Sémantique des jeux

du λ -calcul à la logique classique du 1^{er} ordre

LAC – Chambéry

Olivier LAURENT

Olivier.Laurent@pps.jussieu.fr

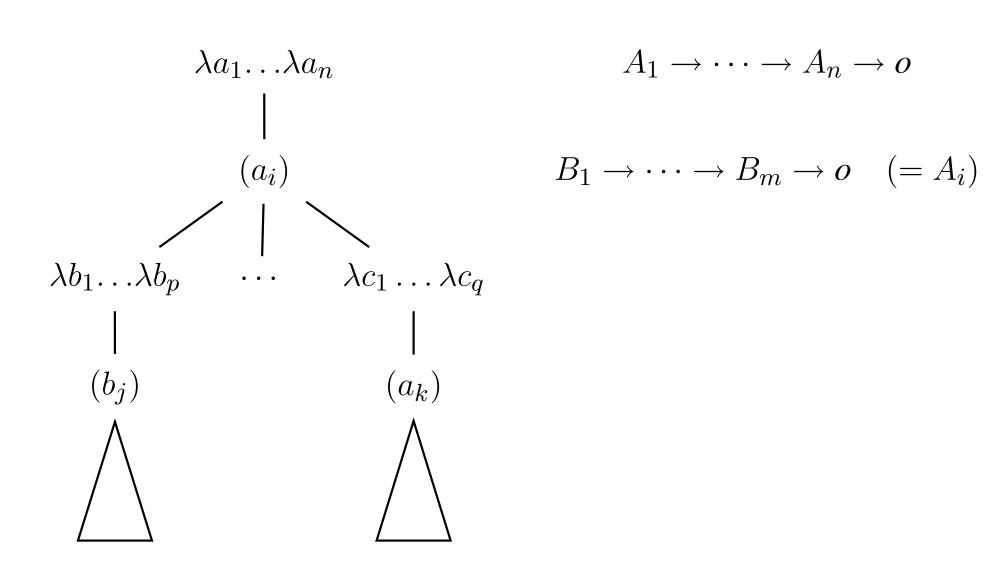
Preuves Programmes Systèmes

CNRS – Université Paris VII

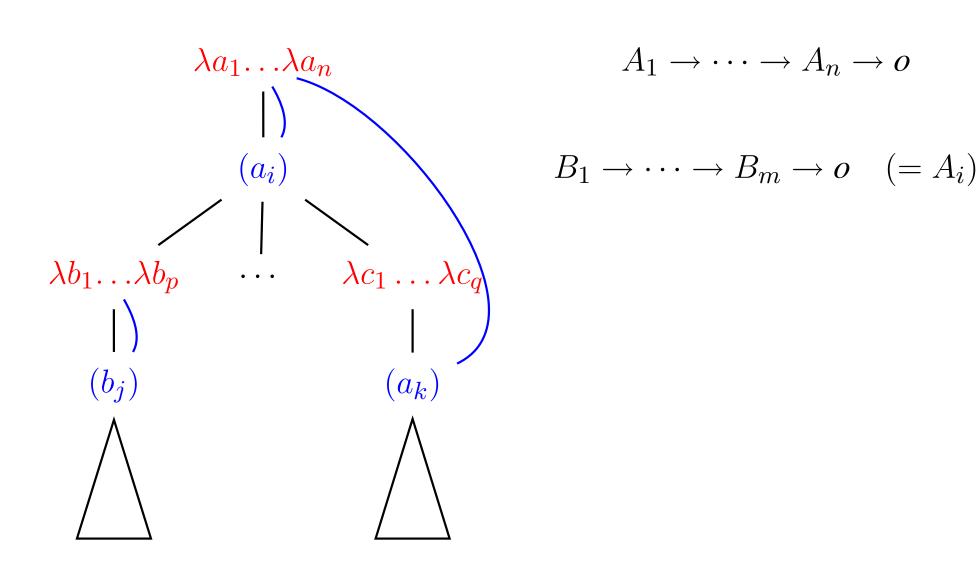
De la syntaxe à la sémantique

Calcul des séquents	Déduction naturelle	λ -calculs	Jeux HO/N
LJ	NJ	λ	innocence parenthésage
LK	NK	$\lambda \mu$	innocence
élimination des coupures	normalisation	β -réduction	composition

