On Quasi-Interpretations, Blind Abstractions
and Implicit Complexity

Patrick Baillot Ugo Dal Lago Jean-Yves Moyen

LIPN Paris 13, Univ. di Bologna/Paris 7 LIPN Paris 13

journées GdT LAC, Chambéry, 9/2/2007

(projet ANR NOCoST)

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity — p.1/2:

From termination to complexity?

B termination is widely studied: polynomial interpretations, RPO, ...

B however in practice computational complexity often relevant (eg
for feasible termination)

= how to guarantee/verify that a program is polynomial time
(Ptime) ?

® Implicit computational complexity (ICC): study calculi with intrinsic
complexity properties (e.g. Ptime) ,
B primitive recursive programs

B typed lambda-calculi, linear logic
B TRS

Leivant, Jones, Girard . ..

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity — p.2/2:

Implicit Computational Complexity and intensional expressivity

= Typical ICC results:
any program of the class C computes a Ptime function,
and any Ptime function can be computed by at least one program
of C.
(using a simulation of Ptime Turing machines)

B Intensional expressivity : which algorithmic patterns are available
iIn an ICC system ?
TRS: advantage of general recursion, pattern-matching

B Term rewriting (TRS) and Quasi-interpretations (Bonfante -
Marion -Moyen):
an easy-to-use and quite general ICC system

Idea: combine 2 ingredients

RPO + size argument (quasi-interpretation)

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity — p.3/2:

how to study the intensional expressivity of ICC calculi?

B examples

B we propose to consider program transformations or abstractions,
to find out necessary conditions on programs

here we study the Quasi-interpretations (Ql) approach (P-criterion of
Marion et al.), and define for that blind abstraction of programs.

this way we provide a necessary condition on programs meeting the
P-criterion on QlI.

Applications:
® property of Bellantoni-Cook programs,

B extensions of the P-criterion.

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity — p.4/2:

Outline

. Blind abstractions.

. P-criterion and blind abstractions.

. Background: TRS and Quasi-interpretations.
P-criterion ([BMMOG]).

Blindly polytime programs.

application: Bellantoni-Cook; extensions of P-criterion.

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity — p.5/2:

1. Programs as TRS

Definition 1 (Syntax) Terms and equations are defined by:

(values) T(C)>w
(terms) TC,F,X)>t
(patterns) Pap
(equations) D>d

wherexz € X, f € F,and c € C.

A program: f = (X ,C, F,) where £ is a set of equations in D.
In equation £(p) — t, each variable in ¢ also appears in £(p).
programs are constructor (term-rewriting) systems.

In general, we don’t require determinism condition

C(Ul, e 7Un)

vle(ty, - ty) | £t o ts)
z|e(p1,-+ pn)

£(p1,-- pn) —

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity — p.6/2:

Operational semantics

B Call-by-value semantics:

ceC ¢t l V;
(Constructor)

C(t17"' 7tn) l C(Ula"' 7Un)

d9,t; ¢ T(C) t; | v; f(vy,---,v,) v _
J,t; € T(C) ! (v1) | (Split
f(tla"'atn)lv
f(pr,-- ,pn) 2r €& oc€G po=v;, rolwv _
(Function)

f(vy, -+ ,v,) v

® Call-by-value semantics with cache:

B corresponds to programming with memoisation: avoid
recomputing of values,

® judgements (C,t), where C'is a cache,
B (update) and (read) rules.

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity — p.7/2:

Example of program

f(sps;x) — append(f(s1z),f(s1x)) 1=0,1
f(s1x) — X
f(nil) — nil

aPPend(Si37> y) — SiaPPend(ma y)
append(nil,y) — y

7 1S the following derivation:
nil | nil nil | nil nil | nil
f(sinil) | nil £(synil) | nil append(nil, nil) | nil

append(f(sinil), f(sinil)) | nil
f(sgsinil) | nil

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity — p.8/2:

Call trees
Call trees are a tool to analyse the execution of programs.

B Letnw:t | v be areduction proof. Its call trees is the set of trees
©.,. obtained by only keeping terms f(«) in conclusions of
(Function) rules.

In our example program, the following is a call-tree for (£, sgsnil):

(f, sgs1nil)

T

(f,sqnil) (f,sqnil) (append, nil, nil)
(g, nil) (g, nil)

® for the Call-by-value semantics with cache: also a notion of Call
dag, obtained by identifying some nodes in the call tree.

