Proving termination using dependent types: the case of xor-terms

J.-F. Monin J. Courant

VERIMAG Grenoble, France

GDR LAC, Chambery, 2007

Outline

[Motivation](#page-1-0)

[The case of cryptographic systems](#page-1-0)

[State of the art](#page-7-0) [Back to cryptographic systems](#page-22-0) [Solving strategies](#page-30-0)

[Solution \(intuitive\)](#page-49-0)

[Basic idea](#page-49-0) [Analyse of](#page-57-0) T [Decomposing](#page-62-0) T [Stratifying and normalizing a term](#page-65-0)

[Issues](#page-74-0)

- [Lifting](#page-74-0)
- [Alternation](#page-87-0)
- [Forbid fake inclusions](#page-93-0)
- [Fixpoints](#page-98-0)
- [Conversion rule](#page-104-0)

- \blacktriangleright Protocols
- \blacktriangleright Security APIs

 \blacktriangleright Protocols

 \blacktriangleright Security APIs

Xor is ubiquitous

- \blacktriangleright Protocols
- \blacktriangleright Security APIs

Xor is ubiquitous

Examples from a security API called CCA (Common Cryptographic Architecture):

$$
x, y, \{z\}_{x \oplus KP \oplus KM} \mapsto \{z \oplus y\}_{x \oplus KP \oplus KM}
$$

$$
x, y, \{z\}_{x \oplus KP \oplus KM} \mapsto \{z \oplus y\}_{x \oplus KM}
$$

- \blacktriangleright Protocols
- \blacktriangleright Security APIs

Xor is ubiquitous

Examples from a security API called CCA (Common Cryptographic Architecture):

$$
x, y, \{z\}_{x \oplus KP \oplus KM} \mapsto \{z \oplus y\}_{x \oplus KP \oplus KM}
$$

$$
x, y, \{z\}_{x \oplus KP \oplus KM} \mapsto \{z \oplus y\}_{x \oplus KM}
$$

Reasoning involves:

Commutativity: $x \oplus y \simeq y \oplus x$ Associativity: $(x \oplus y) \oplus z \simeq x \oplus (y \oplus z)$ Neutral element: $x \oplus 0 \simeq x$ Involutivity: $x \oplus x \simeq 0$

 \mathbb{B}

Outline

[Motivation](#page-1-0)

[The case of cryptographic systems](#page-1-0)

[State of the art](#page-7-0)

[Back to cryptographic systems](#page-22-0) [Solving strategies](#page-30-0)

[Solution \(intuitive\)](#page-49-0)

[Basic idea](#page-49-0) [Analyse of](#page-57-0) T [Decomposing](#page-62-0) T [Stratifying and normalizing a term](#page-65-0)

イロト イ部 トイモト イモト

È

 Ω

[Issues](#page-74-0)

- [Lifting](#page-74-0)
- [Alternation](#page-87-0)
- [Forbid fake inclusions](#page-93-0)
- [Fixpoints](#page-98-0)
- [Conversion rule](#page-104-0)

We are given

```
A type of terms T with constructors C_k:
   Inductive T: Set :=| C_1 : T.
         .
         .
      | C_k : \ldots \to T \ldots \to T \ldots \to T.
.
.
```


We are given

A type of terms T with constructors C_k : Inductive $T: Set :=$ $| C_1 : T$. . . $| C_k : \ldots \to T \ldots \to T \ldots \to T$. . . A congruence \simeq : $T \rightarrow T \rightarrow$ Prop

We are given

A type of terms T with constructors C_k : Inductive \mathcal{T} : Set := $| C_1 : T$. . . $\begin{matrix} \n\mathcal{C}_k : \ldots \to T \ldots \to T \end{matrix} \to T$. . . A congruence \simeq : $T \rightarrow T \rightarrow$ Prop \blacktriangleright For each constructor C_k $\forall a, \ldots x_1, y_1, b, \ldots x_2, y_2, \ldots c,$ $x_1 \simeq y_1 \rightarrow x_2 \simeq y_2 \rightarrow$ $C_k a ... x_1 b ... y_1 c \simeq C_k a ... x_2 b ... y_2 c$

We are given

A type of terms T with constructors C_k : Inductive \mathcal{T} : Set := $| C_1 : T$. . . $\begin{matrix} \n\mathcal{C}_k : \ldots \to T \ldots \to T \end{matrix} \to T$. . . A congruence \simeq : $T \rightarrow T \rightarrow$ Prop \blacktriangleright For each constructor C_k $\forall a, \ldots x_1, y_1, b, \ldots x_2, y_2, \ldots c,$ $x_1 \simeq y_1 \rightarrow x_2 \simeq y_2 \rightarrow$ $C_k a ... x_1 b ... y_1 c \simeq C_k a ... x_2 b ... y_2 c$ **►** specific laws, e.g. $\forall xy, C_2 \times C_1 y \simeq C_2 y \times C_1 y$

 $(1, 1)$ and $(1, 1)$ and

 \equiv

We are given

A type of terms T with constructors C_k : Inductive \mathcal{T} : Set := $| C_1 : T$. . . $\begin{matrix} \n\mathcal{C}_k : \ldots \to T \ldots \to T \end{matrix} \to T$. . . A congruence \simeq : $T \rightarrow T \rightarrow$ Prop \blacktriangleright For each constructor C_k $\forall a, \ldots x_1, y_1, b, \ldots x_2, y_2, \ldots c,$ $x_1 \simeq y_1 \rightarrow x_2 \simeq y_2 \rightarrow$ $C_k a ... x_1 b ... y_1 c \simeq C_k a ... x_2 b ... y_2 c$ **►** specific laws, e.g. $\forall xy, C_2 \times C_1 y \simeq C_2 y \times C_1 y$

