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Formal models of cryptographic systems

I Protocols

I Security APIs

Xor is ubiquitous

Examples from a security API called CCA
(Common Cryptographic Architecture):

x , y , {z}x⊕KP⊕KM 7→ {z ⊕ y}x⊕KP⊕KM

x , y , {z}x⊕KP⊕KM 7→ {z ⊕ y}x⊕KM

Reasoning involves:

Commutativity: x ⊕ y ' y ⊕ x
Associativity: (x ⊕ y)⊕ z ' x ⊕ (y ⊕ z)

Neutral element: x ⊕ 0 ' x
Involutivity: x ⊕ x ' 0
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General setting: quotiented first order-terms

We are given

I A type of terms T with constructors Ck :
Inductive T : Set :=
| C1 : T

...
| Ck : . . . → T . . . → T . . . → T

...

I A congruence ' : T → T → Prop

I For each constructor Ck
∀a, . . . x1, y1, b, . . . x2, y2, . . . c ,
x1 ' y1 → x2 ' y2 →
Ck a . . . x1 b . . . y1 c ' Ck a . . . x2 b . . . y2 c

I specific laws, e.g. ∀xy ,C2 x C1 y ' C2 y x

We want to reason on T up to '
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Already well-known examples

I finite bags represented by finite lists

I algebra of formal arithmetic expressions

+ is associative, commutative, 0 is neutral
× is associative, commutative, 1 is neutral
× distributes over +

I (mobile) process calculi, chemical abstract machines

parallel composition and choice operators are AC



Already well-known examples

I finite bags represented by finite lists

I algebra of formal arithmetic expressions

+ is associative, commutative, 0 is neutral
× is associative, commutative, 1 is neutral
× distributes over +

I (mobile) process calculi, chemical abstract machines

parallel composition and choice operators are AC



Already well-known examples

I finite bags represented by finite lists

I algebra of formal arithmetic expressions

+ is associative, commutative, 0 is neutral
× is associative, commutative, 1 is neutral
× distributes over +

I (mobile) process calculi, chemical abstract machines

parallel composition and choice operators are AC



Already well-known examples

I finite bags represented by finite lists

I algebra of formal arithmetic expressions
+ is associative, commutative, 0 is neutral
× is associative, commutative, 1 is neutral
× distributes over +

I (mobile) process calculi, chemical abstract machines
parallel composition and choice operators are AC



Quotients in type theory

I High level approach : setoids

I Explicit approach :

I Define a normalization function N on T
I Compare terms using syntactic equality on their norms :

x ' y iff N x = N y
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Cryptographic systems need more
Reasoning on such systems involves

I comparing terms up to AC + involutivity of ⊕:

Commutativity: x ⊕ y ' y ⊕ x
Associativity: (x ⊕ y)⊕ z ' x ⊕ (y ⊕ z)

Neutral element: x ⊕ 0 ' x
Involutivity: x ⊕ x ' 0

I a relation � for occurrence:
if x , y and z are different terms,

I y occurs in x ⊕ y ⊕ z
I but y does not occur in x ⊕ y ⊕ z ⊕ y

x � y if x ' y
x � t if t ' x ⊕ y0 . . .⊕ yn

and x 6� yi for all i , 0 ≤ i ≤ n

→ normalization is needed!
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First attempt: rewrite, rewrite, rewrite. . .

Replace equations with rewrite rules

Commutativity: find an suitable well ordering on terms

Functional programming approach:

I Not very difficult – use general recursion
I Just boring

In a type theoretic framework, termination proof mandatory and
non-trivial:

I combination of polynomial and lexicographic ordering
I other approaches (lpo, rpo,. . .): overkill?
I AC matching: a non trivial matter
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(Dependent) type theoretic approach

Step 1

I Consider a more structured version of t
= provide an accurate and informative typing to t

Step 2

I Normalize by structural induction on the newly typed version
of t

Step 1 makes step 2 easy.

Better formulation: t : T transformed into t ′ : T ′
T ′ enriched version of T ,
trivial forgetful morphism T ′ → T .

Interesting part = T → T ′
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Lasagnas reveal the truth

I layering a term
I layers do not communicate:

each layer possesses its own normalization function
I in our case: need 2 layers, pasta and sauce
I normalizing pasta = identity
I normalizing sauce = rearranging + removing duplicates
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T as a lasagna

Inductive T : Set :=
| Zero: T
| PC : public const → T | SC : secret const → T
| E : T → T → T
| Xor : T → T → T
| Hash: T → T → T .
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Decomposing T

Variable A : Set.

