The theory of explicit substitutions revisited

Delia Kesner PPS, Université Paris VII

Motivations

Many different calculi with ES developed in the literature: a need to stand back in order to related first formalisms with last results/technology.

A first attempt

Syntax for λx -terms :

$$t, u ::= x \mid (t \mid u) \mid \lambda x.t \mid t[x/u]$$

Reduction system:

$$\begin{array}{lll} (\lambda x.t) \ u & \to_{\mathsf{B}} & t[x/u] \\ (t \ u)[x/v] & \to_{\mathbf{x}} & (t[x/v] \ u[x/v]) \\ (\lambda y.t)[x/v] & \to_{\mathbf{x}} & \lambda y.t[x/v] & \text{if } y \notin \mathtt{fv}(v) \ \& \ x \neq y \\ x[x/u] & \to_{\mathbf{x}} & u \\ t[x/u] & \to_{\mathbf{x}} & t & \text{if } x \notin \mathtt{fv}(t) \end{array}$$

Some observations

- This is the minimal behaviour we can expect to implement substitution.
- No modelisation of simultaneous substitution.
- Lambda are crossed by substitutions and named variables are used, so α -equivalence is needed.
- Different syntax or restricted notions of reduction which do not require α -conversion are more adapted for implementation.

Explicit substitution research

de Bruijn'72, Curien'83, Ehrhard'88, Field'90, Revesz'88, Cardelli'89, Abadi'89, Lévy'89

Starting from 1989 :

Ayala, Bloo, Bonelli, de Paiva, David, Dougherty, Dowek, Ferreira, Geuvers, Goubault, Guillaume, Hardin, Herbelin, Hirschkoff, Kamareddine, Kesner, Kirchner, Lang, Lengrand, Lescanne, Mackie, Melliès, Nadathur, Pagano, Pfenning, Puel, Ríos, Ritter, Rose, Stehr, Tasistro, van Oostrom, . . .

Why so much calculi?

We expect these calculi to enjoy some properties :

CR, SN, PSN, SIM, FC

In more detail

Take

Z: a calculus to handle explicit substitutions/ressources

B: some rules to start computation

We will consider different reduction relations

$$\lambda_Z = B \cup Z$$
.

In more detail

(CR) Confluence on metaterms:

If $v \overset{*}{\underset{\lambda_{Z}}{\longleftarrow}} t \overset{*}{\longrightarrow} \overset{*}{\underset{\lambda_{Z}}{\longleftarrow}} u$

Then $v \rightarrow_{\boldsymbol{\lambda} \boldsymbol{z}}^* t' \stackrel{*}{\boldsymbol{\lambda} \boldsymbol{z}} \leftarrow u$

(SIM) Simulation of one-step β -reduction :

Let $T: \lambda \mapsto \lambda_Z$. If $t \to_{\beta} t'$, then $T(t) \to_{\lambda_Z}^* T(t')$.

(FC) Implementation of full composition:

Any term of the form t[y/v] can be λ_Z -reduced to $t\{y/v\}$.

(SN) Strong Normalisation:

If t is well-typed in an appropriate type system, then there is no infinite λ_Z -reduction sequence starting at t.

(PSN) Preservation of Strong Normalisation:

Let $T: \lambda \mapsto \lambda_Z$. If t is β -strongly normalising, then T(t) is λ_Z -strongly normalising.

Summary of properties

Calculus	CR	SN	PSN	SIM	FC
$\lambda_{\upsilon}\lambda_{s}\lambda_{t}\lambda_{u}\lambda_{\mathbf{x}}\lambda_{d}\lambda_{dn}\lambda_{e}\lambda_{f}$	No	Yes	Yes	Yes	No
$\lambda_{\sigma}\lambda_{\sigma SP}$	No	No	No	Yes	Yes
$\lambda_{\sigma \uparrow} \lambda_{se} \lambda_{\mathcal{L}}$	Yes	No	No	Yes	Yes
λ_{ζ}	Yes	Yes	Yes	No	No
λ_l	Yes	Yes	Yes	Yes	No
λ lxr	?	Yes	Yes	Yes	Yes

 λlxr is combinatorial complex : 6 equations and 19 rules!

Why λ 1xr enjoys all the good properties we expect?

Which is the essential computational dynamics of $\lambda 1xr$?

What is the logical meaning of a sound explicit substitution calculi?

Typed λx (revisited)

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x.t : A \to B} (\to i1) \frac{\Gamma \vdash t : B}{\Gamma \vdash \lambda x.t : A \to B} (\to i2)$$

$$\frac{\Gamma \vdash t : B \to A \quad \Delta \vdash u : B}{\Gamma \uplus \Delta \vdash (t \ u) : A} (\to e)$$

$$\frac{\Gamma \vdash u : B \quad \Delta, x : B \vdash t : A}{\Gamma \uplus \Delta \vdash t [x/u] : A} (cut1) \frac{\Gamma \vdash u : B \quad \Delta \vdash t : A}{\Gamma \uplus \Delta \vdash t [x/u] : A} (cut2)$$

We denote by $\Gamma \vdash_{\lambda_{TX}} t : A$ the derivability/typing relation.

