Proving termination using dependent types: the case of xor-terms

J.-F. Monin J. Courant

VERIMAG Grenoble, France

GDR LAC, Chambery, 2007

Outline

Motivation

The case of cryptographic systems

State of the art Back to cryptographic systems Solving strategies

Solution (intuitive)

Basic idea Analyse of \mathcal{T} Decomposing \mathcal{T} Stratifying and normalizing a term

lssues

- Lifting
- Alternation
- Forbid fake inclusions
- Fixpoints
- Conversion rule

Conclusion

- Protocols
- Security APIs

- Protocols
- Security APIs
- Xor is ubiquitous

- Protocols
- Security APIs

Xor is ubiquitous

Examples from a security API called CCA (Common Cryptographic Architecture):

$$x, y, \{z\}_{x \oplus KP \oplus KM} \mapsto \{z \oplus y\}_{x \oplus KP \oplus KM}$$
$$x, y, \{z\}_{x \oplus KP \oplus KM} \mapsto \{z \oplus y\}_{x \oplus KM}$$

- Protocols
- Security APIs

Xor is ubiquitous

Examples from a security API called CCA (Common Cryptographic Architecture):

$$x, y, \{z\}_{x \oplus KP \oplus KM} \mapsto \{z \oplus y\}_{x \oplus KP \oplus KM}$$
$$x, y, \{z\}_{x \oplus KP \oplus KM} \mapsto \{z \oplus y\}_{x \oplus KM}$$

Reasoning involves:

Commutativity: $x \oplus y \simeq y \oplus x$ Associativity: $(x \oplus y) \oplus z \simeq x \oplus (y \oplus z)$ Neutral element: $x \oplus 0 \simeq x$ Involutivity: $x \oplus x \simeq 0$

- 日本 - (理本 - (日本 - (日本 - 日本

Outline

Motivation

The case of cryptographic systems

State of the art

Back to cryptographic systems Solving strategies

Solution (intuitive)

Basic idea Analyse of \mathcal{T} Decomposing \mathcal{T} Stratifying and normalizing a term

lssues

- Lifting
- Alternation
- Forbid fake inclusions
- Fixpoints
- Conversion rule

Conclusion

We are given

```
• A type of terms \mathcal{T} with constructors C_k:
Inductive \mathcal{T}: Set :=
\mid C_1 : \mathcal{T}
\vdots
\mid C_k : \ldots \to \mathcal{T} \ldots \to \mathcal{T} \ldots \to \mathcal{T}
\vdots
```


We are given

A type of terms T with constructors C_k: Inductive T: Set := | C₁ : T : | C_k : ... → T ... → T ... → T :
A congruence ≃ : T → T → Prop

We are given

• A type of terms \mathcal{T} with constructors C_k : Inductive \mathcal{T} : Set := $| C_1 : T$ $| \ C_{\Bbbk}:\ldots \to \mathcal{T}\ldots \to \mathcal{T} \ldots \to \mathcal{T}$ A congruence $\simeq : \mathcal{T} \to \mathcal{T} \to Prop$ For each constructor C_k $\forall a, \ldots, x_1, v_1, b, \ldots, x_2, v_2, \ldots, c,$ $x_1 \simeq y_1 \rightarrow x_2 \simeq y_2 \rightarrow$ $C_k a \dots x_1 b \dots y_1 c \simeq C_k a \dots x_2 b \dots y_2 c$

・ロット 御マ キョット キョン

-

We are given

A type of terms \mathcal{T} with constructors C_k : Inductive \mathcal{T} : Set := $| C_1 : T$ $| C_{\mathsf{k}} : \ldots \to \mathcal{T} \ldots \to \mathcal{T} \ldots \to \mathcal{T}$ A congruence $\simeq : \mathcal{T} \to \mathcal{T} \to Prop$ For each constructor C_k $\forall a, \ldots, x_1, y_1, b, \ldots, x_2, y_2, \ldots, c,$ $x_1 \simeq y_1 \rightarrow x_2 \simeq y_2 \rightarrow$ $C_k a \dots x_1 b \dots y_1 c \simeq C_k a \dots x_2 b \dots y_2 c$ • specific laws, e.g. $\forall xy, C_2 \times C_1 y \simeq C_2 y \times C_2 = C_2 \times C_$

