On Quasi-Interpretations, Blind Abstractions and Implicit Complexity

Patrick Baillot Ugo Dal Lago Jean-Yves Moyen

LIPN Paris 13, Univ. di Bologna/Paris 7 LIPN Paris 13

journées GdT LAC, Chambéry, 9/2/2007

(projet ANR NOCoST)

From termination to complexity?

- termination is widely studied: polynomial interpretations, RPO, . . .
- however in practice computational complexity often relevant (eg for feasible termination)

 \Rightarrow how to guarantee/verify that a program is polynomial time (Ptime) ?

- Implicit computational complexity (ICC): study calculi with intrinsic complexity properties (e.g. Ptime) ,
	- **Perimitive recursive programs**
	- typed lambda-calculi, linear logic
	- **TRS**

Leivant, Jones, Girard ...

Implicit Computational Complexity and intensional expressivity

Typical ICC results:

any *program* of the class $\mathcal C$ computes a Ptime function, and any Ptime *function* can be computed by at least one program of $\mathcal C.$

(using ^a simulation of Ptime Turing machines)

Intensional expressivity: which algorithmic patterns are available in an ICC system ?

TRS: advantage of general recursion, pattern-matching

Term rewriting (TRS) and Quasi-interpretations (Bonfante - Marion -Moyen):

an easy-to-use and quite general ICC system

idea: combine 2 ingredients

RPO+ size argument (quasi-interpretation)

how to study the intensional expressivity of ICC calculi?

- **E** examples
- we propose to consider program transformations or abstractions, to find out necessary conditions on programs

here we study the Quasi-interpretations (QI) approach (P-criterion of Marion *et al.*), and define for that *blind abstraction* of programs.

this way we provide a *necessary condition* on programs meeting the P-criterion on QI.

Applications:

- **Peroperty of Bellantoni-Cook programs,**
- extensions of the P-criterion.

Outline

- 1. Background: TRS and Quasi-interpretations. P-criterion ([BMM06]).
- 2. Blind abstractions. Blindly polytime programs.
- 3. P-criterion and blind abstractions. application: Bellantoni-Cook; extensions of P-criterion.

1. Programs as TRS

Definition 1 (Syntax) Terms and equations are defined by:

where $x\in \mathcal{X},\, \mathtt{f}\in \mathcal{F},$ and $\mathtt{\mathbf{c}}\in \mathcal{C}.$

A program: $\, \mathrm{f} \, = \langle \mathcal{X}, \mathcal{C}, \mathcal{F}, \mathcal{E} \rangle \,$ where \mathcal{E} is a set of equations in $\mathcal{D}.$ In equation $\texttt{f}(\vec{p}) \rightarrow t$, each variable in t also appears in $\texttt{f}(\vec{p})$. programs are constructor (term-rewriting) systems.

in general, we don't require determinism condition

Operational semantics

Call-by-value semantics:

$$
\frac{\mathbf{c} \in \mathcal{C} \quad t_i \downarrow v_i}{\mathbf{c}(t_1, \dots, t_n) \downarrow \mathbf{c}(v_1, \dots, v_n)} \text{ (Constructor)}
$$
\n
$$
\exists j, t_j \notin \mathcal{T}(\mathcal{C}) \quad t_i \downarrow v_i \quad \mathbf{f}(v_1, \dots, v_n) \downarrow v \quad \text{(Split)}
$$
\n
$$
\mathbf{f}(t_1, \dots, t_n) \downarrow v \quad \text{(Split)}
$$
\n
$$
\mathbf{f}(p_1, \dots, p_n) \to r \in \mathcal{E} \quad \sigma \in \mathfrak{S} \quad p_i \sigma = v_i \quad r \sigma \downarrow v \quad \text{(Function)}
$$
\n
$$
\mathbf{f}(v_1, \dots, v_n) \downarrow v
$$

- Call-by-value semantics with cache: $\mathcal{L}_{\mathcal{A}}$
	- **E** corresponds to programming with memoisation: avoid recomputing of values,
	- udgements $\langle C, t \rangle$, where C is a cache,
	- \blacksquare (update) and (read) rules.