A refined notion of reduction

$$(\lambda x.t) \ u \qquad \to_{\mathbf{R}} \qquad t[x/u]$$

$$x[x/u] \qquad \to_{\mathbf{rx}} \qquad u$$

$$t[x/u] \qquad \to_{\mathbf{rx}} \qquad t \qquad \qquad \text{if} \ x \notin \mathbf{fv}(t)$$

$$(\lambda y.t)[x/v] \qquad \to_{\mathbf{rx}} \qquad \lambda y.t[x/v] \qquad \qquad \text{if} \ y \notin \mathbf{fv}(v) \ \& \ x \neq y$$

$$(t \ u)[x/v] \qquad \to_{\mathbf{rx}} \qquad (t[x/v] \ u[x/v]) \qquad \qquad \text{if} \ x \in \mathbf{fv}(t) \ \& \ x \in \mathbf{fv}(u)$$

$$(t \ u)[x/v] \qquad \to_{\mathbf{rx}} \qquad (t \ u[x/v]) \qquad \qquad \text{if} \ x \notin \mathbf{fv}(t) \ \& \ x \in \mathbf{fv}(u)$$

$$(t \ u)[x/v] \qquad \to_{\mathbf{rx}} \qquad (t[x/v] \ u) \qquad \qquad \text{if} \ x \in \mathbf{fv}(t) \ \& \ x \notin \mathbf{fv}(u)$$

$$t[x/u][y/v] \qquad \to_{\mathbf{rx}} \qquad t[y/v][x/u[y/v]] \qquad \text{if} \ y \in \mathbf{fv}(u) \ \& \ y \in \mathbf{fv}(t)$$

$$t[x/u][y/v] \qquad \to_{\mathbf{rx}} \qquad t[x/u[y/v]] \qquad \text{if} \ y \in \mathbf{fv}(u) \ \& \ y \notin \mathbf{fv}(t)$$

Operational semantics for λrx

First define a natural equivalence for λrx :

$$t[x/u][y/v] \equiv t[y/v][x/u] \text{ if } y \notin fv(u) \& x \notin fv(v)$$

Then define a reduction relation modulo as follows:

$$t \to_{\lambda_{rx}} t' \text{ iff } t \equiv u \to_{\text{BUrx}} u' \equiv t'$$

Coming back to the summary

Calculus	CR	SN	PSN	SIM	FC
$\lambda_{\upsilon}\lambda_{s}\lambda_{t}\lambda_{u}\lambda_{\mathbf{x}}\lambda_{d}\lambda_{dn}\lambda_{e}\lambda_{f}$	No	Yes	Yes	Yes	No
$\lambda_{\sigma}\lambda_{\sigma SP}$	No	No	No	Yes	Yes
$\lambda_{\sigma \Uparrow} \lambda_{se} \lambda_{\mathcal{L}}$	Yes	No	No	Yes	Yes
λ_{ζ}	Yes	Yes	Yes	No	No
λ_l	Yes	Yes	Yes	Yes	No
λ lxr	?	Yes	Yes	Yes	Yes
λ rx	Yes	Yes	Yes	Yes	Yes

Fragility of composition: how PSN/SN can be lost

Consider the weaker rule

$$t[x/u][y/v] \rightarrow t[x/u[y/v]]$$
 if $y \notin fv(t)$

instead of our rule

$$t[x/u][y/v] \rightarrow t[x/u[y/v]]$$
 if $y \notin fv(t) \& y \in fv(u)$

Mèllies has shown that there is a typable term that admits an infinite reduction sequence in the system containing the \rightarrow rule.

Connections with Linear Logic

Control of ressources in Linear Logic/Languages

- In logic: every hypothesis must be consumed exactly once in a proof (two occurrences of A cannot be derived from just one).
- In a programming language : it is not possible to duplicate variables.

A larger fragment, called Multiplicative Exponential Linear Logic (MELL), is able to encode intuitionistic and classical logics so that weakening/erasure and contraction/duplication become explicit operations.

Multiplicative Exponential Linear Logic (Girard)

The set of formulae is defined by the following grammar:

$$A,B ::= p \mid p^{\perp} \mid ?A \mid !A \mid A \otimes B \mid A \otimes B$$

Linear negation of formulae is defined by

$$p^{\perp} := p^{\perp} | (?A)^{\perp} := !(A^{\perp}) | (A \otimes B)^{\perp} := A^{\perp} \otimes B^{\perp}$$

$$(p^{\perp})^{\perp} := p | (!A)^{\perp} := ?(A^{\perp}) | (A \otimes B)^{\perp} := A^{\perp} \otimes B^{\perp}$$

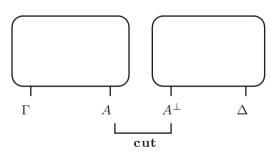
Proofs can be denoted for example by

Trees of sequents which contain too many syntactic details, or by

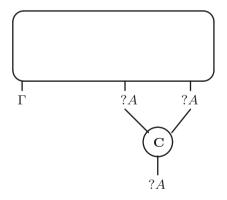
Proof-nets which eliminate unnecessary bureaucracy