 $(1, 1)$ and $(1, 1)$ and

 \equiv

We are given

A type of terms T with constructors C_k : Inductive \mathcal{T} : Set := $| C_1 : T$. . . $\begin{matrix} \n\mathcal{C}_k : \ldots \to T \ldots \to T \end{matrix} \to T$. . . A congruence \simeq : $T \rightarrow T \rightarrow$ Prop \blacktriangleright For each constructor C_k $\forall a, \ldots x_1, y_1, b, \ldots x_2, y_2, \ldots c,$ $x_1 \simeq y_1 \rightarrow x_2 \simeq y_2 \rightarrow$ $C_k a ... x_1 b ... y_1 c \simeq C_k a ... x_2 b ... y_2 c$ **►** specific laws, e.g. $\forall xy, C_2 \times C_1 y \simeq C_2 y \times C_1 y$

 $(1, 1)$ and $(1, 1)$ and

 \equiv

We want to reason on T up to \simeq

 \blacktriangleright finite bags represented by finite lists

 \blacktriangleright finite bags represented by finite lists

 \blacktriangleright algebra of formal arithmetic expressions

 \blacktriangleright finite bags represented by finite lists

 \blacktriangleright algebra of formal arithmetic expressions

 \blacktriangleright (mobile) process calculi, chemical abstract machines

 \blacktriangleright finite bags represented by finite lists

 \blacktriangleright algebra of formal arithmetic expressions $+$ is associative, commutative, 0 is neutral \times is associative, commutative, 1 is neutral \times distributes over $+$

 \triangleright (mobile) process calculi, chemical abstract machines parallel composition and choice operators are AC

 \blacktriangleright High level approach : setoids

 \blacktriangleright High level approach : setoids

 \blacktriangleright Explicit approach :

 \blacktriangleright High level approach : setoids

- \blacktriangleright Explicit approach :
	- \blacktriangleright Define a normalization function N on T

 4 ロ) 4 \overline{B}) 4 \overline{E}) 4 \overline{E})

 \mathbb{B}

 \blacktriangleright High level approach : setoids

- \blacktriangleright Explicit approach :
	- \triangleright Define a normalization function N on T
	- \triangleright Compare terms using syntactic equality on their norms : $x \simeq y$ iff $Nx = Ny$

イロト 不優 ト 不差 ト 不差 トー

÷,

Outline

[Motivation](#page-1-0)

[The case of cryptographic systems](#page-1-0) [State of the art](#page-7-0)

[Back to cryptographic systems](#page-22-0)

[Solving strategies](#page-30-0)

[Solution \(intuitive\)](#page-49-0)

[Basic idea](#page-49-0) [Analyse of](#page-57-0) T [Decomposing](#page-62-0) T [Stratifying and normalizing a term](#page-65-0)

イロト イ部 トイモト イモト

È

[Issues](#page-74-0)

- [Lifting](#page-74-0)
- [Alternation](#page-87-0)
- [Forbid fake inclusions](#page-93-0)
- [Fixpoints](#page-98-0)
- [Conversion rule](#page-104-0)

Reasoning on such systems involves

 \triangleright comparing terms up to AC + involutivity of \oplus :

Commutativity: $x \oplus y \simeq y \oplus x$ Associativity: $(x \oplus y) \oplus z \simeq x \oplus (y \oplus z)$ Neutral element: $x \oplus 0 \simeq x$ Involutivity: $x \oplus x \simeq 0$

Reasoning on such systems involves

 \triangleright comparing terms up to AC + involutivity of \oplus :

Commutativity: $x \oplus y \simeq y \oplus x$ Associativity: $(x \oplus y) \oplus z \simeq x \oplus (y \oplus z)$ Neutral element: $x \oplus 0 \simeq x$ Involutivity: $x \oplus x \simeq 0$

 \blacktriangleright a relation \preceq for occurrence: if x , y and z are different terms,

Reasoning on such systems involves

 \triangleright comparing terms up to AC + involutivity of \oplus :

Commutativity: $x \oplus y \simeq y \oplus x$ Associativity: $(x \oplus y) \oplus z \simeq x \oplus (y \oplus z)$ Neutral element: $x \oplus 0 \simeq x$ Involutivity: $x \oplus x \simeq 0$

- \blacktriangleright a relation \prec for occurrence: if x , y and z are different terms,
	- \triangleright y occurs in $x \oplus y \oplus z$

Reasoning on such systems involves

 \triangleright comparing terms up to AC + involutivity of \oplus :

Commutativity: $x \oplus y \simeq y \oplus x$ Associativity: $(x \oplus y) \oplus z \simeq x \oplus (y \oplus z)$ Neutral element: $x \oplus 0 \simeq x$ Involutivity: $x \oplus x \simeq 0$

- \blacktriangleright a relation \prec for occurrence: if x , y and z are different terms,
	- \triangleright y occurs in $x \oplus y \oplus z$
	- **►** but y does not occur in $x \oplus y \oplus z \oplus y$

Reasoning on such systems involves

 \triangleright comparing terms up to AC + involutivity of \oplus :

Commutativity: $x \oplus y \simeq y \oplus x$ Associativity: $(x \oplus y) \oplus z \simeq x \oplus (y \oplus z)$ Neutral element: $x \oplus 0 \simeq x$ Involutivity: $x \oplus x \simeq 0$

- \blacktriangleright a relation \prec for occurrence: if x , y and z are different terms,
	- \triangleright y occurs in $x \oplus y \oplus z$
	- **►** but y does not occur in $x \oplus y \oplus z \oplus y$

Reasoning on such systems involves

 \triangleright comparing terms up to AC + involutivity of \oplus :

Commutativity: $x \oplus y \simeq y \oplus x$ Associativity: $(x \oplus y) \oplus z \simeq x \oplus (y \oplus z)$ Neutral element: $x \oplus 0 \simeq x$ Involutivity: $x \oplus x \simeq 0$