We are given

A type of terms \mathcal{T} with constructors C_k : Inductive \mathcal{T} : Set := $| C_1 : T$ $| C_{\mathsf{k}} : \ldots \to \mathcal{T} \ldots \to \mathcal{T} \ldots \to \mathcal{T}$ A congruence $\simeq : \mathcal{T} \to \mathcal{T} \to Prop$ For each constructor C_k $\forall a, \ldots, x_1, y_1, b, \ldots, x_2, y_2, \ldots, c,$ $x_1 \simeq y_1 \rightarrow x_2 \simeq y_2 \rightarrow$ $C_k a \dots x_1 b \dots y_1 c \simeq C_k a \dots x_2 b \dots y_2 c$ • specific laws, e.g. $\forall xy, C_2 \times C_1 y \simeq C_2 y \times C_2 = C_2 \times C_$

We are given

• A type of terms \mathcal{T} with constructors C_k : Inductive \mathcal{T} : Set := $|C_1:T$ $| C_{\mathsf{k}} : \ldots \to \mathcal{T} \ldots \to \mathcal{T} \ldots \to \mathcal{T}$ A congruence $\simeq : \mathcal{T} \to \mathcal{T} \to Prop$ For each constructor C_k $\forall a, \ldots, x_1, v_1, b, \ldots, x_2, v_2, \ldots, c,$ $x_1 \simeq y_1 \rightarrow x_2 \simeq y_2 \rightarrow$ $C_k a \dots x_1 b \dots y_1 c \simeq C_k a \dots x_2 b \dots y_2 c$ • specific laws, e.g. $\forall xy, C_2 x C_1 y \simeq C_2 y x$

We want to reason on ${\cal T}$ up to \simeq

finite bags represented by finite lists

finite bags represented by finite lists

algebra of formal arithmetic expressions

finite bags represented by finite lists

algebra of formal arithmetic expressions

(mobile) process calculi, chemical abstract machines

finite bags represented by finite lists

algebra of formal arithmetic expressions

 is associative, commutative, 0 is neutral
 x is associative, commutative, 1 is neutral
 x distributes over +

 (mobile) process calculi, chemical abstract machines parallel composition and choice operators are AC

► High level approach : setoids

High level approach : setoids

Explicit approach :

High level approach : setoids

- Explicit approach :
 - Define a normalization function N on T

▶ High level approach : setoids

- Explicit approach :
 - Define a normalization function N on T
 - Compare terms using syntactic equality on their norms : x ~ y iff N x = N y

・ロト ・ 一下・ ・ ヨト・ ・ ヨト

э

Outline

Motivation

The case of cryptographic systems State of the art

Back to cryptographic systems

Solving strategies

Solution (intuitive)

Basic idea Analyse of \mathcal{T} Decomposing \mathcal{T} Stratifying and normalizing a term

lssues

- Lifting
- Alternation
- Forbid fake inclusions
- Fixpoints
- Conversion rule

Conclusion

Reasoning on such systems involves

• comparing terms up to AC + involutivity of \oplus :

Commutativity: $x \oplus y \simeq y \oplus x$ Associativity: $(x \oplus y) \oplus z \simeq x \oplus (y \oplus z)$ Neutral element: $x \oplus 0 \simeq x$ Involutivity: $x \oplus x \simeq 0$

Reasoning on such systems involves

• comparing terms up to AC + involutivity of \oplus :

Commutativity: $x \oplus y \simeq y \oplus x$ Associativity: $(x \oplus y) \oplus z \simeq x \oplus (y \oplus z)$ Neutral element: $x \oplus 0 \simeq x$ Involutivity: $x \oplus x \simeq 0$

► a relation ≤ for occurrence: if x, y and z are different terms,

Reasoning on such systems involves

• comparing terms up to AC + involutivity of \oplus :

Commutativity: $x \oplus y \simeq y \oplus x$ Associativity: $(x \oplus y) \oplus z \simeq x \oplus (y \oplus z)$ Neutral element: $x \oplus 0 \simeq x$ Involutivity: $x \oplus x \simeq 0$

- ► a relation ≤ for occurrence: if x, y and z are different terms,
 - y occurs in $x \oplus y \oplus z$

Reasoning on such systems involves

• comparing terms up to AC + involutivity of \oplus :

Commutativity: $x \oplus y \simeq y \oplus x$ Associativity: $(x \oplus y) \oplus z \simeq x \oplus (y \oplus z)$ Neutral element: $x \oplus 0 \simeq x$ Involutivity: $x \oplus x \simeq 0$

- ► a relation ≤ for occurrence: if x, y and z are different terms,
 - y occurs in $x \oplus y \oplus z$
 - but y does not occur in $x \oplus y \oplus z \oplus y$

Reasoning on such systems involves

• comparing terms up to AC + involutivity of \oplus :

