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Understanding proofs

Today's proof assistants approaches:
» tactics, tacticals
» proof terms

In both cases: witnesses do not explain the proof.

We need underlying logics closer to human reasoning
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V2+7=3
prime(3) = prime(1 + 2)

Deduction modulo: put computation inside a congruence
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In “real life” 2

Logical arguments are not mentioned:

“Let be x in A.

[..]

Then x is in B.

Hence, A is included in B."

They are hidden inside the structure of theorems/definitions
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A “small” proof

AXx
L XEAFACAxcA
\:; FACAxcA—=xcA
L P ACAVx(xEA=xEA) L ACAFACA
L Vx(xEASXxCA S ACAFACA
(ACA) o Vx(x A= xcAFACA

VY(ACY)eVx(xEA=xeY)FACA
YXVY.(XCY)eUx(xeX=>xeY)FACA
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A “small” proof

AX
L XEAFACAXEA
O FACAxcA—xcA
:>v:§...l—AgA,Vx.(xeA:>xeA) ..,LACAFACA
L Vx(xEA=>xEA >ACAFACA
(ACA) & Vx(xeA=xec AFACA

VY (ACY)eVx(xeA=xcY)FACA
VXYY (XCY)eVx(xeX=>xeY)FACA
Loading and instanciating
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Custom inference rules

With the costum rule:

xe A x € BA
R

FACB,A

x & FY(T,A)
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Custom inference rules

With the costum rule:

xe A x € BA
C-R

Fy(,A
rracea FT0A)
We can build a much shorter (and readable) proof

 XEAFxEA
C -R
= FACA
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Consequences

What are the consequences of adding such a rule ?
» Is it sound ?

» Is it complete wrt. the theory ?

» Do we still have a cut elimination procedure and does it
strong normalise ?
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Superdeduction

» Internalize a theory inside the deduction system

» Inference rules are systematically derived from the axioms
» Good properties of the deduction system are ensured
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Superdeduction

» Internalize a theory inside the deduction system
» Inference rules are systematically derived from the axioms

» Good properties of the deduction system are ensured

Notation:
» Axioms of the form: VX.(P < ¢) with P atomic.

» We note them P — ¢ and call them proposition rewrite rules.
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Building the rules

Cher: ACB—VYx(x€e A= x€ B)
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Building the rules

Cher: ACB—VYx(x€e A= x€ B)

xeAFxeB
= -R
y FxeA=xeB

FV
~x(xcA=xcB) "
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Building the rules

Cher: ACB—VYx(x€e A= x€B)

xeArFxeB
= -R
y FxeA=xeB

FVx.(x e A= x € B)

x & FV
l

c Mxe AL xe BA FUAT

=def ~ FI—+A§B,A X¢ ())
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Building the rules

Cher: ACB—VYx(x€e A= x€ B)

Fte A te BF
= -L
tcA=te B

Vx.(xe A=xeB)t
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Building the rules

Cher: ACB—VYx(x€e A= x€B)

Fte A te BF
= -L
tcA=te B

Vx.(xe A=xeB)t

M teAA
Cdef -L

rteBh, A
MACBF, A




Superdeduction

|—Superded uction systems

Permutability problem, eigen variables

P(X()) |— P(X())
Vx.P(x) F P(xo)
Vx.P(x) F Vx.P(x)

P(t) F Vx.P(x)
Vx.P(x) F Vx.P(x)
» Problems : V-R then V-L or 3-R, etc.




Superdeduction

LSuperded uction systems

Permutability problem, eigen variables

P(Xo) |— P(Xo)
Vx.P(x) F P(xo) y P(t) F Vx.P(x)

Vx.P(x) F Vx.P(x) Vx.P(x) F Vx.P(x)

» Problems : V-R then V-L or 3-R, etc.

» Solution : focussing
R: P — ¥x.(Vy.A(x,y) = B(x))
1

R P — ¥x.(Q(x)= B(x))
Ri @ Q(x) — Vy.A(x,y)
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Application

. arithmetic

» Natural numbers definition — induction principle
» “cleaning” the rule:

!
SV

en:neN — VP(0eP=Vm(meP= S(m)e P)=neP)
hered

H(P)

neN — VP(0eP= HP)=neP)
— Vm.(me P = S(m) € P)
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Application