 \blacktriangleright a relation \prec for occurrence: if x , y and z are different terms,

- \triangleright y occurs in $x \oplus y \oplus z$
- **►** but y does not occur in $x \oplus y \oplus z \oplus y$

 $x \prec y$ if $x \simeq y$ $x \preceq t$ if $t \simeq x \oplus y_0 \ldots \oplus y_n$ and $x \nless y_i$ for all i, $0 \le i \le n$

Reasoning on such systems involves

 \triangleright comparing terms up to AC + involutivity of \oplus :

Commutativity: $x \oplus y \simeq y \oplus x$ Associativity: $(x \oplus y) \oplus z \simeq x \oplus (y \oplus z)$ Neutral element: $x \oplus 0 \simeq x$ Involutivity: $x \oplus x \simeq 0$

 \blacktriangleright a relation \prec for occurrence: if x , y and z are different terms,

- \triangleright y occurs in $x \oplus y \oplus z$
- **►** but y does not occur in $x \oplus y \oplus z \oplus y$

 $x \prec y$ if $x \simeq y$ $x \preceq t$ if $t \simeq x \oplus y_0 \ldots \oplus y_n$ and $x \nless y_i$ for all i, $0 \le i \le n$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

 \rightarrow normalization is needed!

Outline

[Motivation](#page-1-0)

[The case of cryptographic systems](#page-1-0) [State of the art](#page-7-0) [Back to cryptographic systems](#page-22-0)

[Solving strategies](#page-30-0)

[Solution \(intuitive\)](#page-49-0)

[Basic idea](#page-49-0) [Analyse of](#page-57-0) T [Decomposing](#page-62-0) T [Stratifying and normalizing a term](#page-65-0)

イロト イ部 トイモト イモト

È

 $2Q$

[Issues](#page-74-0)

- [Lifting](#page-74-0)
- [Alternation](#page-87-0)
- [Forbid fake inclusions](#page-93-0)
- [Fixpoints](#page-98-0)
- [Conversion rule](#page-104-0)

Replace equations with rewrite rules

Replace equations with rewrite rules

Commutativity: find an suitable well ordering on terms

Replace equations with rewrite rules

Commutativity: find an suitable well ordering on terms

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$

Functional programming approach:

 \triangleright Not very difficult – use general recursion

Replace equations with rewrite rules

Commutativity: find an suitable well ordering on terms

Functional programming approach:

- \triangleright Not very difficult use general recursion
- \blacktriangleright Just boring

Replace equations with rewrite rules

Commutativity: find an suitable well ordering on terms

Functional programming approach:

- \triangleright Not very difficult use general recursion
- \blacktriangleright Just boring

Replace equations with rewrite rules

Commutativity: find an suitable well ordering on terms

Functional programming approach:

- \triangleright Not very difficult use general recursion
- \blacktriangleright Just boring

In a type theoretic framework, termination proof mandatory and non-trivial:

।
≮□ K K@ K K E K K E K T E

 \triangleright combination of polynomial and lexicographic ordering

Replace equations with rewrite rules

Commutativity: find an suitable well ordering on terms

Functional programming approach:

- \triangleright Not very difficult use general recursion
- \blacktriangleright Just boring

In a type theoretic framework, termination proof mandatory and non-trivial:

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$

- \triangleright combination of polynomial and lexicographic ordering
- \triangleright other approaches (lpo, rpo,...): overkill?

Replace equations with rewrite rules

Commutativity: find an suitable well ordering on terms

Functional programming approach:

- \triangleright Not very difficult use general recursion
- \blacktriangleright Just boring

In a type theoretic framework, termination proof mandatory and non-trivial:

.
K □ K K @ K K 공 K K 공 K (공

- \triangleright combination of polynomial and lexicographic ordering
- \triangleright other approaches (lpo, rpo,...): overkill?
- \triangleright AC matching: a non trivial matter

Step 1

 \triangleright Consider a more structured version of t

Step 1

 \triangleright Consider a more structured version of t

Step 1

- \triangleright Consider a more structured version of t
	- $=$ provide an accurate and informative typing to t

Step 1

- \triangleright Consider a more structured version of t
	- $=$ provide an accurate and informative typing to t

Step 2

 \triangleright Normalize by structural induction on the newly typed version of t

Step 1

- \triangleright Consider a more structured version of t
	- $=$ provide an accurate and informative typing to t

Step 2

 \triangleright Normalize by structural induction on the newly typed version of t

Step 1

- \triangleright Consider a more structured version of t
	- $=$ provide an accurate and informative typing to t

Step 2

 \triangleright Normalize by structural induction on the newly typed version of t

Step 1 makes step 2 easy.

Step 1

 \triangleright Consider a more structured version of t

 $=$ provide an accurate and informative typing to t

Step 2

 \triangleright Normalize by structural induction on the newly typed version of t

Step 1 makes step 2 easy.

Better formulation: $t : T$ transformed into $t' : T'$ T' enriched version of T , trivial forgetful morphism $\mathcal{T}' \to \mathcal{T}$.

Step 1

 \triangleright Consider a more structured version of t

 $=$ provide an accurate and informative typing to t

Step 2

 \triangleright Normalize by structural induction on the newly typed version of t

Step 1 makes step 2 easy.

Better formulation: $t : T$ transformed into $t' : T'$ T' enriched version of T , trivial forgetful morphism $\mathcal{T}' \to \mathcal{T}$.

