The theory of explicit substitutions
revisited

Delia Kesner
PPS, Université Paris VII

Motivations

Many different calculi with ES developed in the literature : a need
to stand back in order to related first formalisms with last

results/technology.

A first attempt

Syntax for \x-terms :
tbu=x | (tu)| .t | tlr/ul

Reduction system :

Azt)u — —p tlz/ul

(tw)lz/v] = (tz/v] ulz/v])

(Ay.t)|x/v] —x Ay.tle/v] ify & fv(v) & x #y
|z /ul —x U

t|x/ul —y T if x ¢ fv(t)

Some observations

— This is the minimal behaviour we can expect to implement
substitution.

— No modelisation of simultaneous substitution.

— Lambda are crossed by substitutions and named variables are
used, so c-equivalence is needed.

— Different syntax or restricted notions of reduction which do not

require a-conversion are more adapted for implementation.

Explicit substitution research

de Bruijn'72, Curien'83, Ehrhard’'88, Field 90, Revesz'88,
Cardelli'89, Abadi'89, Lévy'89

Starting from 1989 :

Ayala, Bloo, Bonelli, de Paiva, David, Dougherty, Dowek, Ferreira,
Geuvers, Goubault, Guillaume, Hardin, Herbelin, Hirschkoff,
Kamareddine, Kesner, Kirchner, Lang, Lengrand, Lescanne,

Mackie, Melliés, Nadathur, Pagano, Pfenning, Puel, Rios, Ritter,

Rose, Stehr, Tasistro, van Qostrom, ...

Why so much calculi ?

We expect these calculi to enjoy some properties :

CR, SN, PSN, SIM, FC

In more detail

Take

Z . a calculus to handle explicit substitutions/ressources

B : some rules to start computation

We will consider different reduction relations

Az =BUZ.

In more detail

(CR) Confluence on metaterms :

It N e A UV

Then v =3t 1« wu

(SIM) Simulation of one-step (-reduction :
Let T: A — Az. If t —g ', then T'(t) =3 T(t').
(FC) Implementation of full composition :

Any term of the form t[y/v] can be \z-reduced to t{y/v}.

(SN) Strong Normalisation :

If ¢ is well-typed in an appropriate type system, then there is no

infinite)\ z-reduction sequence starting at t.
(PSN) Preservation of Strong Normalisation :

Let T : A — Az. If t is B-strongly normalising, then T'(t) is

Az-strongly normalising.

Summary of properties

Calculus CR | SN | PSN | SIM | FC
AvAsALAUALAGAGnAeA s | No | Yes | Yes | Yes | No
Ao A SP No | No | No Yes | Yes
Ao Ase AL Yes | No | No Yes | Yes
A¢ Yes | Yes | Yes | No | No
oy Yes | Yes | Yes | Yes | No
ALlxr ? Yes | Yes | Yes | Yes

Alxr is combinatorial complex : 6 equations and 19 rules !

Why Alxr enjoys all the good properties we
expect ?

Which is the essential computational
dynamics of \1xr?

What is the logical meaning of a sound
explicit substitution calculi?

10

Typed \x (revisited)

(ax)

r: Az A

I'Nz:AFt: B I'-t: B
(—>i1) (—>22)
'k Xxt: A— B I'FXxt: A— B

'-t:B— A Aru:B
FT'WAF(tu):A

(—e)

I'ru:B A,x:BFt:A I'u:B AkFt:A
(cutl) (cut2)

WA tx/u]: A F'wAFtx/ul: A

We denote by I' =), ¢ : A the derivability/typing relation.

11

A refined notion of reduction

(A\x.t) u —p tlx/ul

zfully/v] —ex ty/vlz/uly/v]] ify € fv(u) &y € fv(t
z/ully/v] —ex tlz/uly/v]] ify € fv(u) & y ¢ fv(t

x|x/u) —rx U
t|x/ul —rx T if x ¢ fv(t)
(Ayt)z/v] —x Ay.tlz/v] ity ¢ tv(v) &z F#y
(t u)|lz/v] —x (tlx/v] ulx/v]) ifxeifv(t) & oz e fv(u)
(tuw)|x/v] —x (T ulz/v]) if x ¢ fv(t) & = € fv(u)
(t w)|x/v] —x (tlx/v] u) if x € fv(t) & « & fv(u)
(
(