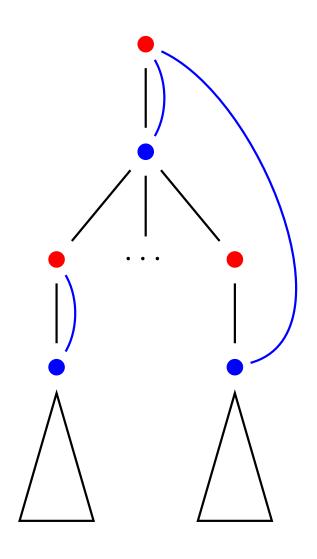
Arbre de Böhm



Arbre de Böhm

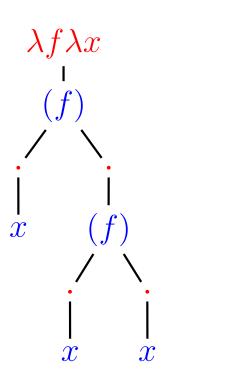


Arbre de Böhm

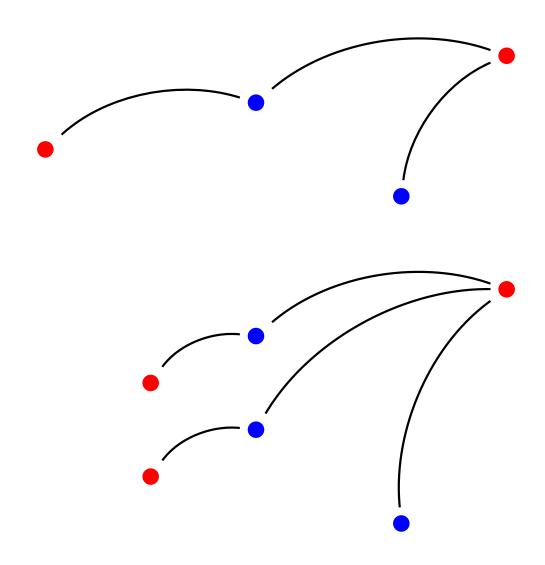


Stratégies

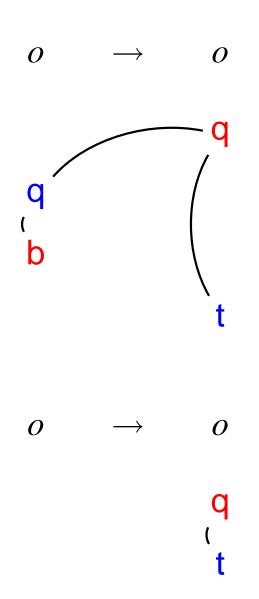
$$\lambda f.\lambda x.(f)x(f)xx$$



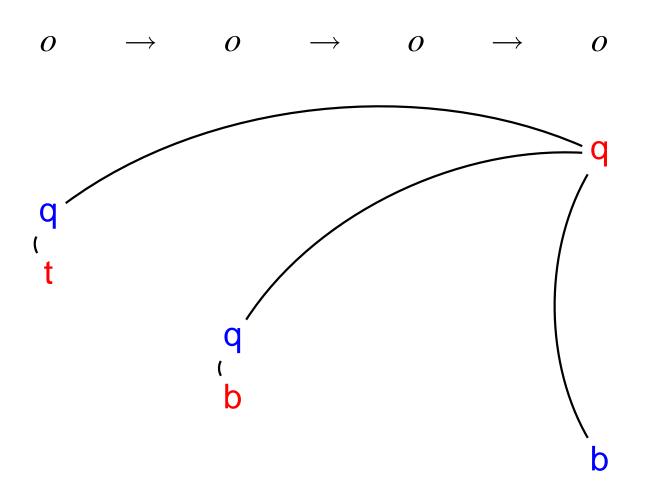
$$(\hspace{.1cm} o \hspace{.1cm} \rightarrow \hspace{$$



