the definition cover
all values of the appropriate type and that no record is missing any field. Those steps
are not described in this paper but can be found in standard reference texts about the
implementation of functional programming languages [PJ87, Section 8 and 9.

Standard semantics of a recursive definition. Hindley-Milner type checking guarantees that
each list of clauses for functions £; : T1,..., £, : T}, (each T; is a function type) gives rise to
an operator

OF g, [ x - x [T] = [T1] x -+~ x [T3]
where the semantics of types is extended with [T'— T"] = [[T] — [T"]]. The semantics
of f1,...,f, is then defined as the fixed point of the operator 9?1%...,% which exists by

Kleene theorem.'” Let’s describe more precisely the standard semantics of the definition
in the simple case of a single recursive function f taking a single argument. Given an
environment p for functions other than £, the recursive definition for £: A — B gives rise

to an operator @;t% on [[A] — [B]] called the “standard semantics”. Its fixed point is the

semantics of £, written [£], : [A] — [B]. The operator fo"% is defined as follows.

Definition 1.10.

(1) Given a linear pattern p and a value v, the unifier [p := v] is the substitution defined
inductively with

e [y :=v| = [y := v] where the RHS is the usual substitution of y by v,

e [Cp:=Cv] =[p:=1],

e [{Dy=p1;...;Dy=pp} :={D1 =0v1;...;Dp =vp}] = [p1:=wm]U---Ulpy = vy,
where the order of fields is irrelevant (note that because patterns are linear, the unifiers
don’t overlap),

e in all other cases, the unifier is undefined. Those cases are:

— [Cp := C'v] with C# C,
— [{...}:={...}] when the 2 records have different sets of fields,
—[Cp:={...} and [{...}:= ]
When the unifier [p := v] is defined, we say that the value v matches the pattern p.
(2) Given f: [A] = [B] and v € [A], ©3¢(f)(v) can now be defined by:
e taking the first clause “f p = u” in the definition of £ where p matches v,

10The fixed point exists, but since domains contain the | value, the result can be a partial function.
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e returning [ulp := U]]]p,f::f'

An important property of Hindley-Milner type checking is that it ensures a definition
has a well defined semantics. In particular, there always is a matching clause and the
value “1” corresponds to non-termination, not to failure of the evaluation mechanism (like
projecting on a non-existing field). However, it doesn’t mean the definition is correct from a
denotational point of view. For that, we need it to be total with respect to its type. For
example, the definition

val all_nats : nat -> list(nat)
| all_nats n = Cons n (all_nats (n+1))

is well typed and sends elements of the domain [nat] to the domain [list(nat)] but the
image of Zero is the infinite list containing all the natural numbers. This is not total because
totality for [list(nat)] contains only the finite lists. Similarly, the definition

val last_stream : stream(nat) -> nat
| last_stream {Head=_; Tail=s} = last_stream s

sends any stream to L, which is non total.

A note on projections. The syntax of definitions given in Definition 1.9 doesn’t allow
projecting a record on one of its field. This makes the theory somewhat simpler and doesn’t
change expressivity of the language because it is always possible to rewrite a projection
using one of the following techniques:

e remove a projection on a previously defined function by introducing another function, as
in

| £fx=... (g w.Fst ...
being replaced by
| £fx= ... projectFst (g u) ...
where projectFst is defined with
val projectFst { Fst = x; Snd =y } = x
e remove a projection on a variable by extending the pattern on the left, as in

| £fx = ... x.Head ...
being replaced by
| £ {Head = h; Tail=t } = ... h ...

e remove a projection on the result of a recursively defined function by splitting the function
into several mutually recursive functions, as in
| £ : prod(A, B) -> prod(A4, B)
| £fp=... (£f W.Fst ...

being replaced by

| £f1 : prod(4, B) > A
| f1 x = ... (£f1 ul) ...
| £2 : prod(4, B) -> B
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The first point is the simplest and most general but shouldn’t be used to remove projections
on variables or recursive functions. Since the checker will see each external function as a black
box about which nothing is known, introducing external functions in a recursive definition
can hide information and make totality checking harder. Of course, the implementation of
chariot doesn’t enforce this restriction and the theory can be modified accordingly.