Commutativity: $x \oplus y \simeq y \oplus x$ Associativity: $(x \oplus y) \oplus z \simeq x \oplus (y \oplus z)$ Neutral element: $x \oplus 0 \simeq x$ Involutivity: $x \oplus x \simeq 0$

- ► a relation ≤ for occurrence: if x, y and z are different terms,
 - y occurs in $x \oplus y \oplus z$
 - but y does not occur in $x \oplus y \oplus z \oplus y$

Reasoning on such systems involves

• comparing terms up to AC + involutivity of \oplus :

Commutativity: $x \oplus y \simeq y \oplus x$ Associativity: $(x \oplus y) \oplus z \simeq x \oplus (y \oplus z)$ Neutral element: $x \oplus 0 \simeq x$ Involutivity: $x \oplus x \simeq 0$

► a relation ≤ for occurrence: if x, y and z are different terms,

- y occurs in $x \oplus y \oplus z$
- but y does not occur in $x \oplus y \oplus z \oplus y$

 $\begin{array}{ll} x \leq y & \text{if } x \simeq y \\ x \leq t & \text{if } t \simeq x \oplus y_0 \ldots \oplus y_n \\ & \text{and } x \not \leq y_i \text{ for all } i, \ 0 \leq i \leq n \end{array}$

Reasoning on such systems involves

• comparing terms up to AC + involutivity of \oplus :

Commutativity: $x \oplus y \simeq y \oplus x$ Associativity: $(x \oplus y) \oplus z \simeq x \oplus (y \oplus z)$ Neutral element: $x \oplus 0 \simeq x$ Involutivity: $x \oplus x \simeq 0$

► a relation ≤ for occurrence: if x, y and z are different terms,

- y occurs in $x \oplus y \oplus z$
- but y does not occur in $x \oplus y \oplus z \oplus y$

 $\begin{array}{ll} x \leq y & \text{if } x \simeq y \\ x \leq t & \text{if } t \simeq x \oplus y_0 \ldots \oplus y_n \\ & \text{and } x \not\leq y_i \text{ for all } i, \ 0 \leq i \leq n \end{array}$

 \rightarrow normalization is needed!

Outline

Motivation

The case of cryptographic systems State of the art Back to cryptographic systems

Solving strategies

Solution (intuitive)

Basic idea Analyse of \mathcal{T} Decomposing \mathcal{T} Stratifying and normalizing a term

lssues

- Lifting
- Alternation
- Forbid fake inclusions
- Fixpoints
- Conversion rule

Conclusion

Replace equations with rewrite rules

Replace equations with rewrite rules

Commutativity: find an suitable well ordering on terms

Replace equations with rewrite rules

Commutativity: find an suitable well ordering on terms

Functional programming approach:

► Not very difficult – use general recursion

Replace equations with rewrite rules

Commutativity: find an suitable well ordering on terms

・ロト ・ 合ト ・ モト ・ モト

Э

Functional programming approach:

- Not very difficult use general recursion
- Just boring
Replace equations with rewrite rules

Commutativity: find an suitable well ordering on terms

・ロト ・ 合 ト ・ 油 ト ・ 油 ト

Э

Functional programming approach:

- Not very difficult use general recursion
- Just boring

Replace equations with rewrite rules

Commutativity: find an suitable well ordering on terms

Functional programming approach:

- Not very difficult use general recursion
- Just boring

In a type theoretic framework, termination proof mandatory and non-trivial:

combination of polynomial and lexicographic ordering

Replace equations with rewrite rules

Commutativity: find an suitable well ordering on terms

Functional programming approach:

- Not very difficult use general recursion
- Just boring

In a type theoretic framework, termination proof mandatory and non-trivial:

- combination of polynomial and lexicographic ordering
- other approaches (lpo, rpo,...): overkill?

Replace equations with rewrite rules

Commutativity: find an suitable well ordering on terms

Functional programming approach:

- Not very difficult use general recursion
- Just boring

In a type theoretic framework, termination proof mandatory and non-trivial:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- combination of polynomial and lexicographic ordering
- other approaches (lpo, rpo,...): overkill?
- AC matching: a non trivial matter

Step 1

Consider a more structured version of t

Step 1

Consider a more structured version of t

Step 1

- Consider a more structured version of t
 - = provide an accurate and informative typing to t

Step 1

- Consider a more structured version of t
 - = provide an accurate and informative typing to t

Step 2

Normalize by structural induction on the newly typed version of t

Step 1

- Consider a more structured version of t
 - = provide an accurate and informative typing to t

Step 2

Normalize by structural induction on the newly typed version of t

Step 1

- Consider a more structured version of t
 - = provide an accurate and informative typing to t

Step 2

Normalize by structural induction on the newly typed version of t

Step 1 makes step 2 easy.