Example of program

 $f(\mathbf{s}_0\mathbf{s}_ix) \longrightarrow \texttt{append}(f(\mathbf{s}_1x), f(\mathbf{s}_1x)) \qquad i = 0, 1$ $f(s_1x) \longrightarrow x$ $f(nil) \longrightarrow nil$ $\mathtt{append}(\mathbf{s}_i x, y) \rightarrow \mathbf{s}_i \mathtt{append}(x, y)$ $append(nil, y) \rightarrow y$

 π is the following derivation:

Call trees

Call trees are ^a tool to analyse the execution of programs.

Let $\pi:t\downarrow v$ be a reduction proof. Its *call trees* is the set of trees Θ_π obtained by only keeping terms $f(\vec{w})$ in conclusions of (Function) rules.

In our example program, the following is a call-tree for $\langle \texttt{f}, \textbf{s}_0\texttt{s}_1\texttt{nil}\rangle$:

for the Call-by-value semantics with cache: also ^a notion of Call dag, obtained by identifying some nodes in the call tree.

Termination orderings

- **P** precedence $\preceq_{\mathcal{F}}$: preorder over $\mathcal{F} \cup \mathcal{C}$. $\approx_{\mathcal{F}}$ associated equivalence relation.
- Separating precedence: constructors $\preceq_{\mathcal{F}}$ functions
- *fair* precedence: for constructors \mathbf{c}, \mathbf{d} with same arity, $\mathbf{c} \approx_{\mathcal{F}} \mathbf{d},$ strict precedence: distinct constructors not comparable for $\preceq_{\mathcal{F}}$.
- **P** product extension of an ordering \preceq : extension over tuples such that $(m_1, \dots, m_k) \prec^p (n_1, \dots, n_k)$ iff (i) $\forall i, m_i \preceq n_i$ and (ii) ∃j such that $m_j \prec n_j$.

Termination orderings (continued)

$$
s = t_i \text{ or } s \prec_{rpo} t_i
$$
\n
$$
s \prec_{rpo} f(...,t_i,...)
$$
\n
$$
s \prec_{rpo} f(...,t_i,...)
$$
\n
$$
g(s_1,...,s_m) \prec_{rpo} f(t_1,...,t_n)
$$
\n
$$
s \prec_{rpo} f(t_1,...,t_n)
$$
\n
$$
s \prec_{rpo} f(t_1,...,t_n)
$$
\n
$$
s \prec_{rpo} f(t_1,...,t_n)
$$
\n
$$
f \approx_{\mathcal{F}} g \quad \forall i s_i \prec_{rpo} f(t_1,...,t_n)
$$
\n
$$
s(s_1,...,s_n) \prec_{rpo} f(t_1,...,t_n)
$$
\n
$$
f, g \in \mathcal{F} \cup \mathcal{C}
$$

PPO: recursive path ordering \prec_{rpo} obtained with separating precedence

EPPO: recursive path ordering \prec_{rpo} obtained with fair precedence

Quasi-interpretations

idea: provide upper bound on size of intermediate values during computation

Let $b\in\mathcal{F}\bigcup\mathcal{C}$ with arity $n.$ Its *assignment* is a function $(b\!|:(\mathbb{R})^n\rightarrow\mathbb{R}$ such that:

(Subterm) $[|b|(X_1, \cdots, X_n) \geq X_i$ for all $1 \leq i \leq n$.

(Weak Monotonicity) (b) is increasing (not strictly) wrt each variable.

(Additivity) $\langle \llbracket {\mathbf{c}} \rrbracket(X_1, \cdots, X_n) \geq \sum_{i=1}^n X_i + a \text{ if } {\mathbf{c}} \in \mathcal{C} \text{ (where } a \geq 1).$

(Polynomial) $\langle b \rangle$ is bounded by a polynomial.

