
Proving termination using dependent types: the
case of xor-terms

J.-F. Monin J. Courant

VERIMAG
Grenoble, France

GDR LAC, Chambery, 2007

Outline
Motivation

The case of cryptographic systems
State of the art
Back to cryptographic systems
Solving strategies

Solution (intuitive)
Basic idea
Analyse of T
Decomposing T
Stratifying and normalizing a term

Issues
Lifting
Alternation
Forbid fake inclusions
Fixpoints
Conversion rule

Conclusion

Formal models of cryptographic systems

I Protocols

I Security APIs

Xor is ubiquitous

Examples from a security API called CCA
(Common Cryptographic Architecture):

x , y , {z}x⊕KP⊕KM 7→ {z ⊕ y}x⊕KP⊕KM

x , y , {z}x⊕KP⊕KM 7→ {z ⊕ y}x⊕KM

Reasoning involves:

Commutativity: x ⊕ y ' y ⊕ x
Associativity: (x ⊕ y)⊕ z ' x ⊕ (y ⊕ z)

Neutral element: x ⊕ 0 ' x
Involutivity: x ⊕ x ' 0

Formal models of cryptographic systems
I Protocols

I Security APIs

Xor is ubiquitous

Examples from a security API called CCA
(Common Cryptographic Architecture):

x , y , {z}x⊕KP⊕KM 7→ {z ⊕ y}x⊕KP⊕KM

x , y , {z}x⊕KP⊕KM 7→ {z ⊕ y}x⊕KM

Reasoning involves:

Commutativity: x ⊕ y ' y ⊕ x
Associativity: (x ⊕ y)⊕ z ' x ⊕ (y ⊕ z)

Neutral element: x ⊕ 0 ' x
Involutivity: x ⊕ x ' 0

Formal models of cryptographic systems
I Protocols

I Security APIs

Xor is ubiquitous

Examples from a security API called CCA
(Common Cryptographic Architecture):

x , y , {z}x⊕KP⊕KM 7→ {z ⊕ y}x⊕KP⊕KM

x , y , {z}x⊕KP⊕KM 7→ {z ⊕ y}x⊕KM

Reasoning involves:

Commutativity: x ⊕ y ' y ⊕ x
Associativity: (x ⊕ y)⊕ z ' x ⊕ (y ⊕ z)

Neutral element: x ⊕ 0 ' x
Involutivity: x ⊕ x ' 0

Formal models of cryptographic systems
I Protocols

I Security APIs

Xor is ubiquitous

Examples from a security API called CCA
(Common Cryptographic Architecture):

x , y , {z}x⊕KP⊕KM 7→ {z ⊕ y}x⊕KP⊕KM

x , y , {z}x⊕KP⊕KM 7→ {z ⊕ y}x⊕KM

Reasoning involves:

Commutativity: x ⊕ y ' y ⊕ x
Associativity: (x ⊕ y)⊕ z ' x ⊕ (y ⊕ z)

Neutral element: x ⊕ 0 ' x
Involutivity: x ⊕ x ' 0

Formal models of cryptographic systems
I Protocols

I Security APIs

Xor is ubiquitous

Examples from a security API called CCA
(Common Cryptographic Architecture):

x , y , {z}x⊕KP⊕KM 7→ {z ⊕ y}x⊕KP⊕KM

x , y , {z}x⊕KP⊕KM 7→ {z ⊕ y}x⊕KM

Reasoning involves:

Commutativity: x ⊕ y ' y ⊕ x
Associativity: (x ⊕ y)⊕ z ' x ⊕ (y ⊕ z)

Neutral element: x ⊕ 0 ' x
Involutivity: x ⊕ x ' 0

Outline
Motivation

The case of cryptographic systems
State of the art
Back to cryptographic systems
Solving strategies

Solution (intuitive)
Basic idea
Analyse of T
Decomposing T
Stratifying and normalizing a term

Issues
Lifting
Alternation
Forbid fake inclusions
Fixpoints
Conversion rule

Conclusion

General setting: quotiented first order-terms

We are given

I A type of terms T with constructors Ck :
Inductive T : Set :=
| C1 : T

...
| Ck : . . . → T . . . → T . . . → T

...