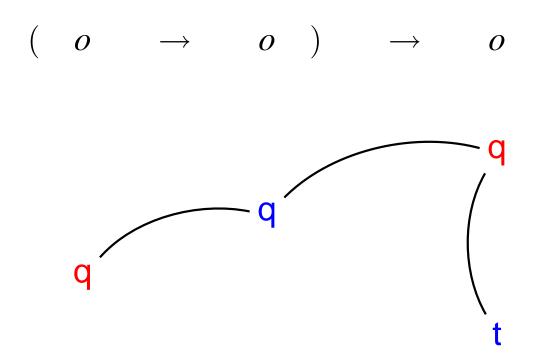
Stratégies avec booléens (constantes)



Stratégies avec booléens (case)



Stratégies avec booléens (catch)



λ -calcul avec constantes

Types et termes

$$A ::= A \to A \mid o$$

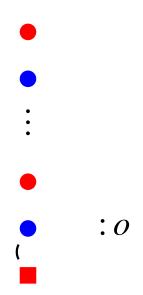
$$t ::= a \mid \lambda a.t \mid (t)t \mid c_i \mid \text{case } t \text{ of } \overrightarrow{c_i \mapsto t}$$

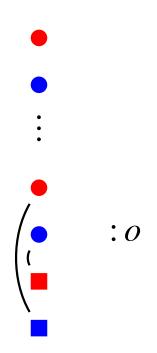
Typage

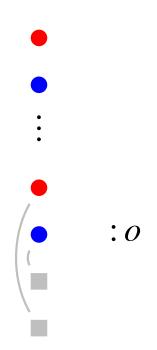
$$\frac{\Gamma \vdash \mathbf{c}_i : o}{\Gamma \vdash \mathbf{c}_i : o} \stackrel{\mathbf{C}_i}{\underbrace{\Gamma \vdash \mathbf{c}_i : o}} \underbrace{\frac{\Gamma \vdash t : o \quad \cdots \quad \Gamma \vdash t_i : A \cdots}{\Gamma \vdash \mathbf{case} \ t \ \text{of} \ \overrightarrow{\mathbf{c}_i \mapsto t_i} : A}}_{\Gamma \vdash \mathbf{case} \ t \ \text{of} \ \overrightarrow{\mathbf{c}_i \mapsto t_i} : A}$$
 case