Interesting part $= \mathcal{T} \rightarrow \mathcal{T}'$

Outline

[Motivation](#page-1-0)

[The case of cryptographic systems](#page-1-0) [State of the art](#page-7-0) [Back to cryptographic systems](#page-22-0) [Solving strategies](#page-30-0)

[Solution \(intuitive\)](#page-49-0)

[Basic idea](#page-49-0)

[Analyse of](#page-57-0) T [Decomposing](#page-62-0) T [Stratifying and normalizing a term](#page-65-0)

[Issues](#page-74-0)

- [Lifting](#page-74-0)
- [Alternation](#page-87-0)
- [Forbid fake inclusions](#page-93-0)
- [Fixpoints](#page-98-0)
- [Conversion rule](#page-104-0)

- \blacktriangleright layering a term
- \blacktriangleright layers do not communicate: each layer possesses its own normalization function

K ロ X K 御 X K 重 X K 重 X

- \blacktriangleright layering a term
- \blacktriangleright layers do not communicate: each layer possesses its own normalization function
- \blacktriangleright in our case: need 2 layers, pasta and sauce

- \blacktriangleright layering a term
- \blacktriangleright layers do not communicate: each layer possesses its own normalization function

K ロ X K 御 X K 重 X K 重 X

- \blacktriangleright in our case: need 2 layers, pasta and sauce
- \blacktriangleright normalizing pasta = identity

- \blacktriangleright layering a term
- \blacktriangleright layers do not communicate: each layer possesses its own normalization function
- \triangleright in our case: need 2 layers, pasta and sauce
- \blacktriangleright normalizing pasta = identity
- • normalizi[ng](#page-57-0)sa[u](#page-56-0)[c](#page-49-0)e $=$ re[a](#page-56-0)rranging $+$ rem[ov](#page-55-0)ing [d](#page-50-0)u[p](#page-57-0)[li](#page-48-0)ca[te](#page-57-0)[s](#page-48-0)

Outline

[Motivation](#page-1-0)

[The case of cryptographic systems](#page-1-0) [State of the art](#page-7-0) [Back to cryptographic systems](#page-22-0) [Solving strategies](#page-30-0)

[Solution \(intuitive\)](#page-49-0)

[Basic idea](#page-49-0)

[Analyse of](#page-57-0) T

[Decomposing](#page-62-0) T [Stratifying and normalizing a term](#page-65-0)

[Issues](#page-74-0)

- [Lifting](#page-74-0)
- [Alternation](#page-87-0)
- [Forbid fake inclusions](#page-93-0)
- [Fixpoints](#page-98-0)
- [Conversion rule](#page-104-0)

 $\sqrt{\ }$ erimao

Inductive T: Set :=
\n| Zero: T
\n| PC: publicconst
$$
\rightarrow
$$
 T
\n| E: $T \rightarrow T \rightarrow T$
\n| Xor: $T \rightarrow T \rightarrow T$
\n| Hash: $T \rightarrow T \rightarrow T$.

Inductive $T: Set :=$ Zero: T $PC: public_const \rightarrow T$ | SC: secret_const $\rightarrow T$ $E: \mathcal{T} \to \mathcal{T} \to \mathcal{T}$ Xor: $\mathcal{T} \to \mathcal{T} \to \mathcal{T}$ Hash: $\mathcal{T} \rightarrow \mathcal{T} \rightarrow \mathcal{T}$.

K ロ K K 御 K K 君 K K 君 K

ă

Inductive $T: Set :=$ Zero: T $PC: public_const \rightarrow T$ | SC: secret_const $\rightarrow T$ $E: \mathcal{T} \to \mathcal{T} \to \mathcal{T}$ Xor: $\mathcal{T} \to \mathcal{T} \to \mathcal{T}$ Hash: $\mathcal{T} \rightarrow \mathcal{T} \rightarrow \mathcal{T}$. E H P ⊕ ⊕ S 0 ⊕ E $\overline{0}$ S ⊕ S 0

ă

キロメ メ都 メイモメ メモメ

Outline

[Motivation](#page-1-0)

[The case of cryptographic systems](#page-1-0) [State of the art](#page-7-0) [Back to cryptographic systems](#page-22-0) [Solving strategies](#page-30-0)

[Solution \(intuitive\)](#page-49-0)

[Basic idea](#page-49-0) [Analyse of](#page-57-0) T

[Decomposing](#page-62-0) T

[Stratifying and normalizing a term](#page-65-0)

[Issues](#page-74-0)

- [Lifting](#page-74-0)
- [Alternation](#page-87-0)
- [Forbid fake inclusions](#page-93-0)
- [Fixpoints](#page-98-0)
- [Conversion rule](#page-104-0)

Decomposing T

Inductive
$$
T_x
$$
:Set :=
\n $|X_{\text{-}}Zero: T_x$
\n $|X_{\text{-}}Xor: T_x \rightarrow T_x \rightarrow T_x$

Inductive
$$
T_n
$$
: Set :=
\n| NX_PC : public_const $\rightarrow T_n$
\n| NX_SC : secret_const $\rightarrow T_n$
\n| NX_E : $T_n \rightarrow T_n \rightarrow T_n$
\n| NX_Hash : $T_n \rightarrow T_n \rightarrow T_n$

Decomposing T

Variable A : Set.

Inductive
$$
T_x
$$
:Set :=
\n
$$
\begin{array}{ccc}\n| & X_Zero: T_x \\
| & X_Xor: T_x \rightarrow T_x \rightarrow T_x \\
| & X_ns: A \rightarrow T_x\n\end{array}
$$

Inductive
$$
T_n
$$
: Set :=
\n| NX_PC : $public_const \rightarrow T_n$
\n| NX_SC : $secret_const \rightarrow T_n$
\n| $NX_E : T_n \rightarrow T_n \rightarrow T_n$
\n| $NX_Hash : T_n \rightarrow T_n \rightarrow T_n$
\n| $NX_sum : A \rightarrow T_n$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | 2000

Outline

[Motivation](#page-1-0)

[The case of cryptographic systems](#page-1-0) [State of the art](#page-7-0) [Back to cryptographic systems](#page-22-0) [Solving strategies](#page-30-0)

[Solution \(intuitive\)](#page-49-0)

[Basic idea](#page-49-0) [Analyse of](#page-57-0) T [Decomposing](#page-62-0) T [Stratifying and normalizing a term](#page-65-0)

イロト イ部 トイモト イモト

È

 $2Q$

[Issues](#page-74-0)

[Lifting](#page-74-0) [Alternation](#page-87-0) [Forbid fake inclusions](#page-93-0) [Fixpoints](#page-98-0) [Conversion rule](#page-104-0)

Step 1 Translate a term t into t' according to the mapping $0 \mapsto X$ ₋Zero, Xor $\mapsto X$ ₋Xor, PC \mapsto NX₋PC, etc.

