On Quasi-Interpretations, Blind Abstractions and Implicit Complexity

Patrick Baillot Ugo Dal Lago Jean-Yves Moyen

LIPN Paris 13, Univ. di Bologna/Paris 7 LIPN Paris 13

journées GdT LAC, Chambéry, 9/2/2007

(projet ANR NOCoST)

< > - +

From termination to complexity?

- termination is widely studied: polynomial interpretations, RPO, ...
- however in practice computational complexity often relevant (eg for feasible termination)

 \Rightarrow how to guarantee/verify that a program is polynomial time (Ptime) ?

- Implicit computational complexity (ICC): study calculi with intrinsic complexity properties (e.g. Ptime),
 - primitive recursive programs
 - typed lambda-calculi, linear logic
 - TRS

Leivant, Jones, Girard ...

Implicit Computational Complexity and intensional expressivity

Typical ICC results:

any *program* of the class C computes a Ptime function, and any Ptime *function* can be computed by at least one program of C.

(using a simulation of Ptime Turing machines)

- Intensional expressivity: which algorithmic patterns are available in an ICC system ? TRS: advantage of general recursion, pattern-matching
- Term rewriting (TRS) and Quasi-interpretations (Bonfante -Marion -Moyen):

an easy-to-use and quite general ICC system

idea: combine 2 ingredients

RPO + *size argument* (quasi-interpretation)

how to study the intensional expressivity of ICC calculi?

- examples
- we propose to consider program transformations or abstractions, to find out necessary conditions on programs

here we study the Quasi-interpretations (QI) approach (P-criterion of Marion *et al.*), and define for that *blind abstraction* of programs.

this way we provide a *necessary condition* on programs meeting the P-criterion on QI.

Applications:

- property of Bellantoni-Cook programs,
- extensions of the P-criterion.

Outline

- Background: TRS and Quasi-interpretations.
 P-criterion ([BMM06]).
- Blind abstractions.
 Blindly polytime programs.
- 3. P-criterion and blind abstractions. application: Bellantoni-Cook; extensions of P-criterion.

1. Programs as TRS

Definition 1 (Syntax) Terms and equations are defined by:

(values)	$\mathcal{T}(\mathcal{C}) \ni v$::=	$\mathbf{c}(v_1,\cdots,v_n)$
(terms)	$\mathcal{T}(\mathcal{C},\mathcal{F},\mathcal{X}) \ni t$::=	$x \mid \mathbf{c}(t_1, \cdots, t_n) \mid \mathbf{f}(t_1, \cdots, t_n)$
(patterns)	$\mathcal{P} i p$::=	$x \mid \mathbf{c}(p_1, \cdots, p_n)$
(equations)	$\mathcal{D} i d$::=	$\mathtt{f}(p_1,\cdots,p_n) \to t$

where $x \in \mathcal{X}$, $f \in \mathcal{F}$, and $c \in \mathcal{C}$.

A program: $f = \langle \mathcal{X}, \mathcal{C}, \mathcal{F}, \mathcal{E} \rangle$ where \mathcal{E} is a set of equations in \mathcal{D} . In equation $f(\vec{p}) \rightarrow t$, each variable in t also appears in $f(\vec{p})$. programs are constructor (term-rewriting) systems.

in general, we don't require determinism condition

Operational semantics

Call-by-value semantics:

$$\frac{\mathbf{c} \in \mathcal{C} \quad t_i \downarrow v_i}{\mathbf{c}(t_1, \cdots, t_n) \downarrow \mathbf{c}(v_1, \cdots, v_n)} \text{ (Constructor)}$$

$$\frac{\exists j, t_j \notin \mathcal{T}(\mathcal{C}) \quad t_i \downarrow v_i \quad \mathbf{f}(v_1, \cdots, v_n) \downarrow v}{\mathbf{f}(t_1, \cdots, t_n) \downarrow v} \text{ (Split)}$$

$$\frac{\mathbf{f}(p_1, \cdots, p_n) \to r \in \mathcal{E} \quad \sigma \in \mathfrak{S} \quad p_i \sigma = v_i \quad r \sigma \downarrow v}{\mathbf{f}(v_1, \cdots, v_n) \downarrow v} \text{ (Function)}$$

- Call-by-value semantics with cache:
 - corresponds to programming with memoisation: avoid recomputing of values,,
 - I judgements $\langle C, t \rangle$, where C is a *cache*,
 - (update) and (read) rules.