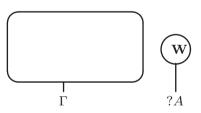
Axiom and Cut:



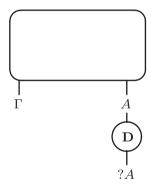


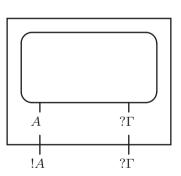
Contraction and Weakening:



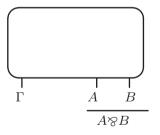


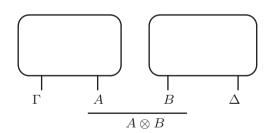
Dereliction and Box:





Par and Times:





Proof-Nets - The reduction relation

- Reduction rules are used to perform cut elimination.
- Equivalence equations are used to identify proofs that only differ in structural details.

The resulting reduction relation is written R/E.

From λ rx-terms to MELL proof-nets

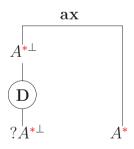
Encoding	a λ rx	into a MELL
*	Туре	Formula
$T(_)$	Typed Term	Proof-net
	$\Gamma dash t : A$	T(t)

Encoding types

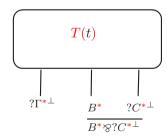
$$A^* := A \qquad \text{if A is an atomic type} \\ (A \to B)^* := ?((A^*)^\perp) \otimes B^*$$

Encoding Typing Derivations - some examples

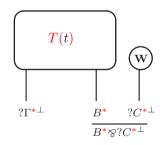
 $T(x:A \vdash x:A)$ is



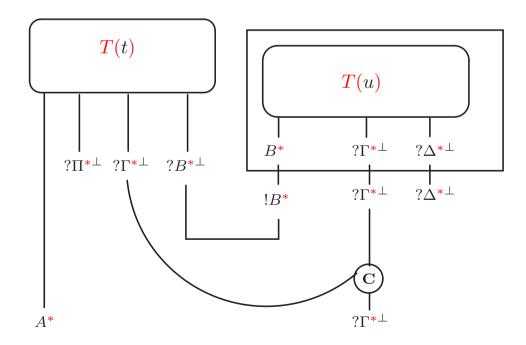
 $T(\Gamma \vdash \lambda x.t : B \rightarrow C)$ where $x \in fv(t)$ is



 $T(\Gamma \vdash \lambda x.t : B \rightarrow C)$ where $x \notin fv(t)$ is

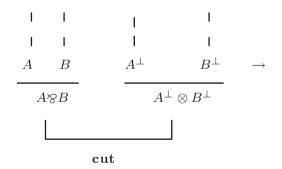


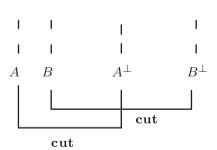
 $T(\Pi, \Gamma, \Delta \vdash t[x/u] : A)$ where $x \in fv(t)$ is



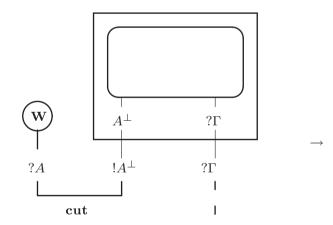
Some reduction rules

Decrease the complexity of the cut-formula

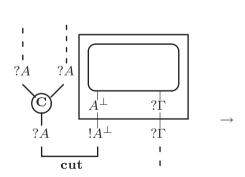


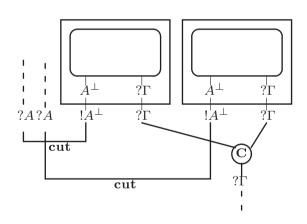


Erase a box



Duplicate a box





Some equivalence equations

Associativity of contraction:

Strong normalisation

Moreover, T() allows the simulation :

- If $t \equiv t'$ then T(t) = T(t')
- If $t \rightarrow_{\mathsf{B}} t'$ then $T(t) \rightarrow_{R/E}^+ T(t')$
- If $t \rightarrow_{\mathtt{rx}} t'$ then $T(t) \rightarrow_{R/E}^* T(t')$

Since $\rightarrow_{R/E}$ is strongly normalising on proof-nets, then we can conclude with the promised result

Corollary The reduction relation λrx is strongly normalising for λrx -typed terms.

The key tools

- Equivalence relation on terms modelling simultaneous substitution.
- Controlled composition of substitutions.

A reduction system without equations

Terms and Substitutions

$$t ::= x \mid (t \ t) \mid \lambda x.t \mid t[s] \mid t(s)$$

$$s ::= id \mid x/u.s \mid s \circ s$$

Reduction Rules

36

To be translated to de Bruijn...

Conclusion

- Difficult problems in the domain of explicit substitution have been solved with logical tools.
- Linear Logic provides a natural framework to model (low level)
 languages to implement functional programming.
- Explicit operators for erasure, duplication and substitution provide fine operators for control ressources.