Step 1 Translate a term t into t' according to the mapping $0 \mapsto X$ Zero, Xor $\mapsto X$ Xor, PC $\mapsto NX$ PC, etc.

Step 2 A type is sortable if it is equipped with a decidable equality and a decidable total ordering. If A is sortable, then

Step 1 Translate a term t into t' according to the mapping $0 \mapsto X$ Zero, Xor $\mapsto X$ Xor, PC $\mapsto NX$ PC, etc.

Step 2 A type is sortable if it is equipped with a decidable equality and a decidable total ordering. If A is sortable, then

 \blacktriangleright $T_n(A)$ is sortable as well;

Step 1 Translate a term t into t' according to the mapping $0 \mapsto X$ Zero, Xor $\mapsto X$ Xor, PC $\mapsto NX$ PC, etc.

Step 2 A type is sortable if it is equipped with a decidable equality and a decidable total ordering. If A is sortable, then

- \blacktriangleright $T_n(A)$ is sortable as well;
- ighthrow the multiset of A-leaves of a $T_{\rm x}(A)$ -term can be sorted (and removed when possible) into a list;

Step 1 Translate a term t into t' according to the mapping $0 \mapsto X$ Zero, Xor $\mapsto X$ Xor, PC $\mapsto NX$ PC, etc.

Step 2 A type is sortable if it is equipped with a decidable equality and a decidable total ordering. If A is sortable, then

- \blacktriangleright $T_n(A)$ is sortable as well;
- ighthrow the multiset of A-leaves of a $T_{\rm x}(A)$ -term can be sorted (and removed when possible) into a list;

 \blacktriangleright *list(A)* is sortable.
Stratifying and normalizing a term

Step 1 Translate a term t into t' according to the mapping $0 \mapsto X$ Zero, Xor $\mapsto X$ Xor, PC $\mapsto NX$ PC, etc.

The typing of t' is $\mathcal{T}_{\mathsf{x}}(\mathcal{T}_{\mathsf{n}}(\mathcal{T}_{\mathsf{x}}(\ldots(\emptyset))))$ for k large enough. k layers

Step 2 A type is sortable if it is equipped with a decidable equality and a decidable total ordering. If A is sortable, then

- \blacktriangleright $T_n(A)$ is sortable as well;
- In the multiset of A-leaves of a $T_{x}(A)$ -term can be sorted (and removed when possible) into a list;

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right. \quad \left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right. \quad \left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right. \quad \left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right. \quad \left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right. \quad \left\{ \begin{array}{ccc$

 \blacktriangleright list(A) is sortable.

Stratifying and normalizing a term

Step 1 Translate a term t into t' according to the mapping $0 \mapsto X$ Zero, Xor $\mapsto X$ Xor, PC $\mapsto NX$ PC, etc.

The typing of t' is $\mathcal{T}_{\mathsf{x}}(\mathcal{T}_{\mathsf{n}}(\mathcal{T}_{\mathsf{x}}(\ldots(\emptyset))))$ for k large enough. k layers

Step 2 A type is sortable if it is equipped with a decidable equality and a decidable total ordering. If A is sortable, then

- \blacktriangleright $T_n(A)$ is sortable as well;
- In the multiset of A-leaves of a $T_{x}(A)$ -term can be sorted (and removed when possible) into a list;

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right. \quad \left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right. \quad \left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right. \quad \left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right. \quad \left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right. \quad \left\{ \begin{array}{ccc$

 \blacktriangleright list(A) is sortable.

Outline

[Motivation](#page-1-0)

[The case of cryptographic systems](#page-1-0) [State of the art](#page-7-0) [Back to cryptographic systems](#page-22-0) [Solving strategies](#page-30-0)

[Solution \(intuitive\)](#page-49-0)

[Basic idea](#page-49-0) [Analyse of](#page-57-0) T [Decomposing](#page-62-0) T [Stratifying and normalizing a term](#page-65-0)

[Issues](#page-74-0)

[Lifting](#page-74-0)

[Alternation](#page-87-0) [Forbid fake inclusions](#page-93-0) [Fixpoints](#page-98-0) [Conversion rule](#page-104-0)

$\mathcal{L}_{\mathsf{x}}\,k \,\stackrel{\text{def}}{=\,}\, \underbrace{\mathcal{T}_{\mathsf{x}}(\mathcal{T}_{\mathsf{n}}(\mathcal{T}_{\mathsf{x}}(\dots(\emptyset))))}$ for k large enough. k layers

$\mathcal{L}_{\mathsf{x}}\,k \,\stackrel{\text{def}}{=\,}\, \underbrace{\mathcal{T}_{\mathsf{x}}(\mathcal{T}_{\mathsf{n}}(\mathcal{T}_{\mathsf{x}}(\dots(\emptyset))))}$ for k large enough. k layers \blacktriangleright What is k ?

$$
\mathcal{L}_{X} k \stackrel{\text{def}}{=} \underbrace{\mathcal{T}_{X}(\mathcal{T}_{n}(\mathcal{T}_{X}(\dots(\emptyset))))}_{k \text{ layers}} \text{ for } k \text{ large enough.}
$$

- \blacktriangleright What is k ?
- \triangleright The number of layers on the left subterm and on the right subterm are different in general.

$$
\mathcal{L}_{X} k \stackrel{\text{def}}{=} \underbrace{\mathcal{T}_{X}(\mathcal{T}_{n}(\mathcal{T}_{X}(\dots(\emptyset))))}_{k \text{ layers}} \text{ for } k \text{ large enough.}
$$

- \blacktriangleright What is k ?
- \triangleright The number of layers on the left subterm and on the right subterm are different in general.