A subtle example. Here is an example showing that productivity and termination are not
enough to check validity of a recursive definition [AD12]. We define the inductive type

data stree where Node : stream(stree) -> stree

where the type of stream was defined on page 5. This type is similar to the usual type
of “Rose trees”, but with streams instead of lists. Because |stream|()) = 0, we have
that uX.|streams|(X) = (. By Definition 1.7, |stree| = ): the interpretation of stree
doesn’t contain any total value. Consider however the following definitions:

val bad_s : stream(stree)
| bad_s = { Head = Node bad_s ; Tail = bad_s }

This is well typed and guarded. Lazy evaluation of bad_s or any of its subterms terminates.
The semantics of bad_s doesn’t contain | and unfolding the definition gives

{Head=_; Tail=_}

—
Node {Head=_; Tail=_}
\ - ~.
{Head=_; Tail=_} Node {Head=_; Tail=_}
S AN \ e AN
Node {Head=_; Tail=_} {Head=_; Tail=_} Node {Head=_; Tail=_}

L AR L

Such a term clearly leads to inconsistencies. For example, the following structurally decreasing
function doesn’t terminate when applied to Node bad_s:

val lower_left : stree -> empty
| lower_left (Node { Head = t; Tail = s }) = lower_left t

It is important to understand that lower_left is a total function and that non termination
of lower_left (Node bad_s) is a result of bad_s being non total.

2. COMBINATORIAL DESCRIPTION OF TOTALITY

The set of total values for a given type can be rather complex when datatypes and codatatypes
are interleaved. Consider the following definition, given in the introduction:

val inf = Node { Left = inf; Right = inf }

This value can be total or not depending on its type:

e inf of type tree is not total with respect to the type definitions
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codata pair(’x,’y) where Left : pair(’x,’y) -> ’'x
| Right : pair(C’x,’y) >’y
data tree where Node : pair(tree, tree) -> tree -- well-founded binary trees
| Leaf : unit -> tree

e inf of type option(tree) is total with respect to the type definitions

data option(’x) where Node : 'x -> option(’x)
| Leaf : unit -> option(’x)
codata tree where Left : tree -> option(tree) -- mon-well founded binary trees

| Right : tree -> option(tree)
It means in particular that the totality checker cannot be entirely untyped.

2.1. Parity Games. A parity game is a two players game played on a finite directed simple
graph where each vertex, called node in the sequel, is labeled by a natural number called
its priority. We usually put labels on directed arcs (called transitions in the sequel), but

besides making it easier to refer to arcs, they don’t really play any role. When the node
11

W,

has odd priority, Marie (or “u”, or “player”) is required to play. When the node is even,
Nicole (or “v”, or “opponent”) is required to play. A move is simply a choice of an outgoing
arc from the current node and the game continues from the new node. When Nicole (or
Marie) reaches a node without outgoing arcs, she looses. In case of infinite play, the winning

condition is

(1) if the maximal priority seen infinitely often is even, Marie wins,

(2) if the maximal priority seen infinitely often is odd, Nicole wins.

We will call a priority principal if “it is maximal among the priorities appearing infinitely
often”. The winning condition can thus be rephrased as “Marie wins an infinite play if and
only if the principal priority of the play is even”.

In order to analyze types with parameters, we add parameter nodes X1, Xo, ...to the
games. Those nodes have no outgoing transition and their parity is, by convention, co. On
reaching them, Marie will be required to choose an element of some corresponding set X
to finish the game. She’ll win if she can do it and loose if the set is empty. Here are three
examples of parity games:

l l
l4 l5 6 : l5
l l
3 ( : o la I
lo l lo l2 I3
ls

1

Definition 2.1. Each position p in a parity game G with parameters x1, ..., X, defines a
functor ||G||, from Set™ to Set [San02c]. ||G||,(X ) is defined by induction on the maximal
finite priority of G and the number of positions with this priority:

o if all the positions are parameters, each position is interpreted by the corresponding
parameter ||G||x, (X ) = X;;

11Assigning odd to one player and even to the other is just a convention.
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e otherwise, take p to be one of the positions of maximal priority and construct G/p with a
new parameter xg as follows: it is identical to G, except that position p is replaced by xq
and all its outgoing transitions are 1 removed.'? We define o
— [|GIIp(X) = uX.(/IG/pllg(X, X) + -+ + [|G/pllq, (X, X)) if p had an odd priority
and p — q1, ...p — g are all the transitions out of p; |

—1Gp(X) = vX.(|G/pl|g (X, X) X -+ x ||G/plq.(X, X)) if p had an even priority
and p — q1, ...p — i are all the transitions out of p;

G, = 16/pl(IGI(X ), X) it p £ q.