Example of program

 π is the following derivation:

$\mathbf{nil} \downarrow \mathbf{nil}$	$\mathbf{nil} \downarrow \mathbf{nil}$	$\mathbf{nil} \downarrow \mathbf{nil}$					
$\textbf{f}(\textbf{s}_1\textbf{nil}) \downarrow \textbf{nil}$	$\overline{\mathtt{f}(\mathbf{s}_1 \mathbf{nil}) \downarrow \mathbf{nil}}$	$\overline{\texttt{append}(\texttt{nil},\texttt{nil})}\downarrow\texttt{nil}$					
$\mathtt{append}(\mathtt{f}(\mathbf{s}_1 \mathbf{nil}), \mathtt{f}(\mathbf{s}_1 \mathbf{nil})) \downarrow \mathbf{nil}$							
$\texttt{f}(\mathbf{s}_0\mathbf{s}_1\mathbf{nil})\downarrow\mathbf{nil}$							

Call trees

Call trees are a tool to analyse the execution of programs.

- Let π : t ↓ v be a reduction proof. Its *call trees* is the set of trees Θ_π obtained by only keeping terms f(w) in conclusions of (Function) rules.
 - In our example program, the following is a call-tree for $\langle f, s_0 s_1 n i l \rangle$:

for the Call-by-value semantics with cache: also a notion of Call dag, obtained by identifying some nodes in the call tree.

Termination orderings

- precedence $\leq_{\mathcal{F}}$: preorder over $\mathcal{F} \bigcup \mathcal{C}$. $\approx_{\mathcal{F}}$ associated equivalence relation.
- **separating** precedence: constructors $\leq_{\mathcal{F}}$ functions
- *fair* precedence: for constructors c, d with same arity, $c \approx_{\mathcal{F}} d$, *strict* precedence: distinct constructors not comparable for $\leq_{\mathcal{F}}$.
- *product extension* of an ordering ≤ : extension over tuples such that (m₁, ..., m_k) ≺^p (n₁, ..., n_k) iff
 (i) ∀i, m_i ≤ n_i and (ii) ∃j such that m_j ≺ n_j.

Termination orderings (continued)

$$\frac{s = t_i \text{ or } s \prec_{rpo} t_i}{s \prec_{rpo} \mathbf{f}(\dots, t_i, \dots)} \mathbf{f} \in \mathcal{F} \bigcup \mathcal{C} \qquad \frac{\forall i \ s_i \prec_{rpo} \mathbf{f}(t_1, \dots, t_n) \quad \mathbf{g} \prec_{\mathcal{F}} \mathbf{f}}{g(s_1, \dots, s_m) \prec_{rpo} \mathbf{f}(t_1, \dots, t_n)} \mathbf{f}, \mathbf{g} \in \mathcal{F} \bigcup \mathcal{C}$$

$$\frac{(s_1, \cdots, s_n) \prec_{rpo}^p (t_1, \cdots, t_n) \quad \mathbf{f} \approx_{\mathcal{F}} \mathbf{g} \quad \forall i \ s_i \prec_{rpo} \mathbf{f}(t_1, \cdots, t_n)}{\mathbf{g}(s_1, \cdots, s_n) \prec_{rpo} \mathbf{f}(t_1, \cdots, t_n)} \mathbf{f}, \mathbf{g} \in \mathcal{F} \bigcup \mathcal{C}$$

PPO: recursive path ordering \prec_{rpo} obtained with separating precedence EPPO: recursive path ordering \prec_{rpo} obtained with fair precedence

Quasi-interpretations

idea: provide upper bound on *size* of intermediate values during computation

Let $b \in \mathcal{F} \bigcup \mathcal{C}$ with arity *n*. Its *assignment* is a function $(b) : (\mathbb{R})^n \to \mathbb{R}$ such that:

(Subterm) $(b)(X_1, \cdots, X_n) \ge X_i$ for all $1 \le i \le n$.

(Weak Monotonicity) (b) is increasing (not strictly) wrt each variable.

```
(Additivity) (\mathbf{c})(X_1, \cdots, X_n) \ge \sum_{i=1}^n X_i + a \text{ if } \mathbf{c} \in \mathcal{C} \text{ (where } a \ge 1).
```

(Polynomial) (b) is bounded by a polynomial.