I A congruence ' : T → T → Prop

I For each constructor Ck
∀a, . . . x1, y1, b, . . . x2, y2, . . . c ,
x1 ' y1 → x2 ' y2 →
Ck a . . . x1 b . . . y1 c ' Ck a . . . x2 b . . . y2 c

I specific laws, e.g. ∀xy ,C2 x C1 y ' C2 y x

We want to reason on T up to '

General setting: quotiented first order-terms

We are given

I A type of terms T with constructors Ck :
Inductive T : Set :=
| C1 : T

...
| Ck : . . . → T . . . → T . . . → T

...
I A congruence ' : T → T → Prop

I For each constructor Ck
∀a, . . . x1, y1, b, . . . x2, y2, . . . c ,
x1 ' y1 → x2 ' y2 →
Ck a . . . x1 b . . . y1 c ' Ck a . . . x2 b . . . y2 c

I specific laws, e.g. ∀xy ,C2 x C1 y ' C2 y x

We want to reason on T up to '

General setting: quotiented first order-terms

We are given

I A type of terms T with constructors Ck :
Inductive T : Set :=
| C1 : T

...
| Ck : . . . → T . . . → T . . . → T

...
I A congruence ' : T → T → Prop

I For each constructor Ck
∀a, . . . x1, y1, b, . . . x2, y2, . . . c ,
x1 ' y1 → x2 ' y2 →
Ck a . . . x1 b . . . y1 c ' Ck a . . . x2 b . . . y2 c

I specific laws, e.g. ∀xy ,C2 x C1 y ' C2 y x

We want to reason on T up to '

General setting: quotiented first order-terms

We are given

I A type of terms T with constructors Ck :
Inductive T : Set :=
| C1 : T

...
| Ck : . . . → T . . . → T . . . → T

...
I A congruence ' : T → T → Prop

I For each constructor Ck
∀a, . . . x1, y1, b, . . . x2, y2, . . . c ,
x1 ' y1 → x2 ' y2 →
Ck a . . . x1 b . . . y1 c ' Ck a . . . x2 b . . . y2 c

I specific laws, e.g. ∀xy ,C2 x C1 y ' C2 y x

We want to reason on T up to '

General setting: quotiented first order-terms

We are given

I A type of terms T with constructors Ck :
Inductive T : Set :=
| C1 : T

...
| Ck : . . . → T . . . → T . . . → T

...
I A congruence ' : T → T → Prop

I For each constructor Ck
∀a, . . . x1, y1, b, . . . x2, y2, . . . c ,
x1 ' y1 → x2 ' y2 →
Ck a . . . x1 b . . . y1 c ' Ck a . . . x2 b . . . y2 c

I specific laws, e.g. ∀xy ,C2 x C1 y ' C2 y x

We want to reason on T up to '

General setting: quotiented first order-terms

We are given

I A type of terms T with constructors Ck :
Inductive T : Set :=
| C1 : T

...
| Ck : . . . → T . . . → T . . . → T

...
I A congruence ' : T → T → Prop

I For each constructor Ck
∀a, . . . x1, y1, b, . . . x2, y2, . . . c ,
x1 ' y1 → x2 ' y2 →
Ck a . . . x1 b . . . y1 c ' Ck a . . . x2 b . . . y2 c

I specific laws, e.g. ∀xy ,C2 x C1 y ' C2 y x

We want to reason on T up to '

Already well-known examples

I finite bags represented by finite lists

I algebra of formal arithmetic expressions

+ is associative, commutative, 0 is neutral
× is associative, commutative, 1 is neutral
× distributes over +

I (mobile) process calculi, chemical abstract machines

parallel composition and choice operators are AC

Already well-known examples

I finite bags represented by finite lists

I algebra of formal arithmetic expressions

+ is associative, commutative, 0 is neutral
× is associative, commutative, 1 is neutral
× distributes over +

I (mobile) process calculi, chemical abstract machines

parallel composition and choice operators are AC

Already well-known examples

I finite bags represented by finite lists

I algebra of formal arithmetic expressions

+ is associative, commutative, 0 is neutral
× is associative, commutative, 1 is neutral
× distributes over +

I (mobile) process calculi, chemical abstract machines

parallel composition and choice operators are AC

Already well-known examples

I finite bags represented by finite lists

I algebra of formal arithmetic expressions
+ is associative, commutative, 0 is neutral
× is associative, commutative, 1 is neutral
× distributes over +

I (mobile) process calculi, chemical abstract machines
parallel composition and choice operators are AC

Quotients in type theory

I High level approach : setoids

I Explicit approach :

I Define a normalization function N on T
I Compare terms using syntactic equality on their norms :

x ' y iff N x = N y

Quotients in type theory

I High level approach : setoids

I Explicit approach :

I Define a normalization function N on T
I Compare terms using syntactic equality on their norms :

x ' y iff N x = N y

Quotients in type theory

I High level approach : setoids

I Explicit approach :
I Define a normalization function N on T

I Compare terms using syntactic equality on their norms :
x ' y iff N x = N y

Quotients in type theory

I High level approach : setoids

I Explicit approach :
I Define a normalization function N on T
I Compare terms using syntactic equality on their norms :

x ' y iff N x = N y

Outline
Motivation

The case of cryptographic systems
State of the art
Back to cryptographic systems
Solving strategies