We give explicit names to nodes and write priorities as exponents. Here is a small
example to illustrate the construction of ||G||. Consider the following parity game:

By definition, ||G/a/b|ly(X,Y) =Y and ||G/a/b||x(X,Y) = X. We thus get the following

o B(X) = [|G/allo(X) = py-(IG/a/bllx(X, Y) + |G /a/blly(X,Y)) = py-(X + V),
o [1G/allx(X) = [1G/a/bll(X, B(X)) = X.

From that, we obtain

o A :=||G||la = vx.(“empty product”) as there is no outgoing transition from a. This set is
isomorphic to 1, the one element set.

e ||G|ly = ||G/a||p(A) = B(A) = py.(Y + 1) = N. This set is isomorphic to the natural
numbers.

There is a strong link between the set ||G||, and the set of winning strategies for Marie
in game G with initial position p, where a strategy is a kind of decision tree giving the “next
move” on odd priority nodes.

Definition 2.2 (Winning stﬁtegies). Suppose G is a parity game with parameters x1,.. ., X,
and p a position in G. Let X = X;,..., X, be sets.

(1) Write P, for the set of finite paths starting from p in the graph underlying G, equipped
with the prefix order C.
(2) A subset S C P, is a pre-strategy if:
(a) it is downward closed: 01 C o € S = 01 € S,
(b) it is deterministic on odd nodes: if the last node of o € S has odd priority, then
there is a unique node v such that o-v € 5,
(c) it is complete on even nodes: if the last node u of o € S has even priority, then for
all neighbours v of u, the path ¢ -v isin S.

12This game is called the predecessor of G [San02c].
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(3) A leaf in a pre-strategy S is the final node in a maximal finite path of S. A strategy
is composed of a pre-strategy S, together with a mapping from each parameter leaf x;
of S to the corresponding set X;. (In particular, X; cannot be empty.)

(4) A branch in a pre-strategy S is a maximal, downward closed, linearly ordered subset
of S. A strategy is winning if for all its infinite branches the maximal priority that
appears infinitely often is even.

We write W(G),(X ) for the set of such winning strategies for G, from p, with parameters X .

Here are some simple examples where even node have out-degree 1, which means
strategies are just paths in the underlying graph. Note that paths are defined as sequences of
consecutive nodes but we sometimes give them using sequences of transitions for readability.

t yod

O=1
In the first game, starting from b, a strategy is either of the form (s™t)% = {e, s, ss, ..., s", s"t},
or equal to s+ = {e,s,ss,...}. This infinite strategy isn’t winning because the maximal
priority visited infinitely often is odd: 1. For the middle game, there are many infinite
strategies from ¢ that can alternate between the d and e node arbitrarily. All of them are

winning as the maximal priority visited infinitely often is always even: 2. For the last game,
we can define both winning and non-winning infinite strategies starting from t.

An important result is:

Proposition 2.3 ([San02c, Theorem 5.4]). There is a natural isomorphism

1G], = W(G)y -

2.2. Parity Games from Types. We can construct a parity game G from any type T in
such a way that |T'| 2 ||G||r, for some distinguished position 7" in G.

Definition 2.4.

(1) Given a (fixed) list of type definitions, we consider the following transition system:
e nodes are type expressions, possibly with parameters,
e transitions are labeled by constructors and destructors: a transitions 73 LN T is either
a destructor t of type T1 — T» or a constructor ¢ of type T — T (note the reversal).
(2) If T is a type expression, the graph of T is defined as the part of the above transition
system that is reachable from T

Here is for example the graph of 1list(nat)

nit
unt Zero
NilT
list(nat) nat ) Succ

Cons ( > Snd
Fst

prod(nat,list(nat))
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The transition system is set up so that

e on data nodes, a transition is a choice of constructor for the origin type,

e on codata nodes, a transition is a choice of field for a record for the origin type.

Because of that, Hindley-Milner type checking will ensure that a value of type T gives

a strategy for a game on the graph of T' where Marie (the player) chooses constructors

and Nicole (the opponent) chooses destructors (that will be Lemma 2.10). We will, in

Definition 2.7, add priorities so that

e datatype nodes are odd and codatatype nodes are even,

e the order of priorities correspond in a precise way to the interleaving of least and greatest
fixed points.

