
< > - +

On Quasi-Interpretations, Blind Abstractions
and Implicit Complexity

Patrick Baillot Ugo Dal Lago Jean-Yves Moyen

LIPN Paris 13, Univ. di Bologna/Paris 7 LIPN Paris 13

journées GdT LAC, Chambéry, 9/2/2007

(projet ANR NOCoST)

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity – p.1/24

< > - +

From termination to complexity?

termination is widely studied: polynomial interpretations, RPO, . . .

however in practice computational complexity often relevant (eg
for feasible termination)
⇒ how to guarantee/verify that a program is polynomial time
(Ptime) ?

Implicit computational complexity (ICC): study calculi with intrinsic
complexity properties (e.g. Ptime) ,

primitive recursive programs

typed lambda-calculi, linear logic

TRS

Leivant, Jones, Girard . . .

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity – p.2/24

< > - +

Implicit Computational Complexity and intensional expressivity

Typical ICC results:
any program of the class C computes a Ptime function,
and any Ptime function can be computed by at least one program
of C.
(using a simulation of Ptime Turing machines)

Intensional expressivity : which algorithmic patterns are available
in an ICC system ?
TRS: advantage of general recursion, pattern-matching

Term rewriting (TRS) and Quasi-interpretations (Bonfante -
Marion -Moyen):
an easy-to-use and quite general ICC system

idea: combine 2 ingredients

RPO + size argument (quasi-interpretation)

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity – p.3/24

< > - +

how to study the intensional expressivity of ICC calculi?

examples

we propose to consider program transformations or abstractions,
to find out necessary conditions on programs

here we study the Quasi-interpretations (QI) approach (P-criterion of
Marion et al.), and define for that blind abstraction of programs.

this way we provide a necessary condition on programs meeting the
P-criterion on QI.

Applications:

property of Bellantoni-Cook programs,

extensions of the P-criterion.

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity – p.4/24

< > - +

Outline

1. Background: TRS and Quasi-interpretations.
P-criterion ([BMM06]).

2. Blind abstractions.
Blindly polytime programs.

3. P-criterion and blind abstractions.
application: Bellantoni-Cook; extensions of P-criterion.

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity – p.5/24

< > - +

1. Programs as TRS

Definition 1 (Syntax) Terms and equations are defined by:

(values) T (C) 3 v ::= c(v1, · · · , vn)

(terms) T (C,F ,X) 3 t ::= x | c(t1, · · · , tn) | f(t1, · · · , tn)

(patterns) P 3 p ::= x | c(p1, · · · , pn)

(equations) D 3 d ::= f(p1, · · · , pn) → t

where x ∈ X , f ∈ F , and c ∈ C.

A program: f = 〈X , C,F , E〉 where E is a set of equations in D.
In equation f(~p) → t, each variable in t also appears in f(~p).
programs are constructor (term-rewriting) systems.

in general, we don’t require determinism condition

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity – p.6/24

< > - +

Operational semantics

Call-by-value semantics:

c ∈ C ti ↓ vi
(Constructor)

c(t1, · · · , tn) ↓ c(v1, · · · , vn)

∃j, tj /∈ T (C) ti ↓ vi f(v1, · · · , vn) ↓ v
(Split)

f(t1, · · · , tn) ↓ v

f(p1, · · · , pn) → r ∈ E σ ∈ S piσ = vi rσ ↓ v
(Function)

f(v1, · · · , vn) ↓ v

Call-by-value semantics with cache:

corresponds to programming with memoisation: avoid
recomputing of values„

judgements 〈C, t〉, where C is a cache,

(update) and (read) rules.

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity – p.7/24

< > - +

Example of program

f(s0six) → append(f(s1x), f(s1x)) i = 0, 1

f(s1x) → x

f(nil) → nil

append(six, y) → siappend(x, y)

append(nil, y) → y

π is the following derivation:

nil ↓ nil

f(s1nil) ↓ nil

nil ↓ nil

f(s1nil) ↓ nil

nil ↓ nil

append(nil,nil) ↓ nil

append(f(s1nil), f(s1nil)) ↓ nil

f(s0s1nil) ↓ nil

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity – p.8/24

< > - +

Call trees

Call trees are a tool to analyse the execution of programs.

Let π : t ↓ v be a reduction proof. Its call trees is the set of trees
Θπ obtained by only keeping terms f(~w) in conclusions of
(Function) rules.
In our example program, the following is a call-tree for 〈f, s0s1nil〉:

〈f, s0s1nil〉

〈f, s1nil〉 〈f, s1nil〉 〈append,nil,nil〉

〈g,nil〉 〈g,nil〉

for the Call-by-value semantics with cache: also a notion of Call
dag, obtained by identifying some nodes in the call tree.