KRedH
On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity — p.9/2:

Termination orderings

® precedence <x: preorder over F | JC.
~ r associated equivalence relation.

B separating precedence: constructors < functions

® fair precedence: for constructors c, d with same arity, c =~ d,
strict precedence: distinct constructors not comparable for < ~.

B product extension of an ordering < : extension over tuples such
that (mq,--- ,mg) <P (nq,--- ,ng) iff
(1) Vi, m; < n,; and (ii) 35 such that m; < n;.

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity — p.10/2:

Termination orderings (continued)

s=1;0rs -<7~p0 i Y1 S; ‘<7“p0 f(tl,"' 7tn) g =Fr f
£fe FlC f,g e FUC
S <rpo f(...,ti,...) 9(317.-. 75m> < rme f(th... 7tn)
(1,7 »8n) =Ppo (t1,+ -+ ,tn) frrg Vi s; <rpo £(t1, - ,tn)
f,gc FUC
g(Sl,“' ,Sn) =rpo f(t]_)'" ,tn)

PPO: recursive path ordering <, obtained with separating
precedence
EPPO: recursive path ordering <,.,, obtained with fair precedence

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity — p.11/2:

Quasi-interpretations

idea: provide upper bound on size of intermediate values during
computation

Let b € FJC with arity n. Its assignment is a function (b)) : (R)” — R
such that:

(Subterm) (b)(X1,---,X,) > X;forall1 < <n.

(Weak Monotonicity) (b)) is increasing (not strictly) wrt each variable.
(Additivity) (c) (X1, -, X,) > > X; +aifceC (where a>1).
(Polynomial) (b)) is bounded by a polynomial.

Assignments (.)) are extended to terms canonically. If ¢ has n variables,
then () : (R)” — R.

we denote by > the extensional order on functions.

if ¢ is a subterm of s, then (s) > ()

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity — p.12/2:

P-criterion

Definition 2 (Quasi-interpretation) An assignment (.) of a program
IS a quasi-interpretation (QI) if for each equation I — r, (I) > (r).

EX: (so)(X) = (s1)(X) = X + 1, (append)(X,Y) = X + Y.

For inference, QI can be searched in a given function algebra, e.g.
MaxPoly.

Theorem 1 (P-criterion, Bonfante-Marion-Moyen) The set of
functions computable by programs that

(i) terminate by PPO, and (ii) admit a Ql,

IS exactly FP.

To execute the program with a polynomial bound, one must use a
call-by-value semantics with cache.

EX: insertion sort, longest-common-subsequence.

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity — p.13/2:

2. Blind abstractions

ldea: study properties of the program by considering an abstraction.

blind abstraction: all constructors of same arity are collapsed into one,
we associate to a program £ another one £, which is not deterministic.

More precisely, target language:
® variables: X = X,
B function symbols: F = {f / £ € F}.
® constructor symbols: the map (.) on constructor symbols defined
by: ¢ = d iff c and d have the same arity. ThenC = {c / c € C}.
The blinding map is then the natural map

B:TC,F,X)—T(C,F,X).

Ex: binary lists built over {sg, s1, nil} mapped to tally integers, built
from {s, 0}, where s, = 57 = s and nil = 0.

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity — p.14/2:

Blinding and complexity defi nitions

Definition 3 (Strongly polytime) A (possibly) non-deterministic
program f is strongly polytime if there exists a polynomial p; : N* — N
such that for every sequence vy, -- ,v, and any « : £(vy, -+ ,v,) | u, it
holds that |7| < ps(v1,...,v,).

Definition 4 (Blindly polytime) A program £ is blindly polytime if its
blind abstraction £ is strongly polytime.

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity — p.15/2:

Blindly polytime programs

Observe that:

Fact 1 If a program £ is blindly polytime, then it is polytime in the
call-by-value semantics.

For instance, the Quicksort algorithm is blindly polytime.

Remark:

say an error is replacement of a constructor by a constructor of same
arity

blindly Ptime program= program remaining Ptime, no matter the
number of errors occurring during execution.

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity — p.16/2:

Example

f

f

f(sos;x)
f(slx) —
f(nil) e

append(s;z,y)—
append(nil, y)—

—append(f(si1z),f(s1x))

x
nil
s;append(x, y)
Yy

f(ssx)

f(sx)
£(0)

append(sz, y)
append (0, y)

append (£ (sx), £(s))

0

s append(z, y)
Y

bbb

f is Ptime but not blindly Ptime.