Checking that this strategy is winning will be the goal of the totality checker.
Note that when some of the types have parameters, the transition system is infinite: it

will for example contain 1list(’x), list(list(’x)), list(list(list(’x))), etc. However,
we have

Lemma 2.5. For any type T', the graph of T is finite.

This relies on the fact that recursive types are uniform: their parameters are constant in
their definition. It becomes false if we were to allow more general types like

data t(’x) where
| Empty : unit > t('x)
| Cons : prod(’x, t(t('x))) -> t(x) -- 'l not uniform

The graph of t(nat) would contain the following infinite chain:

Cons Snd Cons Snd
t(nat) prod(nat,t(t(nat))) t(t(nat)) prod(t(nat),t(t(t(nat))))

Before proving the lemma, the following definition will be useful.

Definition 2.6. Write 77 C T5 if T} is a subexpression of T5. More precisely:
e TCLX iIff T =X,
e TCT(Th,...,T,) ifand only if T' =T(T,...,T,) or TC Ty or ... or T C T,.

Proof of Lemma 2.5. From Definition 1.1, we know that the definition of a (co)datatype only
uses parameters and type expressions of strictly smaller rank. Moreover, in the presence of
mutual type definitions, two types of the same order are part of the same mutual definition.
Suppose by contradiction that 7" is a type expression of minimal head rank (c.f. Defini-
tion 1.1) with an infinite graph. Since the graph of T has finite out-degree, Konig’s lemma
implies it contains an infinite path p =T — T} — T5 — --- without repeated vertex.
There must be infinitely many T; with head rank equal to k. Otherwise, we could
construct an infinite path with a strictly smaller head rank: take the first T}, s.t. all
later T, have head rank A < k and let T}, for m > n be obtained from T}, by replacing all
subexpressions of rank k by a new parameter X.
Because no T),, has a head rank k, any transition T}, — T,,+1 is also a transition 7, —
T}, ., and we obtain an infinite path T}, — T}, ,; — --- with rank strictly smaller than .
But if T" has rank «, its subexpressions of head rank x have fixed arguments by uniformity.
So all subexpressions of head rank  along the infinite path must be subexpressions of Tj.
There are only finitely many of those, contradicting the previous remark. []
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Definition 2.7. If T' is a type expression, a parity game for T is a parity game on the graph
of T' (Definition 2.4) which satisfies the following conditions:

(1) if Tp is a datatype, its priority is odd,

(2) if Tp is a codatatype, its priority is even,

(3) if T4 C Ty, then the priority of 77 is greater than the priority of Tb.

Lemma 2.8. Fach type expression has a parity game.

Proof. The relation C is a strict order and doesn’t contain cycles. Its restriction to the
graph of T can be linearized. This gives the relative priorities of the nodes and ensures
condition (5) from the definition. Starting from the least priorities, we can now choose a
priority odd / even compatible with this linearization. []
We don’t actually need to linearize the graph and can instead chose a normalized parity
game, i.e. one that minimizes gaps in priorities. Here are the first two parity games from
page 14, seen as parity games for stream(nat) and list(nat). Priorities are written as
exponents and their parity can be seen in the shape (square or round) of nodes.

Zero Nil
= G G
Head Cons )Snd

F
Tail | prod(nat,list(nat))0 st

The last example from page 14 corresponds to a coinductive version of Rose trees:

codata rtree(’x) where
| Root : rtree(’x) -> 'x
| Subtrees : rtree(’x) -> list(rtree(’x))

with parity game

Subt
ubtrees Nil

Fst

Snd (

prod(rtree(x),list(rtree(x)))° |

As the examples show, the priority of a type can be minimal (stream(nat)”), maximal
(rtree(X)?) or somewhere in between (list(nat)!) in its parity game.

The semantics of a parity game (Definition 2.1) and that of the totality semantics of
a type (Definition 1.7) are similar in that they interleave greatest and least fixed points.
Parity games of types are designed to get the following.

Proposition 2.9. For any type parity game G and for any node T in G, we have ||G||p = |T).
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Proof. We prove “for any type expression T and parity game G containing a parity game
for T as a simply connected component, we have ||G||7 = |T|” by induction on G.