 4 ロ) 4 \overline{r}) 4 \overline{z}) 4 \overline{z})

ă

$$
\mathcal{L}_{X} k \stackrel{\text{def}}{=} \underbrace{\mathcal{T}_{X}(\mathcal{T}_{n}(\mathcal{T}_{X}(\dots(\emptyset))))}_{k \text{ layers}}
$$
 for k large enough.

- \blacktriangleright What is k ?
- \triangleright The number of layers on the left subterm and on the right subterm are different in general.

$$
\mathcal{L}_{X} k \stackrel{\text{def}}{=} \underbrace{\mathcal{T}_{X}(\mathcal{T}_{n}(\mathcal{T}_{X}(\dots(\emptyset))))}_{k \text{ layers}} \text{ for } k \text{ large enough.}
$$

- \blacktriangleright What is k ?
- \triangleright The number of layers on the left subterm and on the right subterm are different in general.

Take the max

Standard solution: $\{e \in \mathbb{R}^n : \{e \in \mathbb{R}^n : \mathbb{R}^n\}$

$$
\mathcal{L}_{X} k \stackrel{\text{def}}{=} \underbrace{\mathcal{T}_{X}(\mathcal{T}_{n}(\mathcal{T}_{X}(\dots(\emptyset))))}_{k \text{ layers}}
$$
 for k large enough.

- \blacktriangleright What is k ?
- \triangleright The number of layers on the left subterm and on the right subterm are different in general.

- Standard solution: $\{e \in \mathbb{R}^n : \{e \in \mathbb{R}^n : \mathbb{R}^n\}$
	- \triangleright interactive definition, large proof term

$$
\mathcal{L}_{X} k \stackrel{\text{def}}{=} \underbrace{\mathcal{T}_{X}(\mathcal{T}_{n}(\mathcal{T}_{X}(\dots(\emptyset))))}_{k \text{ layers}}
$$
 for k large enough.

- \blacktriangleright What is k ?
- \triangleright The number of layers on the left subterm and on the right subterm are different in general.

K ロ ≯ K 倒 ≯ K 差 ≯ K 差 ≯

 \mathbb{B}

- Standard solution: $\{e \in \mathbb{R}^n : \{e \in \mathbb{R}^n : \mathbb{R}^n\}$
	- \blacktriangleright interactive definition, large proof term
	- lacktriangleright heavy encoding of $m n$ or $n m$

$$
\mathcal{L}_{X} k \stackrel{\text{def}}{=} \underbrace{\mathcal{T}_{X}(\mathcal{T}_{n}(\mathcal{T}_{X}(\dots(\emptyset))))}_{k \text{ layers}}
$$
 for k large enough.

- \blacktriangleright What is k ?
- \triangleright The number of layers on the left subterm and on the right subterm are different in general.

◆ロト ◆*団***ト → ミト → ミト**

B

- Standard solution: $\{e \in \mathbb{R}^n : f \in \mathbb{$
	- \blacktriangleright interactive definition, large proof term
	- lacktriangleright heavy encoding of $m n$ or $n m$
	- rian need to lift \mathcal{L}_x n and \mathcal{L}_x m to \mathcal{L}_x (max n m)

$$
\mathcal{L}_{X} k \stackrel{\text{def}}{=} \underbrace{\mathcal{T}_{X}(\mathcal{T}_{n}(\mathcal{T}_{X}(\dots(\emptyset))))}_{k \text{ layers}}
$$
 for k large enough.

- \blacktriangleright What is k ?
- \triangleright The number of layers on the left subterm and on the right subterm are different in general.

K ロ ≯ K 倒 ≯ K 差 ≯ K 差 ≯

B

- Standard solution: $\{e \in \mathbb{R}^n : f \in \mathbb{$
	- \blacktriangleright interactive definition, large proof term
	- lacktriangleright heavy encoding of $m n$ or $n m$
	- rian need to lift \mathcal{L}_x n and \mathcal{L}_x m to \mathcal{L}_x (max n m)
- ► Lightweight approach: max $n m \stackrel{\text{def}}{=} m + (n m)$

$$
\mathcal{L}_{X} k \stackrel{\text{def}}{=} \underbrace{\mathcal{T}_{X}(\mathcal{T}_{n}(\mathcal{T}_{X}(\dots(\emptyset))))}_{k \text{ layers}}
$$
 for k large enough.

- \blacktriangleright What is k ?
- \triangleright The number of layers on the left subterm and on the right subterm are different in general.

Take the max

- Standard solution: $\{e \in \mathbb{R}^n : f \in \mathbb{$
	- \blacktriangleright interactive definition, large proof term
	- lacktriangleright heavy encoding of $m n$ or $n m$
	- reed to lift \mathcal{L}_x n and \mathcal{L}_x m to \mathcal{L}_x (max n m)
- ► Lightweight approach: max $n m \stackrel{\text{def}}{=} m + (n m)$
	- If lift $\mathcal{L}_x : \mathcal{L}_x k \to \mathcal{L}_x (k + d)$, lift $\mathcal{L}_n k \to \mathcal{L}_n (k + d)$

◆ロト→ 伊ト→ モト→ モト

 \equiv

$$
\mathcal{L}_{X} k \stackrel{\text{def}}{=} \underbrace{\mathcal{T}_{X}(\mathcal{T}_{n}(\mathcal{T}_{X}(\dots(\emptyset))))}_{k \text{ layers}}
$$
 for k large enough.