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity – p.9/24

< > - +

Termination orderings

precedence �F : preorder over F
⋃
C.

≈F associated equivalence relation.

separating precedence: constructors �F functions

fair precedence: for constructors c,d with same arity, c ≈F d,
strict precedence: distinct constructors not comparable for �F .

product extension of an ordering � : extension over tuples such
that (m1, · · · , mk) ≺p (n1, · · · , nk) iff
(i) ∀i, mi � ni and (ii) ∃j such that mj ≺ nj .

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity – p.10/24

< > - +

Termination orderings (continued)

s = ti or s ≺rpo ti
f ∈ F

S

C
s ≺rpo f(. . . , ti, . . .)

∀i si ≺rpo f(t1, · · · , tn) g ≺F f

f, g ∈ F
S

C
g(s1, · · · , sm) ≺rpo f(t1, · · · , tn)

(s1, · · · , sn) ≺p
rpo (t1, · · · , tn) f ≈F g ∀i si ≺rpo f(t1, · · · , tn)

f, g ∈ F
S

C
g(s1, · · · , sn) ≺rpo f(t1, · · · , tn)

PPO: recursive path ordering ≺rpo obtained with separating
precedence
EPPO: recursive path ordering ≺rpo obtained with fair precedence

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity – p.11/24

< > - +

Quasi-interpretations

idea: provide upper bound on size of intermediate values during
computation

Let b ∈ F
⋃
C with arity n. Its assignment is a function LbM : (R)n → R

such that:

(Subterm) LbM(X1, · · · , Xn) ≥ Xi for all 1 ≤ i ≤ n.

(Weak Monotonicity) LbM is increasing (not strictly) wrt each variable.

(Additivity) LcM(X1, · · · , Xn) ≥
∑n

i=1
Xi + a if c ∈ C (where a ≥ 1).

(Polynomial) LbM is bounded by a polynomial.

Assignments L.M are extended to terms canonically. If t has n variables,
then LtM : (R)n → R.
we denote by ≥ the extensional order on functions.
if t is a subterm of s, then LsM ≥ LtM

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity – p.12/24

< > - +

P-criterion

Definition 2 (Quasi-interpretation) An assignment L.M of a program
is a quasi-interpretation (QI) if for each equation l → r, LlM ≥ LrM.

Ex: Ls0M(X) = Ls1M(X) = X + 1, LappendM(X, Y) = X + Y .

For inference, QI can be searched in a given function algebra, e.g.
MaxPoly.

Theorem 1 (P-criterion, Bonfante-Marion-Moyen) The set of
functions computable by programs that
(i) terminate by PPO, and (ii) admit a QI,
is exactly FP.

To execute the program with a polynomial bound, one must use a
call-by-value semantics with cache.

Ex: insertion sort, longest-common-subsequence.

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity – p.13/24

< > - +

2. Blind abstractions

Idea: study properties of the program by considering an abstraction.

blind abstraction: all constructors of same arity are collapsed into one,
we associate to a program f another one f, which is not deterministic.

More precisely, target language:
variables: X = X ,
function symbols: F = {f / f ∈ F}.
constructor symbols: the map (.) on constructor symbols defined
by: c = d iff c and d have the same arity. Then C = {c / c ∈ C}.

The blinding map is then the natural map
B : T (C,F ,X) −→ T (C,F ,X).

Ex: binary lists built over {s0, s1,nil} mapped to tally integers, built
from {s,0}, where s0 = s1 = s and nil = 0.

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity – p.14/24

< > - +

Blinding and complexity definitions

Definition 3 (Strongly polytime) A (possibly) non-deterministic
program f is strongly polytime if there exists a polynomial pf : N

n → N

such that for every sequence v1, · · · , vn and any π : f(v1, · · · , vn) ↓ u, it
holds that |π| ≤ pf(v1, . . . , vn).

Definition 4 (Blindly polytime) A program f is blindly polytime if its
blind abstraction f is strongly polytime.

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity – p.15/24

< > - +

Blindly polytime programs

Observe that:

Fact 1 If a program f is blindly polytime, then it is polytime in the
call-by-value semantics.

For instance, the Quicksort algorithm is blindly polytime.

Remark:
say an error is replacement of a constructor by a constructor of same
arity
blindly Ptime program= program remaining Ptime, no matter the
number of errors occurring during execution.

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity – p.16/24

< > - +

Example

f f

f(s0six) →append(f(s1x), f(s1x))

f(s1x) → x

f(nil) → nil

append(six, y)→ siappend(x, y)

append(nil, y)→ y

f(ssx) → append(f(sx), f(sx))

f(sx) → x

f(0) → 0

append(sx, y) → s append(x, y)

append(0, y) → y

f is Ptime but not blindly Ptime.
Indeed note n = s . . . s

︸ ︷︷ ︸

n

0, we have that f(n) is reduced in an

exponential number of steps, with a π : f(n) ↓ 2n−1.