To simplify the argument, we assume that all non-recursive constructors [resp. de-
structors] for type T(X) are of type x; — T(X) [resp. T(X) — x;]. Every type definition
can be transformed into one such by adding additional parameters. For example, we can
replace 1list(x) by

data list2(’x, 'y) where Nil : '’y -> list2(’x, ’'y)
| Cons : prod(’x, list2(’x, 'y)) -> list2(’x, ’'y)

and the old “list(x)” is the same as the new “list2(x, unit)”: it has the same semantics,

totality and parity game.

e The result is obvious when all the nodes of G have priority co: T is necessarily a parameter x;
and we have ||G||x, (X ) = X; = |x;|.

e If T is a position of maximal finite priority in G and T'=T, (T) starts with a datatype
with constructors C; : S; = T,i=1,...,k. We have

IGI(E) = uX.(IG/Tlls, (X, ) + -+ IG/Tlls, (X, X)) (Detnition 2.1
&~ uX.(|Sl|(X, XL+ s |SE|(X, X ))7 (induction hypothesis)
= MX(Cl‘SlKX’X)UUck’Sk‘(XaX))
= |T] (Definition 1.7)

The reason we can apply the induction hypothesis on G/T" is that it contains the parity
games for each S;: because types have a special form, transition can only be of 2 forms:

— non recursive constructor / destructor: S(S) — S; where the priority increases,
— recursive constructor / destructor: S(S) — R where S(S) is a subexpression of R, i.e.
the priority decreases.
Because T is of maximal finite priority, the only possible transitions to 7" are of the first
kind. In G/T, which contains a new parameter x, they become transitions S(X) — x;.1?
This implies that G/T contains a type parity game for S;.
e The reasoning is similar if 7 = T, (X ) is a codatatype.
e if the priority of T' is not maximal, write M for the position of maximal finite priority.
We have
|G| (X) ||G/MHT(||G||]\L(XLX) (Definition 2.1)
HG/MHT(|M’(X),X) (previous point)
|T’(Y) (induction hypothesis, (*))

111l

The last isomorphism is the most subtle: G/M contains a new parameter x corresponding
to M. Like above, any transition to M in G is transformed into a transition to the new
parameter M in G/M. By induction hypothesis, we get that ||G/M||r(x, X ) = |T"|(x, X )
where T” is the type expression T" where every occurrence of M has been replaced by x.
The last step decomposes into

1G/M]|r(|M](X), X) |7[(|M](X), X)

= |
~ |T|(X) (definition of totality)

Indeed, on reaching x when computing |7"|(|M], X ), we return M; just like on reaching M
when computing |T|(X ). []

Bwithout our hypothesis, Nil : list(nat) — unit could be replaced by Nil : list(nat) — x in G/unit
so that G/unit doesn’t really contain a parity game for list(nat).
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2.3. Strategies from Terms. Strategies (Definition 2.2) are defined as order-theoretic
trees. Because of the way types parity games are defined, they are equivalent to values in
the corresponding type.

Lemma 2.10. For any type T, and associated parity game G, the set of strategies for G
starting from node T' is isomorphic to the set of mazximal elements in [T7.

Proof. Let t be a maximal element in [77], that is, an element of [7'] which doesn’t contain L.
By definition, each finite branch of a maximal element of [7] is a finite path from 7" in the
graph of T'.

e If T is a datatype/odd position, ¢ chooses precisely one constructor. The set of finite
branches of ¢ is thus deterministic on odd positions.

e If T is a codatatype/even position, ¢ contains one field for each destructor. The set of
finite branches of t is thus complete on even positions.

Conversely, we can construct a maximal element § of [77] from any strategy s from T
in G coinductively.

e If T'is a data, by determinism, all non-empty paths of s start with the same constructor C:
this is the head constructor of 5 and we continue by considering the strategy s/C obtained
from s by removing the head constructor of each of its paths: §:=C s/C.

e If T is a codata, by completeness, there are paths starting with each destructor .Dy of T'.
In that case, we can put § = {...;Dy = s/Dg;...}.

This construction works because by construction, s/C are strategies for the appropriate

types. []

Putting together Proposition 2.9, Proposition 2.3 and Lemma 2.10 we finally get

Corollary 2.11. If T is a type and G a parity game for T, we have W(G)r = |T|. In
particular, v € [T] is total iff every branch of v has even principal priority.

The only thing to note is that priorities are not part of the value v € [T] but are read
in G. As a final example in this section, let’s consider the problematic example from page 13.
The parity game for stree is given by

Node Head

stream (stree)” 3 Tail

There is a single strategy from the lower node of this parity game and it obviously contains
an infinite branch with principal priority 1. This strategy cannot be winning, i.e. the
corresponding value cannot be total.