Step 1

• Consider a more structured version of t

= provide an accurate and informative typing to t

Step 2

Normalize by structural induction on the newly typed version of t

・ロト ・ ア・ ・ ビト ・ ビー ビー

Step 1 makes step 2 easy.

Better formulation: t : T transformed into t' : T'T' enriched version of T, trivial forgetful morphism $T' \to T$.

Step 1

Consider a more structured version of t

= provide an accurate and informative typing to t

Step 2

Normalize by structural induction on the newly typed version of t

・ロト ・ 日 ・ ・ 日 ト ・ 日 ト ・ 日

Step 1 makes step 2 easy.

Better formulation: $t : \mathcal{T}$ transformed into $t' : \mathcal{T}'$ \mathcal{T}' enriched version of \mathcal{T} , trivial forgetful morphism $\mathcal{T}' \to \mathcal{T}$.

Interesting part = $\mathcal{T} \to \mathcal{T}'$

Outline

Motivation

The case of cryptographic systems State of the art Back to cryptographic systems Solving strategies

Solution (intuitive)

Basic idea

Analyse of \mathcal{T} Decomposing \mathcal{T} Stratifying and normalizing a term

lssues

- Lifting
- Alternation
- Forbid fake inclusions
- Fixpoints
- Conversion rule

Conclusion

- layering a term
- layers do not communicate:
 each layer possesses its own normalization function

・ロト ・ 一下・ ・ ヨト・ ・ ヨト

- layering a term
- layers do not communicate: each layer possesses its own normalization function
- ▶ in our case: need 2 layers, pasta and sauce

- layering a term
- layers do not communicate: each layer possesses its own normalization function

・ロト ・ 一下・ ・ ヨト・ ・ ヨト

- ▶ in our case: need 2 layers, pasta and sauce
- normalizing pasta = identity

- layering a term
- layers do not communicate: each layer possesses its own normalization function
- ▶ in our case: need 2 layers, pasta and sauce
- normalizing pasta = identity
- normalizing sauce = rearranging + removing duplicates

Outline

Motivation

The case of cryptographic systems State of the art Back to cryptographic systems Solving strategies

Solution (intuitive)

Basic idea

Analyse of ${\mathcal T}$

Decomposing ${\mathcal T}$ Stratifying and normalizing a term

lssues

- Lifting
- Alternation
- Forbid fake inclusions
- Fixpoints
- Conversion rule

Conclusion

$$\begin{array}{l} \text{Inductive } \mathcal{T} \colon \mathsf{Set} := \\ \mid \textit{Zero: } \mathcal{T} \\ \mid \textit{PC: public_const} \to \mathcal{T} \\ \mid \textit{E: } \mathcal{T} \to \mathcal{T} \to \mathcal{T} \\ \mid \textit{Xor: } \mathcal{T} \to \mathcal{T} \to \mathcal{T} \\ \mid \textit{Hash: } \mathcal{T} \to \mathcal{T} \to \mathcal{T}. \end{array}$$

æ

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Inductive \mathcal{T} : Set := Zero: T $PC: \ public_const \rightarrow \mathcal{T} \qquad | \ SC: \ secret_const \rightarrow \mathcal{T}$ $E: \mathcal{T} \to \mathcal{T} \to \mathcal{T}$ *Xor*: $\mathcal{T} \to \mathcal{T} \to \mathcal{T}$ Hash: $\mathcal{T} \to \mathcal{T} \to \mathcal{T}$. EΗ SP0 \oplus \oplus SS0 E0

э

・ロト ・聞ト ・ヨト ・ヨト

Outline

Motivation

The case of cryptographic systems State of the art Back to cryptographic systems Solving strategies

Solution (intuitive)

Basic idea Analyse of *T*

Decomposing ${\mathcal T}$

Stratifying and normalizing a term

lssues

- Lifting
- Alternation
- Forbid fake inclusions
- Fixpoints
- Conversion rule

Conclusion

Decomposing ${\mathcal T}$

$$\begin{array}{l} \text{Inductive } \mathcal{T}_{x} : Set := \\ \mid X_{-}Zero : \mathcal{T}_{x} \\ \mid X_{-}Xor : \mathcal{T}_{x} \to \mathcal{T}_{x} \to \mathcal{T}_{x} \end{array}$$

Inductive
$$T_n$$
: Set :=
 $| NX_PC : public_const \rightarrow T_n$
 $| NX_SC : secret_const \rightarrow T_n$
 $| NX_E : T_n \rightarrow T_n \rightarrow T_n$
 $| NX_Hash : T_n \rightarrow T_n \rightarrow T_n$

Decomposing ${\mathcal T}$

Variable A : Set.