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity – p.17/24

< > - +

Blinding and PPO, QI

Proposition 1 The three following statements are equivalent:
(i) f terminates by EPPO,
(ii) f terminates by EPPO,
(iii) f terminates by PPO.

An assignment for f = 〈X , C,F , E〉 is uniform if all constructors of
same arity have the same assignment.

Proposition 2 The program f admits a uniform
quasi-interpretation iff f admits a quasi-interpretation.

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity – p.18/24

< > - +

3. Linearity and the P-criterion

f RPO program and g a function in f:
g is linear if in any equation g(~p) → t, there is at most one occurrence
in t of a h such that h ≈F g.
program f is linear if all its functions are linear.

Theorem 2 Let f be a (possibly non deterministic) program which
i) terminates by PPO,
ii) admits a quasi-interpretation,
iii) is linear.
Then f is strongly polytime.

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity – p.19/24

< > - +

Blinding and the P-criterion

Theorem 3 Let f be a (possibly non deterministic) program which
i) terminates by PPO,
ii) admits a uniform quasi-interpretation,
iii) is linear.
Then f is blindly polytime.

Intuition: the criterion cannot perform analysis relying on case distinc-

tion on content of values.

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity – p.20/24

< > - +

Blinding of Bellantoni-Cook programs

Bellantoni-Cook programs (BC): subclass of primitive recursive
programs, defined by distinguishing safe and normal arguments:

f(x1, . . . , xk;xk+1, . . . , xn)

Each BC program can be turned into a linear program terminating by
PPO.
Ex: Safe recursion construction:
(Safe recursion)

f(0, ~x;~y) →g(~x;~y)

f(si(z), ~x;~y) →hi(z, ~x;~y, f(z, ~x;~y)), i ∈ {0, 1}

with g, hi ∈ BC (previously defined)
one can build a uniform quasi-interpretation for each such program.

Theorem 4 If f is a program of BC, then f is blindly polytime.

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity – p.21/24

< > - +

Extension of the P-criterion

Ex. of program not terminating by PPO: “fast exponentiation algorithm”
in base 4, that is using the recurrence x4y = ((xy)2)2

pow(x, s0s0y) → sq(sq(pow(x, y))) (x4y = ((xy)2)2)

pow(x, s1s0y) → mult(x, pow(x, s0s0y)) (x4y+1 = x4y × x)

pow(x, s0s1y) → sq(mult(x, pow(x, s0y)) (x4y+2 = (x2y × x)2)

pow(x, s1s1y) → mult(x, sq(mult(x, pow(x, s0y)))) (x4y+3 = (x2y × x)2 × x)

. . . →

but this program terminates by EPPO.
We extend to EPPO the P-criterion (for programs on lists over a finite
alphabet):

Theorem 5 The set of functions computed by programs over lists
terminating by EPPO and admitting a QI is exactly FP.

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity – p.22/24

< > - +

An abstract P-criterion

Definition 5 (Bounded Values) A program f = 〈X , C,F , E〉 has
polynomially bounded values iff for every n-ary function symbol g ∈ F ,
there is a polynomial pg : N → N such that for every state η′ appearing
in a call tree for η = (g, v1, . . . , vn), |η′| ≤ pg(|η|).

f admits a QI ⇒ f has polynomially bounded values.

Theorem 6 Let f be a deterministic program terminating by EPPO.
Then the following two conditions are equivalent:
1. f has polynomially bounded values;
2. f is polytime in the call-by-value semantics with memoisation.

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity – p.23/24

< > - +

Conclusion and perspectives

analyse ICC criteria by studying necessary conditions on
programs:
here we defined blind abstractions for TRS

this is a possible way to understand the limitations of certain ICC
criteria, and maybe to generalize them

obtain necessary and sufficient conditions ?

Project:
NOCoST project (New Tools for Complexity: Semantics and Types):
2005-2008 (ANR).
Sites: LIPN Paris 13, PPS Paris 7.
http://www-lipn.univ-paris13.fr/nocost/

On Quasi-Interpretations, Blind Abstractionsand Implicit Complexity – p.24/24

	From termination to complexity?
	Implicit Computational Complexity and intensional expressivity
	
	Outline
	1. Programs as TRS
	Operational semantics
	Example of program
	Call trees
	Termination orderings
	Termination orderings (continued)
	Quasi-interpretations
	P-criterion
	2. Blind abstractions
	Blinding and complexity definitions
	Blindly polytime programs
	Example
	Blinding and PPO, QI
	3. Linearity and the P-criterion
	 Blinding and the P-criterion
	Blinding of Bellantoni-Cook programs
	Extension of the P-criterion
	An abstract P-criterion
	Conclusion and perspectives