Assignments (1.) are extended to terms canonically. If t has n variables, then $(t) : (\mathbb{R})^n \to \mathbb{R}$.

we denote by \geq the extensional order on functions.

if t is a subterm of s, then $(|s|) \ge (|t|)$

P-criterion

 $\begin{array}{l} \textbf{Definition 2 (Quasi-interpretation)} \quad An \ assignment (I.) \ of \ a \ program is a \ quasi-interpretation (QI) \ if \ for \ each \ equation \ l \rightarrow r, \ (l) \geq (r). \\ \textbf{Ex: } (|\mathbf{s}_0|)(X) = (|\mathbf{s}_1|)(X) = X + 1, \qquad (|append|)(X,Y) = X + Y. \end{array}$

For inference, QI can be searched in a given function algebra, *e.g.* MaxPoly.

Theorem 1 (P-criterion, Bonfante-Marion-Moyen) The set of functions computable by programs that (i) terminate by PPO, and (ii) admit a QI, is exactly FP.

To execute the program with a polynomial bound, one must use a call-by-value semantics with cache.

Ex: insertion sort, longest-common-subsequence.

Idea: study properties of the program by considering an abstraction.

blind abstraction: all constructors of same arity are collapsed into one, we associate to a program f another one \overline{f} , which is not deterministic.

More precisely, target language:

- variables: $\overline{\mathcal{X}} = \mathcal{X}$,
- function symbols: $\overline{\mathcal{F}} = \{\overline{f} / f \in \mathcal{F}\}.$

■ constructor symbols: the map (.) on constructor symbols defined by: c̄ = d̄ iff c and d have the same arity. Then C̄ = {c̄ / c ∈ C}.
 The *blinding map* is then the natural map B : T(C, F, X) → T(c̄, F, X).

Ex: binary lists built over $\{s_0, s_1, nil\}$ mapped to tally integers, built from $\{s, 0\}$, where $\overline{s_0} = \overline{s_1} = s$ and $\overline{nil} = 0$.

Blinding and complexity definitions

Definition 3 (Strongly polytime) A (possibly) non-deterministic program f is strongly polytime if there exists a polynomial $p_{f} : \mathbb{N}^{n} \to \mathbb{N}$ such that for every sequence v_{1}, \dots, v_{n} and any $\pi : f(v_{1}, \dots, v_{n}) \downarrow u$, it holds that $|\pi| \leq p_{f}(v_{1}, \dots, v_{n})$.

Definition 4 (Blindly polytime) A program f is blindly polytime if its blind abstraction \overline{f} is strongly polytime.

Observe that:

Fact 1 If a program f is blindly polytime, then it is polytime in the call-by-value semantics.

For instance, the Quicksort algorithm is blindly polytime.

Remark:

say an *error* is replacement of a constructor by a constructor of same arity

blindly Ptime program= program remaining Ptime, no matter the number of errors occurring during execution.

Example

f		f		
$ f(\mathbf{s}_0 \mathbf{s}_i x) \longrightarrow \texttt{append}(\mathbf{f}(\mathbf{s}_1 x), \mathbf{f}(\mathbf{s}_1 x)) $	$\overline{f}(\mathbf{ss}x)$	\rightarrow	$\overline{\texttt{append}}(\overline{\texttt{f}}(\texttt{s}x),\overline{\texttt{f}}(\texttt{s}x))$	
$f(\mathbf{s}_1 x) \longrightarrow x$	$\overline{\mathtt{f}}(\mathtt{s}x)$	\rightarrow	x	
floor f(nil) o nil	$\overline{\mathtt{f}}(0)$	\rightarrow	0	
$\texttt{append}(\mathbf{s}_i x, y) \rightarrow \mathbf{s}_i \texttt{append}(x, y)$	$\overline{\texttt{append}}(\mathbf{s}x,y)$	\rightarrow	s $\overline{\texttt{append}}(x,y)$	
$\texttt{append}(\mathbf{nil},y){ ightarrow}$ y	$\overline{\texttt{append}}(0,y)$	\rightarrow	y	

f is Ptime but not blindly Ptime. Indeed note $\underline{n} = \underbrace{\mathbf{s} \dots \mathbf{s}}_{n}$ 0, we have that $\overline{\mathbf{f}}(\underline{n})$ is reduced in an exponential number of steps, with a $\pi : \overline{\mathbf{f}}(\underline{n}) \downarrow \underline{2^{n-1}}$.

Blinding and PPO, QI

Proposition 1 The three following statements are equivalent:
 (i) £ terminates by EPPO,
 (ii) £ terminates by EPPO,
 (iii) £ terminates by PPO.

An assignment for f = (X, C, F, E) is uniform if all constructors of same arity have the same assignment.

Proposition 2 The program f admits a uniform quasi-interpretation iff \overline{f} admits a quasi-interpretation.