Inductive Tx :Set :=
| X Zero : Tx
| X Xor : Tx → Tx → Tx

| X ns : A → Tx

Inductive Tn: Set :=
| NX PC : public const → Tn
| NX SC : secret const → Tn
| NX E : Tn → Tn → Tn
| NX Hash : Tn → Tn → Tn

| NX sum : A → Tn
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Stratifying and normalizing a term

Step 1 Translate a term t into t ′ according to the mapping
0 7→ X Zero, Xor 7→ X Xor, PC 7→ NX PC, etc.

The typing of t ′ is Tx(Tn(Tx(. . . (∅))))︸ ︷︷ ︸
k layers

for k large enough.

Step 2 A type is sortable if it is equipped with a decidable equality
and a decidable total ordering. If A is sortable, then

I Tn(A) is sortable as well;
I the multiset of A-leaves of a Tx(A)-term can be sorted (and

removed when possible) into a list;
I list(A) is sortable.
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Lifting lasagna

Lx k def
== Tx(Tn(Tx(. . . (∅))))︸ ︷︷ ︸

k layers

for k large enough.

I What is k?
I The number of layers on the left subterm and on the right

subterm are different in general.
Take the max

I Standard solution: {le n m} + {le m n}

I interactive definition, large proof term
I heavy encoding of m − n or n −m
I need to lift Lx n and Lx m to Lx (max n m)

I Lightweight approach: max n m def
== m + (n −m)

I liftx : Lx k → Lx (k + d), liftn : Ln k → Ln (k + d)
I No need to proof that max is the max.
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Internalizing alternation

Well designed types help us to design programs

Many functions are defined by mutual induction,
e.g. liftx and liftn

Control them using alternating natural numbers

Inductive alteven: Set :=
| 0e : alteven
| So→e : altodd → alteven

with altodd : Set :=
| Se→o : alteven → altodd
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Forbid fake inclusions

Inductive Tx : Set :=
| X Zero : Tx
| X ns : A → Tx
| X Xor : Tx → Tx → Tx

Inductive Tn: Set :=
| NX PC : public const → Tn
| NX SC : secret const → Tn
| NX sum : A → Tn
| NX E : Tn → Tn → Tn
| NX Hash : Tn → Tn → Tn

X ns (NX sum ( X ns (NX sum (. . . ))))
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Forbid fake inclusions

Inductive Tx : bool → Set :=
| X Zero : ∀ b, Tx b
| X ns : ∀ b, Is true b → A → Tx b
| X Xor : ∀ b, Tx true → Tx true → Tx b

Inductive Tn: bool → Set :=
| NX PC : ∀ b, public const → Tn b
| NX SC : ∀ b, secret const → Tn b
| NX sum : ∀ b, Is true b → A → Tn b
| NX E : ∀ b, Tn true → Tn true → Tn b
| NX Hash : ∀ b, Tn true → Tn true → Tn b

X ns (NX sum ( X ns (NX sum (. . . ))))
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Mutual induction

I Prefer fixpoints: built-in computation, no inversion

I Use map combinators

Many 10 lines definitions, almost no theorem

Fixpoint lift lasagna x e1 e2 {struct e1} :
Lx e1 → Lx (e1 + e2) :=
match e1 return Lx e1 → Lx (e1 + e2) with
| 0e ⇒ fun emp ⇒ match emp with end
| So→e o1 ⇒ mapx (lift lasagna n o1 e2) false
end

with lift lasagna n o1 e2 {struct o1} :
Ln o1 → Ln (o1 + e2) :=
match o1 return Ln o1 → Ln (o1 + e2) with
| Se→o e1 ⇒ mapn (lift lasagna x e1 e2) false
end.
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Conversion rule

Used everywhere

Definition bin xor
(bin : ∀ A b, Tx A true → Tx A true → Tx A b) o1 o2 b
(l1 : lasagna cand x o1 true)
(l2 : lasagna cand x o2 true) :
lasagna cand x (max oo o1 o2) b :=

bin (Ln (max oo o1 o2)) b
(lift lasagna cand x true o1 (o2 - o1) l1)
(coerce max comm

(lift lasagna cand x true o2 (o1 - o2) l2)).
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I Polymorphism
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I Conversion rule
I JMEQ not used (until now)
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