Inductive
$$\mathcal{T}_{x}$$
:Set :=
 $\mid X_{-}Zero : \mathcal{T}_{x}$
 $\mid X_{-}Xor : \mathcal{T}_{x} \to \mathcal{T}_{x} \to \mathcal{T}_{x}$
 $\mid X_{-}ns : A \to \mathcal{T}_{x}$

Inductive
$$T_n$$
: Set :=
 $| NX_PC : public_const \rightarrow T_n$
 $| NX_SC : secret_const \rightarrow T_n$
 $| NX_E : T_n \rightarrow T_n \rightarrow T_n$
 $| NX_Hash : T_n \rightarrow T_n \rightarrow T_n$
 $| NX_sum : A \rightarrow T_n$

Outline

Motivation

The case of cryptographic systems State of the art Back to cryptographic systems Solving strategies

Solution (intuitive)

Basic idea Analyse of TDecomposing TStratifying and normalizing a term

lssues

- Lifting Alternation
- Forbid fake inclusions
- Fixpoints
- Conversion rule

Conclusion

Step 1 Translate a term *t* into *t'* according to the mapping $0 \mapsto X_Z$ *Zero*, *Xor* $\mapsto X_X$ *Or*, *PC* $\mapsto NX_PC$, etc.

Step 1 Translate a term *t* into *t'* according to the mapping $0 \mapsto X_Z$ ero, Xor $\mapsto X_X$ or, PC $\mapsto NX_PC$, etc.

Step 2 A type is sortable if it is equipped with a decidable equality and a decidable total ordering. If A is sortable, then

Step 1 Translate a term *t* into *t'* according to the mapping $0 \mapsto X_Z$ ero, Xor $\mapsto X_X$ or, PC $\mapsto NX_PC$, etc.

Step 2 A type is sortable if it is equipped with a decidable equality and a decidable total ordering. If A is sortable, then

• $T_n(A)$ is sortable as well;

Step 1 Translate a term *t* into *t'* according to the mapping $0 \mapsto X_Z$ ero, Xor $\mapsto X_X$ or, PC $\mapsto NX_PC$, etc.

Step 2 A type is sortable if it is equipped with a decidable equality and a decidable total ordering. If A is sortable, then

- $T_n(A)$ is sortable as well;
- ► the multiset of A-leaves of a T_x(A)-term can be sorted (and removed when possible) into a list;

Step 1 Translate a term *t* into *t'* according to the mapping $0 \mapsto X_Z$ ero, Xor $\mapsto X_X$ or, PC $\mapsto NX_PC$, etc.

Step 2 A type is sortable if it is equipped with a decidable equality and a decidable total ordering. If A is sortable, then

- $T_n(A)$ is sortable as well;
- ► the multiset of A-leaves of a T_x(A)-term can be sorted (and removed when possible) into a list;

list(A) is sortable.
Stratifying and normalizing a term

Step 1 Translate a term *t* into *t'* according to the mapping $0 \mapsto X_Z$ ero, Xor $\mapsto X_X$ or, PC $\mapsto NX_PC$, etc.

The typing of t' is $\underbrace{\mathcal{T}_{x}(\mathcal{T}_{n}(\mathcal{T}_{x}(\ldots(\emptyset))))}_{k \text{ layers}}$ for k large enough.

Step 2 A type is sortable if it is equipped with a decidable equality and a decidable total ordering. If A is sortable, then

- $T_n(A)$ is sortable as well;
- ► the multiset of A-leaves of a T_x(A)-term can be sorted (and removed when possible) into a list;

list(A) is sortable.

Stratifying and normalizing a term

Step 1 Translate a term *t* into *t'* according to the mapping $0 \mapsto X_Z$ ero, Xor $\mapsto X_X$ or, PC $\mapsto NX_PC$, etc.

The typing of t' is $\underbrace{\mathcal{T}_{x}(\mathcal{T}_{n}(\mathcal{T}_{x}(\ldots(\emptyset))))}_{k \text{ layers}}$ for k large enough.

Step 2 A type is sortable if it is equipped with a decidable equality and a decidable total ordering. If A is sortable, then

- $T_n(A)$ is sortable as well;
- ► the multiset of A-leaves of a T_x(A)-term can be sorted (and removed when possible) into a list;

list(A) is sortable.