- \blacktriangleright What is k ?
- \triangleright The number of layers on the left subterm and on the right subterm are different in general.

Take the max

- Standard solution: $\{e \in \mathbb{R}^n : f \in \mathbb{$
	- \blacktriangleright interactive definition, large proof term
	- lacktriangleright heavy encoding of $m n$ or $n m$
	- rian need to lift \mathcal{L}_x n and \mathcal{L}_x m to \mathcal{L}_x (max n m)
- ► Lightweight approach: max $n m \stackrel{\text{def}}{=} m + (n m)$
	- If lift $\mathcal{L}_x : \mathcal{L}_x k \to \mathcal{L}_x (k + d)$, lift $\mathcal{L}_n k \to \mathcal{L}_n (k + d)$

 \equiv

 \triangleright No need to proof that max is the max.

Outline

[Motivation](#page-1-0)

[The case of cryptographic systems](#page-1-0) [State of the art](#page-7-0) [Back to cryptographic systems](#page-22-0) [Solving strategies](#page-30-0)

[Solution \(intuitive\)](#page-49-0)

[Basic idea](#page-49-0) [Analyse of](#page-57-0) T [Decomposing](#page-62-0) T [Stratifying and normalizing a term](#page-65-0)

[Issues](#page-74-0)

[Lifting](#page-74-0)

[Alternation](#page-87-0)

[Forbid fake inclusions](#page-93-0)

[Fixpoints](#page-98-0)

[Conversion rule](#page-104-0)

 $\begin{array}{cccccccccccccc} 4 & \Box & 1 & 4 &$

Well designed types help us to design programs

Well designed types help us to design programs

Many functions are defined by mutual induction, e.g. lift_x and lift_n

Well designed types help us to design programs

Many functions are defined by mutual induction, e.g. lift_x and lift_n

Control them using alternating natural numbers

Well designed types help us to design programs

Many functions are defined by mutual induction, e.g. lift_x and lift_n

Control them using alternating natural numbers

.
K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할

Inductive
$$
alt_{even}
$$
: Set :=
\n $|Q_e$: alt_{even}
\n $|S_{o\rightarrow e}$: $alt_{odd} \rightarrow alt_{even}$
\nwith alt_{odd} : Set :=
\n $|S_{e\rightarrow o}$: $alt_{even} \rightarrow alt_{odd}$

Outline

[Motivation](#page-1-0)

[The case of cryptographic systems](#page-1-0) [State of the art](#page-7-0) [Back to cryptographic systems](#page-22-0) [Solving strategies](#page-30-0)

[Solution \(intuitive\)](#page-49-0)

[Basic idea](#page-49-0) [Analyse of](#page-57-0) T [Decomposing](#page-62-0) T [Stratifying and normalizing a term](#page-65-0)

[Issues](#page-74-0)

[Lifting](#page-74-0)

[Alternation](#page-87-0)

[Forbid fake inclusions](#page-93-0)

[Fixpoints](#page-98-0) [Conversion rule](#page-104-0)

Inductive
$$
T_x
$$
: Set :=
\n $|X_{\text{--}}\rangle$ $\begin{array}{ccc} & & \mathcal{T}_x \\ |X_{\text{--}}\mathbf{n}S : & A \rightarrow T_x \\ |X_{\text{--}}\mathbf{X}S & & \mathcal{T}_x \rightarrow T_x \end{array}$

Inductive
$$
T_n
$$
: Set :=
\n| NX_PC : publicconst $\rightarrow T_n$
\n| NX_SC : secretconst $\rightarrow T_n$
\n| NX_sum : $A \rightarrow T_n$
\n| NX_E : $T_n \rightarrow T_n \rightarrow T_n$
\n| NX_Hash : $T_n \rightarrow T_n \rightarrow T_n$

Inductive
$$
T_x
$$
: Set :=
\n $|X_{\text{--}}\rangle$ $\begin{array}{ccc} & & \mathcal{T}_x \\ |X_{\text{--}}\mathbf{n}S : & A \rightarrow T_x \\ |X_{\text{--}}\mathbf{X}\mathbf{n}S : & T_x \rightarrow T_x \rightarrow T_x \end{array}$

Inductive
$$
T_n
$$
: Set :=
\n|NX_PC: public_{const} \rightarrow T_n
\n|NX_SC: secret_{const} \rightarrow T_n
\n|NX_{-sum}: A \rightarrow T_n
\n|NX_E: $T_n \rightarrow T_n \rightarrow T_n$
\n|NX_{-Hash}: $T_n \rightarrow T_n \rightarrow T_n$

 X_n s (NX_sum (X_n s (NX_sum (...))))

 $\begin{array}{cccccccccccccc} 4 & \Box & \triangleright & 4 & \overline{\partial} & \triangleright & 4 & \overline{\mathbb{R}} & \cdots \end{array}$

 2990

Inductive
$$
T_x
$$
: $bool \rightarrow Set :=$
\n
$$
\begin{array}{ccc}\n| X_Zero: \forall b, T_x b \\
| X_ns: \forall b, Is_true b \rightarrow A \rightarrow T_x b \\
| X_Xor: \forall b, T_x true \rightarrow T_x true \rightarrow T_x b\n\end{array}
$$

Inductive
$$
T_n
$$
: $bool \rightarrow Set :=$
\n $|NX_PC : \forall b, public_const \rightarrow T_n b$
\n $|NX_SC : \forall b, secret_const \rightarrow T_n b$
\n $|NX_sum : \forall b, Is_true b \rightarrow A \rightarrow T_n b$
\n $|NX_E : \forall b, T_n true \rightarrow T_n true \rightarrow T_n b$
\n $|NX_Hash : \forall b, T_n true \rightarrow T_n true \rightarrow T_n b$

 2980

重

 X_n s (NX_sum (X_n s (NX_sum (...))))