3. Linearity and the P-criterion

f RPO program and g a function in f:

g is *linear* if in any equation $g(\vec{p}) \rightarrow t$, there is at most one occurrence in t of a h such that $h \approx_{\mathcal{F}} g$.

program f is linear if all its functions are linear.

Theorem 2 Let f be a (possibly non deterministic) program which
i) terminates by PPO,
ii) admits a quasi-interpretation,
iii) is linear.
Then f is strongly polytime.

Blinding and the P-criterion

Theorem 3 Let f be a (possibly non deterministic) program which
i) terminates by PPO,
ii) admits a uniform quasi-interpretation,
iii) is linear.
Then f is blindly polytime.

Intuition: the criterion cannot perform analysis relying on case distinc-

tion on content of values.

Blinding of Bellantoni-Cook programs

Bellantoni-Cook programs (BC): subclass of primitive recursive programs, defined by distinguishing *safe* and *normal* arguments:

 $f(x_1,\ldots,x_k;x_{k+1},\ldots,x_n)$

Each BC program can be turned into a linear program terminating by PPO.

Ex: Safe recursion construction:

(Safe recursion)

 $f(\mathbf{0}, \vec{x}; \vec{y}) \rightarrow g(\vec{x}; \vec{y})$

 $\mathbf{f}(\mathbf{s}_i(z), \vec{x}; \vec{y}) \to \mathbf{h}_i(z, \vec{x}; \vec{y}, \mathbf{f}(z, \vec{x}; \vec{y})), i \in \{0, 1\}$

with $g, h_i \in BC$ (previously defined) one can build a uniform quasi-interpretation for each such program. **Theorem 4** If f is a program of BC, then f is blindly polytime.

Extension of the P-criterion

Ex. of program not terminating by PPO: "fast exponentiation algorithm" in base 4, that is using the recurrence $x^{4y} = ((x^y)^2)^2$

$$\begin{array}{ll} \operatorname{pow}(x, \mathbf{s}_0 \mathbf{s}_0 y) \to \operatorname{sq}(\operatorname{sq}(\operatorname{pow}(x, y))) & (x^{4y} = ((x^y)^2)^2) \\ \operatorname{pow}(x, \mathbf{s}_1 \mathbf{s}_0 y) \to \operatorname{mult}(x, \operatorname{pow}(x, \mathbf{s}_0 \mathbf{s}_0 y)) & (x^{4y+1} = x^{4y} \times x) \\ \operatorname{pow}(x, \mathbf{s}_0 \mathbf{s}_1 y) \to \operatorname{sq}(\operatorname{mult}(x, \operatorname{pow}(x, \mathbf{s}_0 y))) & (x^{4y+2} = (x^{2y} \times x)^2) \\ \operatorname{pow}(x, \mathbf{s}_1 \mathbf{s}_1 y) \to \operatorname{mult}(x, \operatorname{sq}(\operatorname{mult}(x, \operatorname{pow}(x, \mathbf{s}_0 y)))) & (x^{4y+3} = (x^{2y} \times x)^2 \times x) \\ \dots & \longrightarrow \end{array}$$

but this program terminates by EPPO.

We extend to EPPO the P-criterion (for programs on lists over a finite alphabet):

Theorem 5 The set of functions computed by programs over lists terminating by EPPO and admitting a QI is exactly FP.

Definition 5 (Bounded Values) A program $f = \langle \mathcal{X}, \mathcal{C}, \mathcal{F}, \mathcal{E} \rangle$ has polynomially bounded values iff for every *n*-ary function symbol $g \in \mathcal{F}$, there is a polynomial $p_g : \mathbb{N} \to \mathbb{N}$ such that for every state η' appearing in a call tree for $\eta = (g, v_1, \dots, v_n)$, $|\eta'| \leq p_g(|\eta|)$.

f admits a QI \Rightarrow f has polynomially bounded values.

Theorem 6 Let *f* be a deterministic program terminating by EPPO. Then the following two conditions are equivalent:

- 1. *f* has polynomially bounded values;
- 2. *f* is polytime in the call-by-value semantics with memoisation.

Conclusion and perspectives

analyse ICC criteria by studying necessary conditions on programs:

here we defined blind abstractions for TRS

- this is a possible way to understand the limitations of certain ICC criteria, and maybe to generalize them
- obtain necessary and sufficient conditions ?

Project:

NOCoST project (*New Tools for Complexity: Semantics and Types*): 2005-2008 (ANR). Sites: LIPN Paris 13, PPS Paris 7. http://www-lipn.univ-paris13.fr/nocost/