. arithmetic

New deduction rules for hered:
M-+ meP,A
hered -L

r,S(myePhr,A
M H(P) . A

me P, S(m)E P,A
hered -

M. H(P),A

m¢ FV(T,A)
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Application

. arithmetic

New deduction rules for hered:
M-+ meP,A
hered -L

r,S(myePhr,A
M H(P) . A

mePH, S(m)e P,A
hered -

Fy(,A
[y H(P), A m & 7T, 8)
if from P(n) we can deduce P(n+1) then P is hereditary”
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Application : arithmetic

New deduction rules fo €y:

[ 0eP,A ThF. HP)L,A T,nePr,A
c
n-L neNF, A

0€ P, H(P)yneP,A
Sn-R

FFyneN,A

P& FV(,A)
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|—Superded uction systems

Application : arithmetic

New deduction rules fo €y:

[ 0eP,A ThF_ HP)L,A T,nePr,A
Sl neNF, A

0€ P, H(P)yneP,A
Sn-R

NM-,+neNA
Induction principle

P& FV(,A)
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Metaproperties

Theorem (Soundness and completeness of superdeduction)

Every proof 4 ¢ in super sequent calculus can be translated into

a proof of Tht ¢ in sequent calculus (soundness) and conversely
(completeness).
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Proofterms for superdeduction: why?

» replayable traces of proofs
» easily communicable (with other proof-assistants. .. )

» convenient objects to study proof-transformation procedures
and especially cut-elimination

» allowing program-extraction through the Curry-Howard-de
Bruijn correspondence

u]
o)
I
i
it
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Proofterms for classical sequent calculus

calculus

Two recent propositions for proofterms for classical sequent

» the Apji-calculus (Herbelin 1995)

» Christian Urban’s terms (Urban 2000)
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Which to choose?

, 03
v-L P1,P3 ™ P4

02,03 4
01V 02,03 @4
Focus

01V 2,03 @4
01V 2 3= @4

= -R

» Focus steps are always explicit in Apji-calculus.

» They are implicit in superdeduction custom rules !
» They are implicit in Urban's terms. ..
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Urban's terms for classical sequent calculus

» Adapted to superdeduction
» Strong Normalisation

» Capturing a large scale of cut elimination procedures
M > (Xl DAL

Xp i Ap b a1 By, ap : Bp)




Superdeduction

|—Urban's terms for classical sequent calculus

Implication fragment

Ax

Ax(x,a)>T,x :AFa: A A
M>THa:AA
Cur

My>T,x: AFA
Cut(aMy,xMy)>T E A

Mp>T,x:AFa: B A

:>_

Imp;(xaM.,b)>THEb: A= B,A
Mi>ThHa:AA

=-L

My>T,x:BFA
Impp(aMy, xMs. y)>T,y : A= BF A
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(M)

NAFBA
=-R

(V) (P)
FAA T.BFA
=-L
rN-A=BA NMA=BFA
Cur
M= A
~ — ~ oy~ Cut(aCut(cN,xM),yP)
Cut(blmp,(xaM, b),zImpr(cN,yP, z)) — { Cut(eN, XCut(GM, 7P))
(V) (M)
FFAA T.AFB.A (P)
Cur
r-B.A
Cur

rBFA
r-A
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Extended terms for superdeduction

el T A AR iBL  Byb);
MFa:P,A

RL( . ..., G+ Di.., :D{,J,,A)j
Nx:PFA
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Extended terms for superdeduction

" (Mi>T, xq

Al,.x) AL Bl a), B A
NlN-a:P,A

RL(NJDRy{:C{,. 7y{U:C{,jl—bll:D:{, .,b;)j:D{,J,A>j
Nx:PFA
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Extended terms for superdeduction

" (MiT, X :

Al,.x) AL Bl a), B A
RL<(§1AP>M3) SFEa:PA
.

Nj>r7y{:C{,. 7y{;j:C{;jl—b’1:D{, .,b{,j:D{,J A>j

RR <(y{...y;;j)_Nj,x> >x:PEA
J
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Super-cut-elimination

cut(am«A ;)iM,.,a>,;RR((}/ ) 1 >>H?
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Super-cut-elimination: an example

R : A—=BA-A

r-B,A
R

LAFA
F-A A

LRBFAA
O TLAFA
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Super-cut-elimination: an example

R : A—=BA-A

r-B,A
R

LAFA
F-A A

rnAFA
-R
M- B,A
A-R
stands for

M- —-AA
F-BA-AA

| TBEAA
 TBEAA 1JnBﬁAFA
. MNAEA stands for i

LBA-AFA
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Super-cut-elimination: an example