Outline

[Motivation](#page-1-0)

[The case of cryptographic systems](#page-1-0) [State of the art](#page-7-0) [Back to cryptographic systems](#page-22-0) [Solving strategies](#page-30-0)

[Solution \(intuitive\)](#page-49-0)

[Basic idea](#page-49-0) [Analyse of](#page-57-0) T [Decomposing](#page-62-0) T [Stratifying and normalizing a term](#page-65-0)

[Issues](#page-74-0)

[Lifting](#page-74-0) [Alternation](#page-87-0) [Forbid fake inclusions](#page-93-0) [Fixpoints](#page-98-0)

[Conversion rule](#page-104-0)

 \blacktriangleright Prefer fixpoints: built-in computation, no inversion

- \blacktriangleright Prefer fixpoints: built-in computation, no inversion
- \blacktriangleright Use map combinators

- \blacktriangleright Prefer fixpoints: built-in computation, no inversion
- \blacktriangleright Use map combinators

- \blacktriangleright Prefer fixpoints: built-in computation, no inversion
- \blacktriangleright Use map combinators

Many 10 lines definitions, almost no theorem

- \blacktriangleright Prefer fixpoints: built-in computation, no inversion
- \blacktriangleright Use map combinators

Many 10 lines definitions, almost no theorem

Fixpoint *lift* _*lasagna* _ *x*
$$
e_1
$$
 e_2 {*struct* e_1 } :

\n \mathcal{L}_x $e_1 \rightarrow \mathcal{L}_x$ (e₁ + e₂) :=

\nmatch e_1 return \mathcal{L}_x $e_1 \rightarrow \mathcal{L}_x$ (e₁ + e₂) with

\n $|0_e \Rightarrow$ fun $emp \Rightarrow$ match emp with end

\n $|S_{o \rightarrow e}$ $o_1 \Rightarrow$ map_x (lift₋ *lasagna* _ *n* o_1 e_2) false

\nend with *lift* _*lasagna* _ *n* o_1 e_2 {*struct* o_1 } :

\n \mathcal{L}_n $o_1 \rightarrow \mathcal{L}_n$ ($o_1 + e_2$) :=

\nmatch o_1 return \mathcal{L}_n $o_1 \rightarrow \mathcal{L}_n$ ($o_1 + e_2$) with

\n $|S_{e \rightarrow o}$ $e_1 \Rightarrow$ map_n (lift₋ *lasagna* _ *x* e_1 e_2) false

\nend.

Outline

[Motivation](#page-1-0)

[The case of cryptographic systems](#page-1-0) [State of the art](#page-7-0) [Back to cryptographic systems](#page-22-0) [Solving strategies](#page-30-0)

[Solution \(intuitive\)](#page-49-0)

[Basic idea](#page-49-0) [Analyse of](#page-57-0) T [Decomposing](#page-62-0) T [Stratifying and normalizing a term](#page-65-0)

[Issues](#page-74-0)

[Lifting](#page-74-0) [Alternation](#page-87-0) [Forbid fake inclusions](#page-93-0) [Fixpoints](#page-98-0)

[Conversion rule](#page-104-0)

Conversion rule

 $\sqrt{\ }$ erimao $\begin{picture}(130,10) \put(0,0){\line(1,0){10}} \put(0$

Conversion rule

Used everywhere

Conversion rule

Used everywhere

Definition
$$
bin_xor
$$

\n($bin: \forall A b, T_x A true \rightarrow T_x A true \rightarrow T_x A b$) $o_1 o_2 b$
\n($l_1: lasagna_cand_x o_1 true$)
\n($l_2: lasagna_cand_x o_2 true$)
\n $lasagna_cand_x (max_0 o_1 o_2) b :=$
\n $bin (L_n (max_0 o_1 o_2)) b$
\n($lift_lasagna_cand_x true o_1 (o_2 - o_1) l_1$)
\n($coerce_max_comm$
\n($lift_lasagna_cand_x true o_2 (o_1 - o_2) l_2$).

Type theory is flexible

 \blacktriangleright Polymorphism

- \blacktriangleright Polymorphism
- \blacktriangleright Mutually inductive types

- \blacktriangleright Polymorphism
- \blacktriangleright Mutually inductive types
- \blacktriangleright Dependent types

- \blacktriangleright Polymorphism
- \blacktriangleright Mutually inductive types
- \blacktriangleright Dependent types
- \blacktriangleright Conversion rule

Type theory is flexible

- \blacktriangleright Polymorphism
- \blacktriangleright Mutually inductive types

K ロ X K 御 X K 重 X K 重 X

÷,

- \blacktriangleright Dependent types
- \blacktriangleright Conversion rule
- ▶ JMEQ not used

Type theory is flexible

- \blacktriangleright Polymorphism
- \blacktriangleright Mutually inductive types

K ロ X K 御 X K 重 X K 重 X

÷,

- \blacktriangleright Dependent types
- \blacktriangleright Conversion rule
- ▶ JMEQ not used

Type theory is flexible

- \blacktriangleright Polymorphism
- \blacktriangleright Mutually inductive types
- \blacktriangleright Dependent types
- \blacktriangleright Conversion rule
- ▶ JMEQ not used (until now)

K ロ X K 御 X K 重 X K 重 X

÷,

Type theory is flexible

- \blacktriangleright Polymorphism
- \blacktriangleright Mutually inductive types
- \blacktriangleright Dependent types
- \blacktriangleright Conversion rule
- ▶ JMEQ not used (until now)

K ロ X K 御 X K 重 X K 重 X

÷,