Indeed noten =s...s 0, we have that f(n) is reduced in an
N——

exponential number of steps, witha 7 : f(n) | 271,

n

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity — p.17/2:

Blinding and PPO, QI

® Proposition 1 The three following statements are equivalent:
(i) f terminates by EPPO,
(i) f terminates by EPPO,
(iii) f terminates by PPO.

® An assignment for £ = (X,C, F, &) is uniform if all constructors of

same arity have the same assignment.

Proposition 2 The program £ admits a uniform
quasi-interpretation iff f admits a quasi-interpretation.

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity — p.18/2:

3. Linearity and the P-criterion

f RPO program and g a function in £:

g is linear if in any equation g(p) — t, there is at most one occurrence
Int of a h such that h ~r g.

program f£ is linear if all its functions are linear.

Theorem 2 Let £ be a (possibly non deterministic) program which
1) terminates by PPO,

i) admits a quasi-interpretation,

i) is linear.

Then £ is strongly polytime.

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity — p.19/2:

Blinding and the P-criterion

Theorem 3 Let £ be a (possibly non deterministic) program which
1) terminates by PPO,

i) admits a uniform guasi-interpretation,

i) is linear.

Then £ is blindly polytime.

Intuition: the criterion cannot perform analysis relying on case distinc-

tion on content of values.

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity — p.20/2:

Blinding of Bellantoni-Cook programs

Bellantoni-Cook programs (BC): subclass of primitive recursive
programs, defined by distinguishing and normal arguments:

f(;$k+1,-.-,£€n)
Each BC program can be turned into a linear program terminating by
PPO.
Ex: Safe recursion construction:
(Safe recursion)

with g, h; € BC (previously defined)
one can build a uniform quasi-interpretation for each such program.

Theorem 4 If £ is a program of BC, then £ is blindly polytime.

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity — p.21/2:

Extension of the P-criterion

EXx. of program not terminating by PPQO: “fast exponentiation algorithm”
in base 4, that is using the recurrence z*¥ = ((z¥)?)?

pow(, Sosoy) — sq(sq(pow(z, y))) (% = ((z¥)?)?)
pow(x,s1Soy) — mult(z, pow(x, SosSoy)) (x9 T = 2% x 1)
pow(x,Sos1y) — sq(mult(z, pow(x,soy)) (292 = (2%Y x 7)?)
pow(x,s181y) — mult(z, sq(mult(x, pow(z,soy)))) (293 = (22Y x x)? X 2

—

but this program terminates by EPPO.
We extend to EPPO the P-criterion (for programs on lists over a finite

alphabet):
Theorem 5 The set of functions computed by programs over lists
terminating by EPPO and admitting a QI is exactly FpP.

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity — p.22/2:

An abstract P-criterion

Definition 5 (Bounded Values) A program f = (X,C, F, &) has
polynomially bounded values iff for every n-ary function symbol g € F,
there is a polynomial p, : N — N such that for every state n" appearing
in a call tree for n = (g, v1,...,v,), 7| < pe(|n]).

f admits a QI = f has polynomially bounded values.

Theorem 6 Let f be a deterministic program terminating by EPPO.
Then the following two conditions are equivalent:

1. f has polynomially bounded values;

2. f iIs polytime in the call-by-value semantics with memoisation.

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity — p.23/2:

Conclusion and perspectives

B analyse ICC criteria by studying necessary conditions on
programs:
here we defined blind abstractions for TRS

B this is a possible way to understand the limitations of certain ICC
criteria, and maybe to generalize them

B obtain necessary and sufficient conditions ?

Project:

NOCOoST project (New Tools for Complexity: Semantics and Types):
2005-2008 (ANR).

Sites: LIPN Paris 13, PPS Paris 7.
http://www-lipn.univ-paris13.fr/nocost/

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity — p.24/2:

	From termination to complexity?
	Implicit Computational Complexity and intensional expressivity
	
	Outline
	1. Programs as TRS
	Operational semantics
	Example of program
	Call trees
	Termination orderings
	Termination orderings (continued)
	Quasi-interpretations
	P-criterion
	2. Blind abstractions
	Blinding and complexity definitions
	Blindly polytime programs
	Example
	Blinding and PPO, QI
	3. Linearity and the P-criterion
	 Blinding and the P-criterion
	Blinding of Bellantoni-Cook programs
	Extension of the P-criterion
	An abstract P-criterion
	Conclusion and perspectives