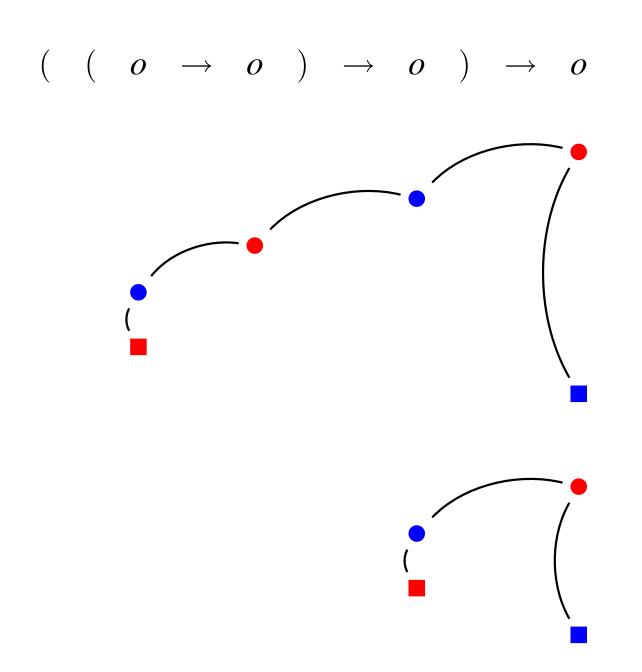
•

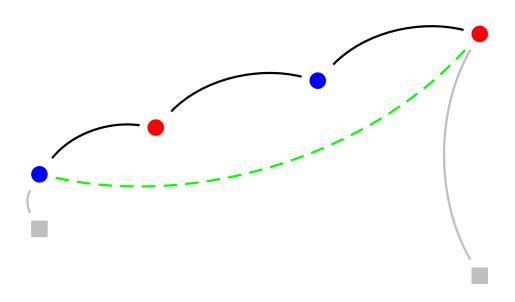
• : *o*

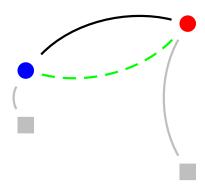


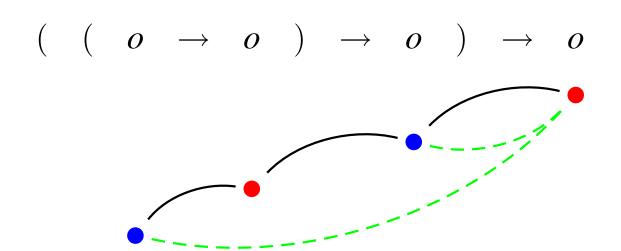


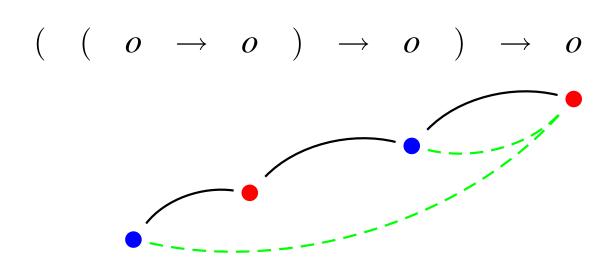


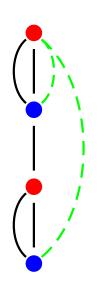


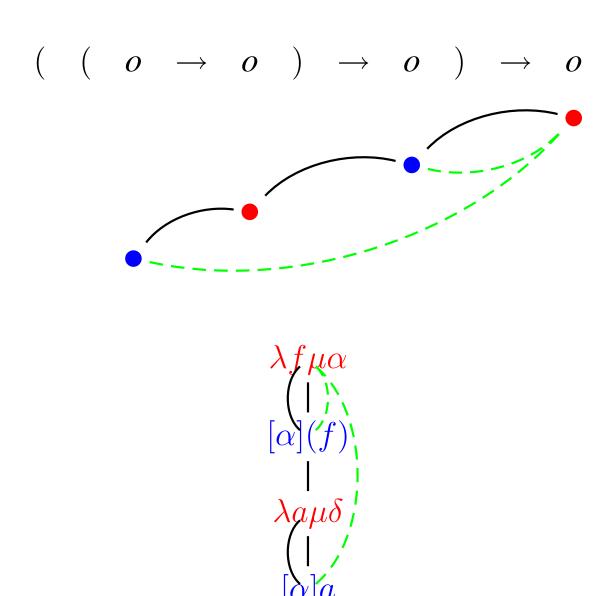


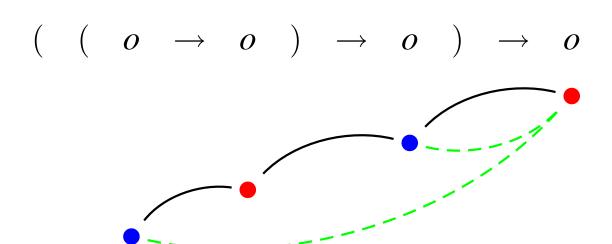


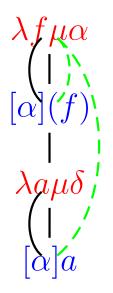




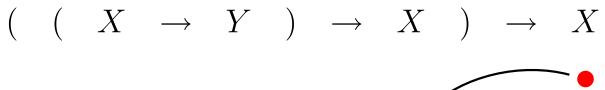


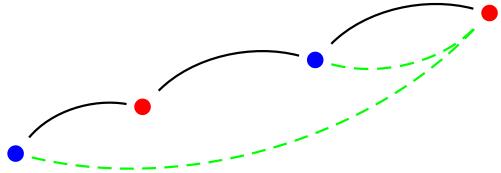


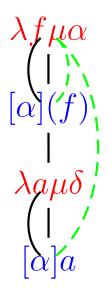




 $\lambda f.\mu\alpha[\alpha](f)\lambda a.\mu\delta[\alpha]a$







 $\lambda f.\mu\alpha[\alpha](f)\lambda a.\mu\delta[\alpha]a$

$$\exists x \forall y (Xx \to Xy)$$

$$\parallel$$

$$\forall x \ (\ \forall y \ (\ Xx \to Xy \) \to \bot \) \to \bot$$

$$\exists x \forall y (Xx \to Xy)$$

$$\parallel$$

$$\forall x \ (\ \forall y \ (\ Xx \to Xy \) \to \bot \) \to \bot$$

$$\exists x \forall y (Xx \to Xy)$$

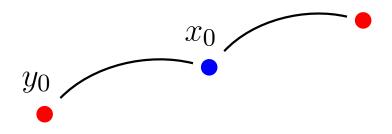