Outline

Motivation

The case of cryptographic systems State of the art Back to cryptographic systems Solving strategies

Solution (intuitive)

Basic idea Analyse of \mathcal{T} Decomposing \mathcal{T} Stratifying and normalizing a term

Issues

Lifting

Alternation Forbid fake inclusions Fixpoints Conversion rule

Conclusion

$\mathcal{L}_{\times} k \stackrel{\text{def}}{=} \underbrace{\mathcal{T}_{\times}(\mathcal{T}_{n}(\mathcal{T}_{\times}(\dots(\emptyset))))}_{k \text{ layers}} \text{ for } k \text{ large enough.}$

$\mathcal{L}_{x} k \stackrel{\text{def}}{=} \underbrace{\mathcal{T}_{x}(\mathcal{T}_{n}(\mathcal{T}_{x}(\dots(\emptyset))))}_{k \text{ layers}} \text{ for } k \text{ large enough.}$ $\blacktriangleright \text{ What is } k?$

$$\mathcal{L}_{x} k \stackrel{\text{def}}{=} \underbrace{\mathcal{T}_{x}(\mathcal{T}_{n}(\mathcal{T}_{x}(\dots(\emptyset))))}_{k \text{ layers}} \text{ for } k \text{ large enough.}$$

- What is k?
- The number of layers on the left subterm and on the right subterm are different in general.

$$\mathcal{L}_{\times} k \stackrel{\text{def}}{=} \underbrace{\mathcal{T}_{\times}(\mathcal{T}_{n}(\mathcal{T}_{\times}(\dots(\emptyset)))))}_{k}$$
 for k large enough.

k layers

- ▶ What is *k*?
- The number of layers on the left subterm and on the right subterm are different in general.

$$\mathcal{L}_{x} k \stackrel{\text{def}}{=} \underbrace{\mathcal{T}_{x}(\mathcal{T}_{n}(\mathcal{T}_{x}(\dots(\emptyset))))}_{k \text{ layers}} \text{ for } k \text{ large enough.}$$

- ▶ What is *k*?
- The number of layers on the left subterm and on the right subterm are different in general.

$$\mathcal{L}_{x} k \stackrel{\text{def}}{=} \underbrace{\mathcal{T}_{x}(\mathcal{T}_{n}(\mathcal{T}_{x}(\dots(\emptyset))))}_{k \text{ layers}} \text{ for } k \text{ large enough.}$$

- ▶ What is *k*?
- The number of layers on the left subterm and on the right subterm are different in general.

Take the max

Standard solution: {le n m} + {le m n}

$$\mathcal{L}_{x} k \stackrel{\text{def}}{=} \underbrace{\mathcal{T}_{x}(\mathcal{T}_{n}(\mathcal{T}_{x}(\dots(\emptyset))))}_{k \text{ layers}} \text{ for } k \text{ large enough.}$$

- What is k?
- The number of layers on the left subterm and on the right subterm are different in general.

- Standard solution: {le n m} + {le m n}
 - interactive definition, large proof term

$$\mathcal{L}_{x} k \stackrel{\text{def}}{=} \underbrace{\mathcal{T}_{x}(\mathcal{T}_{n}(\mathcal{T}_{x}(\dots(\emptyset))))}_{k \text{ layers}} \text{ for } k \text{ large enough.}$$

- ▶ What is *k*?
- The number of layers on the left subterm and on the right subterm are different in general.

・ロト ・ 一下・ ・ ヨト ・ ヨト

э

- Standard solution: {le n m} + {le m n}
 - interactive definition, large proof term
 - heavy encoding of m n or n m

$$\mathcal{L}_{x} k \stackrel{\text{def}}{=} \underbrace{\mathcal{T}_{x}(\mathcal{T}_{n}(\mathcal{T}_{x}(\dots(\emptyset))))}_{k \text{ layers}} \text{ for } k \text{ large enough.}$$

- ▶ What is *k*?
- The number of layers on the left subterm and on the right subterm are different in general.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

э

- Standard solution: {le n m} + {le m n}
 - interactive definition, large proof term
 - heavy encoding of m n or n m
 - need to lift $\mathcal{L}_{x} n$ and $\mathcal{L}_{x} m$ to $\mathcal{L}_{x} (\max n m)$

$$\mathcal{L}_{x} k \stackrel{\text{def}}{=} \underbrace{\mathcal{T}_{x}(\mathcal{T}_{n}(\mathcal{T}_{x}(\dots(\emptyset))))}_{k \text{ layers}} \text{ for } k \text{ large enough.}$$

▶ What is *k*?