Assignments $\left(\mathbf{l}\right)$ are extended to terms canonically. If t has n variables, then $\llbracket t \rrbracket : (\mathbb{R})^n \to \mathbb{R}.$

we denote by \geq the extensional order on functions.

if t is a subterm of $s,$ then $\left(\!\left|s\right|\!\right)\geq \left(\!\left|t\right|\!\right)$

P-criterion

Definition 2 (Quasi-interpretation) An assignment (l.) of a program is a quasi-interpretation (QI) if for each equation $l\rightarrow r,~~\|l\|\geq\|r\|.$ $\mathsf{Ex}\text{: } (\mathbf{s}_0\mathbf{I})(X) = (\mathbf{s}_1\mathbf{I})(X) = X + 1, \hspace{1.5cm} (\mathbf{append}\mathbf{I})(X, Y) = X + Y .$

For inference, QI can be searched in a given function algebra, *e.g.* MaxPoly.

Theorem 1 (P-criterion, Bonfante-Marion-Moyen) The set of functions computable by programs that (i) terminate by PPO, and (ii) admit ^a QI, is exactly FP.

To execute the program with ^a polynomial bound, one must use ^a call-by-value semantics with cache.

Ex: insertion sort, longest-common-subsequence.

Idea: study properties of the program by considering an abstraction.

blind abstraction: all constructors of same arity are collapsed into one, we associate to ^a program ^f another one ^f, which is not deterministic.

More precisely, target language:

variables: $\mathcal{X} = \mathcal{X},$

function symbols: $\mathcal{F} = \{\overline{\mathtt{f}} \; / \; \mathtt{f} \in \mathcal{F}\}$.

constructor symbols: the map $\left(.\right)$ on constructor symbols defined by: $\overline{c} = \overline{d}$ iff c and d have the same arity. Then $\overline{c} = {\overline{c} / c \in \mathcal{C}}$. The *blinding map* is then the natural map $\mathcal{B}:\mathcal{T}(\mathcal{C},\mathcal{F},\mathcal{X})\longrightarrow \mathcal{T}(\mathcal{C},\mathcal{F},\mathcal{X}).$

Ex: binary lists built over $\{ {\bf s}_{0}, {\bf s}_{1}, {\bf nil} \}$ mapped to tally integers, built from $\{ {\bf s}, {\bf 0} \}$, where $\overline{ {\bf s}_0} = \overline{ {\bf s}_1} = {\bf s}$ and ${\bf nil} = {\bf 0}.$

Blinding and complexity definitions

Definition 3 (Strongly polytime) A (possibly) non-deterministic program f is strongly polytime if there exists a polynomial $p_f : \mathbb{N}^n \to \mathbb{N}$ such that for every sequence v_1,\cdots,v_n and any $\pi:\texttt{f}(v_1,\cdots,v_n)\downarrow u$, it holds that $|\pi|\leq p_{\mathtt{f}}(v_1,\ldots,v_n).$

Definition 4 (Blindly polytime) A program ^f is blindly polytime if its blind abstraction $\overline{\texttt{f}}$ is strongly polytime.

Blindly polytime programs

Observe that:

Fact 1 If ^a program ^f is blindly polytime, then it is polytime in the call-by-value semantics.

For instance, the Quicksort algorithm is blindly polytime.

Remark:

say an *error* is replacement of a constructor by a constructor of same arity

blindly Ptime program= program remaining Ptime, no matter the number of errors occurring during execution.

Example

f is Ptime but not blindly Ptime.

Indeed note $\underline{n}=\underbrace{\mathbf{s}\dots\mathbf{s}}$ 0, we have that $\overline{\mathbf{f}}(\underline{n})$ is reduced in an \boldsymbol{n} exponential number of steps, with a $\pi : \overline{f}(n) \downarrow 2^{n-1}$.

Blinding and PPO, QI

Proposition 1 The three following statements are equivalent: (i) f terminates by EPPO, (ii) \overline{f} terminates by EPPO, (iii) \overline{F} terminates by PPO.

An assignment for $\texttt{f} = \langle \mathcal{X}, \mathcal{C}, \mathcal{F}, \mathcal{E} \rangle$ is *uniform* if all constructors of same arity have the same assignment.

Proposition 2 The program ^f admits ^a uniform quasi-interpretation iff \overline{f} admits a quasi-interpretation.