RR(BMl,?IVIz,a) stands for AndR(/BMl,ENotR(?Mz,c),a)

Ri(yaM,x)  stands for  And;(yzNot,(aM, z), x)

Cut(3Rr(bMy,XMs, a), xR (yaM, x))
stands for
Cut(aAndg(bM, cNotr(XMs, c), a),xAnd (yzNot, (aM, z), x))
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Super-cut-elimination: an example

RR(BMl,?IVIz,a) stands for AndR(/BMl,ENotR(?Mz,c),a)

Ri(yaM,x)  stands for  And;(yzNot,(aM, z), x)

Cut(3Rr(bMy,XMs, a), xR (yaM, x))

stands for

Cut(3Andg(bM;, ENotg(XMs, c), a), xAnd, (yzNot, (3M, z), X))
— Cut(bMy, yCut(cNotg(XMs, c), Z2Not, (3M, z)))
— Cut(bMy, yCut(aM, XMy))
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Super-cut-elimination: an example

RR(BMl,?Mz,a) stands for AndR(/BMl,ENotR(?Mz,c),a)

Ri(yaM,x)  stands for  And;(yzNot,(aM, z), x)

— Cut(bMy, yCut(3M, XMs))

Cut(3Rr(bMy,XMs, a), xR (yaM, x))

stands for

Cut(3Andg(bM;, ENotg(XMs, c), a), xAnd, (yzNot, (3M, z), X))
— Cut(bMy, yCut(cNotg(xMs, c), Z2Not, (3M, z)))
— Cut(bMy, yCut(aM, XMy))
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Hypothesis for SN

Hypothesis

For a set of proposition rewrite rules R and for each of its rule
R:P — :

» the rewrite relation associated with R is weakly normalising
and confluent;

» P contains only first-order variables (no function or constant);
> FV(p) € FV(P).
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Strong normalisation result

Theorem (Strong Normalisation)

If the set of proposition rewrite rules satisfies the hypothesis, then
the super-cut-elimination is strongly normalising on well-typed
extended terms.

Corollary

If the set of proposition rewrite rule satisfies the hypothesis, the
underlying first-order theory is consistent.
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What's next?

» development of the prototype Lemuridae
http://rho.loria.fr/lemuridae.html

» interaction with standard proof-assistants (Coq, Isabelle. . .)

» relating superdeduction to deduction modulo (e.g. concerning
cut-elimination), switching to superdeduction modulo

» extend to dependent types, inductive definitions, deep
inference

u]
o)
I

i
it
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Prototype

Lemuridae : a proof assistant for superdeduction

» Rewrite rules on terms and propositions
Proof building in the extendible sequent calculus
Interactive matching rules presentation

Basic automatic tactics

vV v vy

Tiny proofchecker
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Lemu's “kernel”

[FALA DN, THALB A,
[-ALAAB, A

A-R

rule(
andRightInfol[],
( pl@rule(_,_,sequent(g, (d1*,A,d2%)), ),
p20@rule(_,_,sequent (g, (d1*,B,d2*)),.)
),
sequent (g, (d1*,a,d2%)),
a@and (A,B)

u]
o)
I
i
it
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Lemu's “kernel”

M= AL A A A, B, A
([ AI’MaAZ

A-R

rule(
andRightInfol[],
( pterule(_,_,sequent(g, (d1*,A,d2%)),)),
p2@rule(_,_,sequent (g, (d1*,B,d2%)),_)
),
sequent (g, (d1*,a,d2%)),
a@and (A,B)
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Lemu's “kernel”

[FALA DN, THALB A,
T-ALAAB, A

A-R

rule(
andRightInfol],
( pl@rule(_,_,sequent(g, (d1*,A,d2%)), ),
p20@rule(_,_,sequent(g, (d1*,B,d2*)),.)
),
sequent (g, (d1*,a,d2%)),
a@and(A,B)

u]
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I

i
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»
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Lemu's “kernel”
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Lemu's “kernel”

p1 p2
M- A1, A As M- Aq,B,As
M- A, AANB, Ay

A-R

rule(
andRightInfol[],
( pl@rule(_,_,sequent(g, (d1*,A,d2%)), ),
p2@rule(_,_,sequent(g, (d1*,B,d2%)),_)
),
sequent (g, (d1*,a,d2%)),
a@and (A,B)
)
-> { return (proofcheck(‘pl) && proofcheck(‘p2)); }

[m] = =
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