The number of layers on the left subterm and on the right subterm are different in general.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

3

- Standard solution: {le n m} + {le m n}
 - interactive definition, large proof term
 - heavy encoding of m n or n m
 - need to lift $\mathcal{L}_{x} n$ and $\mathcal{L}_{x} m$ to $\mathcal{L}_{x} (\max n m)$
- Lightweight approach: max $n m \stackrel{\text{def}}{=} m + (n m)$

$$\mathcal{L}_{x} k \stackrel{\text{def}}{=} \underbrace{\mathcal{T}_{x}(\mathcal{T}_{n}(\mathcal{T}_{x}(\dots(\emptyset))))}_{k \text{ layers}} \text{ for } k \text{ large enough.}$$

▶ What is *k*?

The number of layers on the left subterm and on the right subterm are different in general.

Take the max

- Standard solution: {le n m} + {le m n}
 - interactive definition, large proof term
 - heavy encoding of m n or n m
 - need to lift $\mathcal{L}_{x} n$ and $\mathcal{L}_{x} m$ to $\mathcal{L}_{x} (\max n m)$
- Lightweight approach: max $n m \stackrel{\text{def}}{=} m + (n m)$
 - ► $lift_x : \mathcal{L}_x k \to \mathcal{L}_x (k + d), \ lift_n : \mathcal{L}_n k \to \mathcal{L}_n (k + d)$

-

$$\mathcal{L}_{x} k \stackrel{\text{def}}{=} \underbrace{\mathcal{T}_{x}(\mathcal{T}_{n}(\mathcal{T}_{x}(\dots(\emptyset))))}_{k \text{ layers}} \text{ for } k \text{ large enough.}$$

▶ What is *k*?

The number of layers on the left subterm and on the right subterm are different in general.

Take the max

- Standard solution: {le n m} + {le m n}
 - interactive definition, large proof term
 - heavy encoding of m n or n m
 - need to lift $\mathcal{L}_{x} n$ and $\mathcal{L}_{x} m$ to $\mathcal{L}_{x} (\max n m)$
- Lightweight approach: max $n m \stackrel{\text{def}}{=} m + (n m)$
 - ► $lift_x : \mathcal{L}_x k \to \mathcal{L}_x (k + d), \ lift_n : \mathcal{L}_n k \to \mathcal{L}_n (k + d)$

・ロト ・ 理 ト ・ 国 ト ・ 国 ト ・ 国

No need to proof that max is the max.

Outline

Motivation

The case of cryptographic systems State of the art Back to cryptographic systems Solving strategies

Solution (intuitive)

Basic idea Analyse of \mathcal{T} Decomposing \mathcal{T} Stratifying and normalizing a term

Issues

Lifting

Alternation

Forbid fake inclusions

Fixpoints

Conversion rule

Conclusion

- ロ > ・ (日 > ・ (三 > ・ (三 > ・ (三 > ・)))

Well designed types help us to design programs

Well designed types help us to design programs

Many functions are defined by mutual induction, e.g. $lift_x$ and $lift_n$

Well designed types help us to design programs

Many functions are defined by mutual induction, e.g. $lift_x$ and $lift_n$

Control them using alternating natural numbers

Well designed types help us to design programs

Many functions are defined by mutual induction, e.g. $lift_x$ and $lift_n$

Control them using alternating natural numbers

Outline

Motivation

The case of cryptographic systems State of the art Back to cryptographic systems Solving strategies

Solution (intuitive)

Basic idea Analyse of \mathcal{T} Decomposing \mathcal{T} Stratifying and normalizing a term

Issues

- Lifting
- Alternation

Forbid fake inclusions

Fixpoints Conversion ru

Conclusion

Inductive
$$T_n$$
: Set :=
 $| NX_PC : public_const \rightarrow T_n |$
 $| NX_SC : secret_const \rightarrow T_n |$
 $| NX_sum : A \rightarrow T_n |$
 $| NX_E : T_n \rightarrow T_n \rightarrow T_n |$
 $| NX_Hash : T_n \rightarrow T_n \rightarrow T_n |$

 $X_ns (NX_sum (X_ns (NX_sum (...))))$

Inductive
$$\mathcal{T}_{x}$$
: bool \rightarrow Set :=
 $\mid X_{-}Zero : \forall b, \mathcal{T}_{x} b$
 $\mid X_{-}ns : \forall b, ls_{-}true b \rightarrow A \rightarrow \mathcal{T}_{x} b$
 $\mid X_{-}Xor : \forall b, \mathcal{T}_{x} true \rightarrow \mathcal{T}_{x} true \rightarrow \mathcal{T}_{x} b$