3. Linearity and the P-criterion

 f RPO program and g a function in f :

```
g is linear if in any equation g(\vec{p}) \rightarrow t, there is at most one occurrence
in t of a h such that h \approx_{\mathcal{F}} \mathrm{g}.
```
program ^f is linear if all its functions are linear.

Theorem 2 Let ^f be ^a (possibly non deterministic) program which i) terminates by PPO, ii) admits ^a quasi-interpretation, iii) is linear.

Then ^f is strongly polytime.

Blinding and the P-criterion

Theorem 3 Let ^f be ^a (possibly non deterministic) program which i) terminates by PPO, ii) admits ^a uniform quasi-interpretation, iii) is linear. Then ^f is blindly polytime.

Intuition: the criterion cannot perform analysis relying on case distinc-

tion on *content* of values.

Blinding of Bellantoni-Cook programs

Bellantoni-Cook programs (BC): subclass of primitive recursive programs, defined by distinguishing safe and normal arguments:

 $f(x_1, \ldots, x_k; x_{k+1}, \ldots, x_n)$

Each BC program can be turned into ^a linear program terminating by PPO.

Ex: Safe recursion construction:

(**Safe recursion**)

 $f(0, \vec{x}; \vec{y}) \rightarrow g(\vec{x}; \vec{y})$ $f(\mathbf{s}_i(z), \vec{x}; \vec{y}) \rightarrow h_i(z, \vec{x}; \vec{y}, \mathbf{f}(z, \vec{x}; \vec{y})), i \in \{0, 1\}$

with $\mathrm{g}, \mathrm{h}_i \in \mathsf{BC}$ (previously defined) one can build a uniform quasi-interpretation for each such program. **Theorem 4** If ^f is ^a program of BC, then ^f is blindly polytime.

Extension of the P-criterion

Ex. of program not terminating by PPO: "fast exponentiation algorithm" in base 4 , that is using the recurrence $x^{4y} = ((x^y)^2)^2$

$$
pow(x, s_0s_0y) \rightarrow sq(sq(pow(x, y))) \qquad (x^{4y} = ((x^y)^2)^2)
$$

\n
$$
pow(x, s_1s_0y) \rightarrow mult(x, pow(x, s_0s_0y)) \qquad (x^{4y+1} = x^{4y} \times x)
$$

\n
$$
pow(x, s_0s_1y) \rightarrow sq(mult(x, pow(x, s_0y)) \qquad (x^{4y+2} = (x^{2y} \times x)^2)
$$

\n
$$
pow(x, s_1s_1y) \rightarrow mult(x, sq(mult(x, pow(x, s_0y)))) \qquad (x^{4y+3} = (x^{2y} \times x)^2 \times x)
$$

\n...

but this program terminates by EPPO.

We extend to EPPO the P-criterion (for programs on lists over ^a finite alphabet):

Theorem 5 The set of functions computed by programs over lists terminating by EPPO and admitting ^a QI is exactly FP.

Definition 5 (Bounded Values) A program $\texttt{f} = \langle \mathcal{X}, \mathcal{C}, \mathcal{F}, \mathcal{E} \rangle$ has polynomially bounded values iff for every n-ary function symbol $g \in \mathcal{F}$, there is a polynomial $p_{{\bf g}}:\mathbb{N}\to\mathbb{N}$ such that for every state η' appearing in a call tree for $\eta=(\mathsf{g},v_1,\ldots,v_n)$, $|\eta'|\leq p_{\mathsf{g}}(|\eta|).$

f admits a QI \Rightarrow f has polynomially bounded values.

Theorem 6 Let f be ^a deterministic program terminating by EPPO. Then the following two conditions are equivalent:

- 1. f has polynomially bounded values;
- 2. f is polytime in the call-by-value semantics with memoisation.

Conclusion and perspectives

■ analyse ICC criteria by studying necessary conditions on programs:

here we defined blind abstractions for TRS

- this is a possible way to understand the limitations of certain ICC criteria, and maybe to generalize them
- obtain necessary and sufficient conditions ?

Project:

NOCoST project (New Tools for Complexity: Semantics and Types): 2005-2008 (ANR).

Sites: LIPN Paris 13, PPS Paris 7.

http://www-lipn.univ-paris13.fr/nocost/