2.4. Forgetting Types. If a term ¢ in chariot (not necessarily a value) is of type T, it
will generate a strategy in GG, a parity game for T'. Thanks to Corollary 2.11, the definition
of t is total if and only if the corresponding strategy is winning.'*

14Usually, t will be a function, resulting in some additional complexity.
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In order to talk about priorities in chariot, we annotate each occurrence of constructor
/ destructor in a definition with its priority taken from one of the type’s parity game. This
can be done during Hindley-Milner type checking:

e each instance of a constructor / destructor is annotated by its type during type checking,
e all the types appearing in the definitions are gathered (and completed) to a parity game,
e each constructor / destructor is then given the priority of its type.

Once type checking is done, the type of constructors / destructors can be erased and only
their priorities are kept. We end up with definitions like

val length : list!'(x) -> nat!
| length Nil! = Zero!
| length (Cons!{Fst%=_; Snd’=1}) = Succ' (length 1)

Note that priorities are inferred and only used while checking totality. They are never shown
to the end user.

We thus refine the notion of value from the previous section by adding priorities on
constructors and destructors.

Definition 2.12. The set of values with leaves in Xy,..., X,, written V(Xy,...,X,,) is
defined coinductively by the grammar

v = L | = | Cv | {D;=w1;...;Dp = v}
where

each z is in one of the X;,

each priority p belong to a finite set of natural numbers,

each C belongs to a finite set of constructors, and their priority is odd,
each D; belongs to a finite set of destructors, and their priority is even,
k can be 0.

Corollary 2.11 gives an intrinsic notion of totality on V.

Definition 2.13. Totality for V is defined as v € |V| iff and only if every branch of v has
even principal priority.

Because of Corollary 2.11, checking totality of a recursive definition can thus take the
following form:

(1) annotate the definition with priorities during type checking,

(2) check that the infinite unfolding of the recursive definition either
(a) inspects a non-total infinite branch of the argument,
(b) or only constructs total infinite branches of the result.

The patterns on the left side of clauses are the parts that “inspect the argument” and the
values on the right side of clauses are the parts that “construct the result”. A recursive
definition satisfying this property is total. When applied to a total value (which has no
non-total branch), the result is necessarily total (it contains only total branches).

Because we cannot really inspect the infinite unfolding of the definition, the size-change
principle will be used to give a computable approximation of the above. Making this precise
is the aim of an upcoming paper [Hyv25].
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CONCLUDING REMARKS

Operational Semantics. We have voluntarily refrained from giving the operational semantics
of the language. The idea is that totality is a semantic property and the operational semantics
has to be compatible with the standard semantics of recursive definitions. The operational
semantics must guarantee that evaluating a total function on a total value is well defined,
in particular that it should terminate. For example, head reduction that stops on records
guarantees that a total value has a head normal form: it cannot contain | and cannot start
with infinitely many inductive constructors (their priority is odd). Evaluation must reach a
record (coinductive) at some point.

A real programming language could introduce two kinds of records: coinductive ones and
finite ones. The later could be evaluated during head reduction. Even better, destructors
themselves could be coinductive (like Tail for streams) or finite (like Head for streams.)

In a similar vein, the language could have coinductive constructors to deal with coinduc-
tive types like finite or infinite lists.'®> At the moment, the only way to introduce this type
is with

data list_aux(’a, ’'b) where
Nil : unit -> list_aux(’a, ’'b)

| Cons : prod(’a, 'b) -> list_aux(’a, ’b)

codata inf_list(’a) where
unfold : inf_list(’a) -> list_aux(’a, inf_list(’a))

Needless to say, using this quickly gets tiring.

Higher order types. The implementation of chariot does deal with some higher order
datatypes. With T-branching trees (coinductive) defined as

codata tree(’b, ’'n) where
child : tree(C’b, 'n) -> (b -> tree(’b, ’n))

or (inductive)
data tree(’b, ’'n) where
root : unit -> tree(’b, ’'n)

| fork : (b -> tree(’b, ’n)) -> tree(’b, ’'n)

the corresponding map function passes the totality test. The theory should extend to account
for this kind of datatypes.

15The interaction between such coinductive constructors and dependent types is however very subtle as
they can break subject reduction! https://github.com/coq/coq/issues/6768.
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