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The Symmetric Combinators (Lafont, 1995)

• An extension of untyped unit-free MLL proof-structures.

• Like MLL cut-elimination steps, computational steps are local and
asynchronous, but unlike MLL the symmetric combinators are Turing-
complete (in a sense, they are “parallel Turing machines”).

• There are two binary combinators (δ and ζ) and a nullary combinator
(ε). A cell is an occurrence of a combinator; nets are made of cells and
wires, and have a certain number of free ports:
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Reduction and β-equivalence
• Two cells connected through their principal ports form an active pair.

Active pairs can be reduced using the following rules (α ∈ {δ, ζ}):

→
α

α

→
ε

ε

→
ε

α

ε ε→
ζ

ζ ζ

δ δ

δ

• µ 'β ν iff there exists o such that µ →∗ o and ν →∗ o. Reduction is
strongly confluent: 'β is an equivalence relation (indeed a congruence),
and computations are essentially unique.
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η-equivalence and βη-equivalence

• η-equivalence is defined as the contextual, reflexive, transitive closure of
the following equations (where α ∈ {δ, ζ}):
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• As usual, we put 'βη = ('β ∪ 'η)∗.
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Internal separation

A vicious circle is a cyclic configuration like the following:
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A net is cut-free iff it contains no active pairs and no vicious circles. A net
is total if it reduces to a cut-free net.

Theorem 1. [Mazza, 2006] Let µ, ν be two total nets such that µ 6'βη ν.
Then, there exists a cut-free context C such that

µ

C

. . . →∗ ε ε
ν

C

. . . →∗

or vice versa.
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Observable paths

• We call a path like the following one observable:

. . . . . .. . . . . . . . . . . . . . .

• The fundamental property of observable paths is that they are stable
under reduction. We write µ↓ iff µ contains an observable path.
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Observational equivalence

• We deem a net µ observable, and we write µ⇓, iff µ →∗ µ′↓.

• An observable net is like a λ-term in head normal form, but no principal
hnf can be defined (λ-terms are “intuitionistic”, nets are “classical”).

• Observational equivalence: µ ' ν, iff, ∀C, C[µ]⇓⇔ C[ν]⇓.

• One can prove that µ 'βη ν implies µ ' ν. Hence, by separation, 'βη

and ' coincide on total nets.
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Pillars
• Let C = {p,q}N, i.e., “the” Cantor set, endowed with the Cantor

topology. The elements of C are ranged over by x, y. We remind that
C is completely metrizable, with distance dC(x, y) = 2−k, where k is the
length of the longest common prefix of x, y.

• Let I ⊆ N, and let PI = C × C × I. A pillar is an element of P = PN,
ranged over by ξ, υ and denoted by x⊗ y @ i. The integer appearing in
ξ is the base of the pillar, denoted by b(ξ).

• If we put the discrete topology on N, P can be endowed with the product
topology, which is also metrizable with the distance

d(x⊗ y @ i, x′ ⊗ y′@ i′) = max{dC(x, x′), dC(y, y′), ddisc(i, i′)},

where ddisc(i, i′) = 0 if i = i′ and ddisc(i, i′) = 2 if i 6= i′.
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Arches

• We denote by AI the set of unordered pairs of pillars based at I, i.e.,
AI = PI × PI/∼, where (ξ, υ) ∼ (ξ′, υ′) iff ξ′ = υ and υ′ = ξ, or ξ′ = ξ
and υ′ = υ.

• An arch is an element of A = AN, ranged over by a, and denoted by
ξ _ υ (which by definition is the same as υ _ ξ).

• P × P can be endowed with the product topology, and A with the
quotient topology. This turns out to be metrizable: if a = ξ _ υ and
a′ = ξ′ _ υ′, a distance inducing the topology is

D(a, a′) = min{max{d(ξ, ξ′), d(υ, υ′)}, max{d(ξ, υ′), d(υ, ξ′)}}.
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Edifices

• The space A is not compact. Indeed, we can give a characterization of
its compact subsets:

Proposition 1. A set E ⊆ A is compact iff it is a closed subset of AI

for some finite I.

• An edifice is a compact set of arches.

• Note that, by the above proposition, there is identity between closed,
compact, and complete (with respect to the metric D) subsets of AI,
whenever I is finite.
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Observable paths as edifices

• A branch of a tree of cells can be identified by an address of the form
(a⊗ b, i) ∈ {p,q}∗ × {p,q}∗ × N (this is related to the GoI):
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• Remember that an observable path φ is a connection between two
branches, of generic addresses (a⊗ b, i) and (c⊗ d, j):

. . . . . .. . . . . . . . . . . . . . .

i j

a⊗ b c⊗ d

• Then, its edifice is defined as

φ• = {ax⊗ by @ i _ cx⊗ dy @ j ; ∀x, y ∈ C}.

φ• is easily seen to be closed. The uniform completion of the
addresses reminds of relational semantics (a “locative diagonal”), copy-
cat strategies, faxes in ludics. . .

11



Nets as edifices

• If µ is a net, and φ ranges over all observable paths appearing in all
reducts of µ, we define the pre-edifice of µ as

E0(µ) =
⋃

φ•.

We have that E0(µ) ⊆ A{1,...,n}, where n is the number of free ports
of µ. Hence, by Proposition 1, the pre-edifice of a normalizable (or, in
particular, total) net is an edifice.

• The edifice of a net µ, denoted by E(µ), is the closure of its pre-edifice:

E(µ) = E0(µ).
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Full abstraction

• The edifice of a net is the analogue of the Nakajima tree of a λ-term
(Nakajima, 1975):

Theorem 2. [Full abstraction] µ ' ν iff E(µ) = E(ν).

• Compactness (hence completeness) is fundamental: E0(·) gives an
adequate, but not fully abstract semantics, because of infinite η-reduction
(Wadsworth 1976, Hyland 1976).

• In fact, the phenomenon of infinite η-reduction receives a precise
topological interpretation in edifices, which is not given by Böhm or
Nakajima trees.
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A (hopefully) clarifying example

There exists a net ι such that

δ δ

ι

ι →∗ 'ι

E0(ι) contains, for all x, y ∈ C, a Cauchy sequence of the form

an = pnqx⊗ y @1 _ pnqx⊗ y @ 2,

without containing its limit

p∞ ⊗ y @ 1 _ p∞ ⊗ y @ 2.

Thanks to the addition of these limits, we obtain E(ι) = E(_).
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Further work

• The set of all edifices is huge (its cardinality is 22ℵ0). Could one restrict
the definition in order to obtain a full completeness result?

• A notion of composition can be defined on edifices. This is done
by considering the equivalent of plays in games semantics, or of the
execution formula in the GoI. Concretely, it involves computing certain
sequences of arches.

• Can one define a category out of this? In other words, can one find a
typed version of the symmetric combinators?

• Does the length of the sequences appearing in the composition of edifices
say anything about the runtime of nets (like nilpotency in the GoI)?
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