$$\parallel$$

$$\forall x \ (\ \forall y \ (\ Xx \to Xy \) \to \bot \) \to \bot$$

$$\exists x \forall y (Xx \to Xy)$$

$$\parallel$$

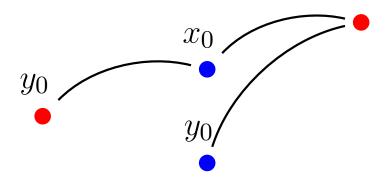
$$\forall x \ (\forall y \ (Xx \to Xy) \to \bot) \to \bot$$



$$\exists x \forall y (Xx \to Xy)$$

$$\parallel$$

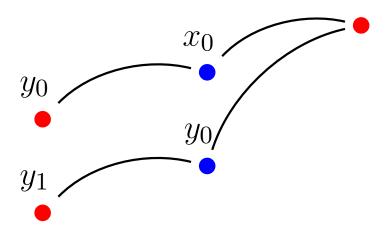
$$\forall x \ (\ \forall y \ (\ Xx \to Xy \) \to \bot \) \to \bot$$



$$\exists x \forall y (Xx \to Xy)$$

$$\parallel$$

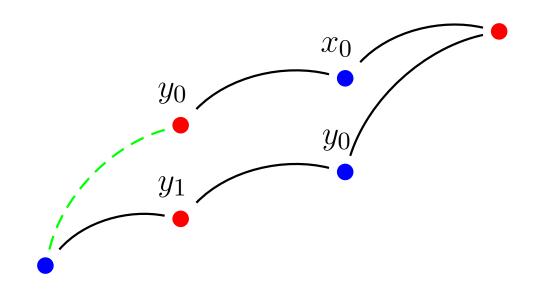
$$\forall x \ (\ \forall y \ (\ Xx \to Xy \) \to \bot \) \to \bot$$



$$\exists x \forall y (Xx \to Xy)$$

$$\parallel$$

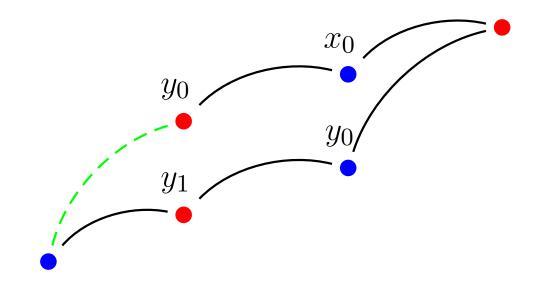
$$\forall x \ (\ \forall y \ (\ Xx \to Xy \) \to \bot \) \to \bot$$



$$\exists x \forall y (Xx \to Xy)$$

$$\parallel$$

$$\forall x \ (\ \forall y \ (\ Xx \to Xy \) \to \bot \) \to \bot$$



 $\lambda f. (f\{x_0\}) \Lambda y_0.\lambda d.\mu\alpha. (f\{y_0\}) \Lambda y_1.\lambda a.\mu\delta [\alpha]a$