12

Operational semantics for Arx

First define a natural equivalence for Arx :

tlz/ully/v] = tly/v]lz/u] ity & fv(u) & x ¢ £v(v)
Then define a reduction relation modulo as follows :

t =g U ifft =u —pue v =1

13

Coming back to the summary

Calculus CR | SN | PSN | SIM | FC
A AsALAUALAGAGnAeA s | No | Yes | Yes | Yes | No
Ao AgSP No | No | No Yes | Yes
Ao Ase AL Yes | No | No Yes | Yes
A¢ Yes | Yes | Yes | No | No
oy Yes | Yes | Yes | Yes | No
A1xr ? Yes | Yes | Yes | Yes
ATX Yes | Yes | Yes | Yes | Yes

14

Fragility of composition : how PSN /SN can be lost

Consider the weaker rule

tle/ully/v] — tle/uly/v]] ity & £v(2)

instead of our rule

tle/ully/v] — tlz/uly/v]] ity ¢ fv(t) &y e fv(u)

Mellies has shown that there is a typable term that admits an

infinite reduction sequence in the system containing the — rule.

15

Connections with Linear Logic

Control of ressources in Linear Logic/Languages
— In logic : every hypothesis must be consumed exactly once in a

proof (two occurrences of A cannot be derived from just one).
— In a programming language : it is not possible to duplicate

variables.

A larger fragment, called Multiplicative Exponential Linear Logic
(MELL), is able to encode intuitionistic and classical logics so that
weakening/erasure and contraction/duplication become explicit

operations.

16

Multiplicative Exponential Linear Logic (Girard)

The set of formulae is defined by the following grammar :

AB :=p|p- |?7A|'A|A®B |A% B

Linear negation of formulae is defined by

pt = pt | (?A)+ = (AN |(A® Bt = A'w Bt
(pH)*t = p | (1AL = 2(AY) | (A B = A-® B*

Proofs can be denoted for example by

Trees of sequents which contain too many syntactic details, or by

Proof-nets which eliminate unnecessary bureaucracy

17

Proof-Nets - Syntax

Axiom and Cut :

ax

18

Proof-Nets - Syntax

Contraction and Weakening :

SR D
\?/

Proof-Nets - Syntax

Dereliction and Box :

S)
—

20

Proof-Nets - Syntax

Par and Times :

21

Proof-Nets - The reduction relation

— Reduction rules are used to perform cut elimination.

— Equivalence equations are used to identify proofs that only differ

in structural details.

The resulting reduction relation is written R/FE.

22

From Arx-terms to MELL proof-nets

Encoding a Arx into a MELL

Type Formula

T() Typed Term Proof-net

I't: A

23

Encoding types

A* =
(A — B)*

A
2((4%)*) ® B*

if A is an atomic type

24

Encoding Typing Derivations - some examples

Tx:AFxz:A)is

ax

25

T(I'F Xx.t: B— C) where x € fv(t) is

26

T(I'F Xx.t: B— C) where x ¢ fv(t) is

?F*L B* ?C*L

27

T(ILT, A tlz/u] : A) where x € fv(t) is

28

Some reduction rules

Decrease the complexity of the cut-formula

cut

cut cut

29

Frase a box

\
@ At T
| |
?7A 1A+ N
L '
cut |

30

cut

Duplicate a box

31

Some equivalence equations

Associativity of contraction :

2A 2A 7A 7A
. N
A 74 A 7A
N % i N % i
TA 7A

32

Strong normalisation

Moreover, T'() allows the simulation :
—Ift=1t then T(t) =T(t)

— If t =g t' then T'(t) —7 5 T()

— If t —yx t' then T'(¢t) —R/E T(t)

Since — g/ is strongly normalising on proof-nets, then we can

conclude with the promised result

Corollary The reduction relation Arx is strongly normalising for

Arx-typed terms.

33

The key tools

— Equivalence relation on terms modelling simultaneous
substitution.

— Controlled composition of substitutions.

34

A reduction system without equations

Terms and Substitutions
tu=x | (tt) | Azt]| t[s] | t(s)

su=1id|x/u.s|sos

39

Reduction Rules

A

l

l

If x ¢ fv(t)

36

To be translated to de Bruijn...

37

Conclusion

— Dithicult problems in the domain of explicit substitution have
been solved with logical tools.

— Linear Logic provides a natural framework to model (low level)
languages to implement functional programming.

— Explicit operators for erasure, duplication and substitution

provide fine operators for control ressources.

38