Inductive
$$\mathcal{T}_n$$
: bool \rightarrow Set :=
 $\mid NX_PC : \forall b, public_const \rightarrow \mathcal{T}_n b$
 $\mid NX_SC : \forall b, secret_const \rightarrow \mathcal{T}_n b$
 $\mid NX_sum : \forall b, ls_true b \rightarrow A \rightarrow \mathcal{T}_n b$
 $\mid NX_E : \forall b, \mathcal{T}_n true \rightarrow \mathcal{T}_n true \rightarrow \mathcal{T}_n b$
 $\mid NX_Hash : \forall b, \mathcal{T}_n true \rightarrow \mathcal{T}_n true \rightarrow \mathcal{T}_n b$

Outline

Motivation

The case of cryptographic systems State of the art Back to cryptographic systems Solving strategies

Solution (intuitive)

Basic idea Analyse of \mathcal{T} Decomposing \mathcal{T} Stratifying and normalizing a term

Issues

Lifting Alternation Forbid fake inclusion **Fixpoints**

Conversion rule

Conclusion

> Prefer fixpoints: built-in computation, no inversion

- > Prefer fixpoints: built-in computation, no inversion
- Use map combinators

- > Prefer fixpoints: built-in computation, no inversion
- Use map combinators

- > Prefer fixpoints: built-in computation, no inversion
- Use map combinators

Many 10 lines definitions, almost no theorem

- Prefer fixpoints: built-in computation, no inversion
- Use map combinators

Many 10 lines definitions, almost no theorem

Fixpoint lift_lasagna_x
$$e_1 e_2 \{ struct e_1 \} :$$

 $\mathcal{L}_x e_1 \rightarrow \mathcal{L}_x (e_1 + e_2) :=$
match e_1 return $\mathcal{L}_x e_1 \rightarrow \mathcal{L}_x (e_1 + e_2)$ with
 $| 0_e \Rightarrow fun emp \Rightarrow match emp with end$
 $| S_{o \rightarrow e} o_1 \Rightarrow map_x (lift_lasagna_n o_1 e_2) false$
end
with lift_lasagna_n $o_1 e_2 \{ struct o_1 \} :$
 $\mathcal{L}_n o_1 \rightarrow \mathcal{L}_n (o_1 + e_2) :=$
match o_1 return $\mathcal{L}_n o_1 \rightarrow \mathcal{L}_n (o_1 + e_2)$ with
 $| S_{e \rightarrow o} e_1 \Rightarrow map_n (lift_lasagna_x e_1 e_2) false$
end.

Outline

Motivation

The case of cryptographic systems State of the art Back to cryptographic systems Solving strategies

Solution (intuitive)

Basic idea Analyse of \mathcal{T} Decomposing \mathcal{T} Stratifying and normalizing a term

Issues

Lifting Alternation Forbid fake inclusions Fixpoints

Conversion rule

Conclusion

Conversion rule

Conversion rule

Used everywhere

Conversion rule

Used everywhere

Definition bin_xor $(bin : \forall A b, T_x A true \rightarrow T_x A true \rightarrow T_x A b) o_1 o_2 b$ $(l_1 : lasagna_cand_x o_1 true)$ $(l_2 : lasagna_cand_x o_2 true) :$ $lasagna_cand_x (max_oo o_1 o_2) b :=$ $bin (\mathcal{L}_n (max_oo o_1 o_2)) b$ $(lift_lasagna_cand_x true o_1 (o_2 - o_1) l_1)$ $(coerce_max_comm$ $(lift_lasagna_cand_x true o_2 (o_1 - o_2) l_2)).$

- 日本 - (理本 - (日本 - (日本 - 日本

Type theory is flexible

Polymorphism

- Polymorphism
- Mutually inductive types

- Polymorphism
- Mutually inductive types
- Dependent types

- Polymorphism
- Mutually inductive types
- Dependent types
- Conversion rule

Type theory is flexible

- Polymorphism
- Mutually inductive types

・ロト ・ 日本 ・ 日本 ・ 日本

- Dependent types
- Conversion rule
- JMEQ not used

Type theory is flexible

- Polymorphism
- Mutually inductive types

・ロト ・ 日本 ・ 日本 ・ 日本

- Dependent types
- Conversion rule
- JMEQ not used

Type theory is flexible

- Polymorphism
- Mutually inductive types
- Dependent types
- Conversion rule
- JMEQ not used (until now)

・ロト ・ 一下・ ・ ヨト・ ・ ヨト

Type theory is flexible

- Polymorphism
- Mutually inductive types
- Dependent types
- Conversion rule
- JMEQ not used (until now)

・ロト ・ 一下・ ・ ヨト・ ・ ヨト