Solution (intuitive)
Basic idea
Analyse of T
Decomposing T
Stratifying and normalizing a term

Issues
Lifting
Alternation
Forbid fake inclusions
Fixpoints
Conversion rule

Conclusion

Cryptographic systems need more
Reasoning on such systems involves

I comparing terms up to AC + involutivity of ⊕:

Commutativity: x ⊕ y ' y ⊕ x
Associativity: (x ⊕ y)⊕ z ' x ⊕ (y ⊕ z)

Neutral element: x ⊕ 0 ' x
Involutivity: x ⊕ x ' 0

I a relation � for occurrence:
if x , y and z are different terms,

I y occurs in x ⊕ y ⊕ z
I but y does not occur in x ⊕ y ⊕ z ⊕ y

x � y if x ' y
x � t if t ' x ⊕ y0 . . .⊕ yn

and x 6� yi for all i , 0 ≤ i ≤ n

→ normalization is needed!

Cryptographic systems need more
Reasoning on such systems involves

I comparing terms up to AC + involutivity of ⊕:

Commutativity: x ⊕ y ' y ⊕ x
Associativity: (x ⊕ y)⊕ z ' x ⊕ (y ⊕ z)

Neutral element: x ⊕ 0 ' x
Involutivity: x ⊕ x ' 0

I a relation � for occurrence:
if x , y and z are different terms,

I y occurs in x ⊕ y ⊕ z
I but y does not occur in x ⊕ y ⊕ z ⊕ y

x � y if x ' y
x � t if t ' x ⊕ y0 . . .⊕ yn

and x 6� yi for all i , 0 ≤ i ≤ n

→ normalization is needed!

Cryptographic systems need more
Reasoning on such systems involves

I comparing terms up to AC + involutivity of ⊕:

Commutativity: x ⊕ y ' y ⊕ x
Associativity: (x ⊕ y)⊕ z ' x ⊕ (y ⊕ z)

Neutral element: x ⊕ 0 ' x
Involutivity: x ⊕ x ' 0

I a relation � for occurrence:
if x , y and z are different terms,

I y occurs in x ⊕ y ⊕ z

I but y does not occur in x ⊕ y ⊕ z ⊕ y

x � y if x ' y
x � t if t ' x ⊕ y0 . . .⊕ yn

and x 6� yi for all i , 0 ≤ i ≤ n

→ normalization is needed!

Cryptographic systems need more
Reasoning on such systems involves

I comparing terms up to AC + involutivity of ⊕:

Commutativity: x ⊕ y ' y ⊕ x
Associativity: (x ⊕ y)⊕ z ' x ⊕ (y ⊕ z)

Neutral element: x ⊕ 0 ' x
Involutivity: x ⊕ x ' 0

I a relation � for occurrence:
if x , y and z are different terms,

I y occurs in x ⊕ y ⊕ z
I but y does not occur in x ⊕ y ⊕ z ⊕ y

x � y if x ' y
x � t if t ' x ⊕ y0 . . .⊕ yn

and x 6� yi for all i , 0 ≤ i ≤ n

→ normalization is needed!

Cryptographic systems need more
Reasoning on such systems involves

I comparing terms up to AC + involutivity of ⊕:

Commutativity: x ⊕ y ' y ⊕ x
Associativity: (x ⊕ y)⊕ z ' x ⊕ (y ⊕ z)

Neutral element: x ⊕ 0 ' x
Involutivity: x ⊕ x ' 0

I a relation � for occurrence:
if x , y and z are different terms,

I y occurs in x ⊕ y ⊕ z
I but y does not occur in x ⊕ y ⊕ z ⊕ y

x � y if x ' y
x � t if t ' x ⊕ y0 . . .⊕ yn

and x 6� yi for all i , 0 ≤ i ≤ n

→ normalization is needed!

Cryptographic systems need more
Reasoning on such systems involves

I comparing terms up to AC + involutivity of ⊕:

Commutativity: x ⊕ y ' y ⊕ x
Associativity: (x ⊕ y)⊕ z ' x ⊕ (y ⊕ z)

Neutral element: x ⊕ 0 ' x
Involutivity: x ⊕ x ' 0

I a relation � for occurrence:
if x , y and z are different terms,

I y occurs in x ⊕ y ⊕ z
I but y does not occur in x ⊕ y ⊕ z ⊕ y

x � y if x ' y
x � t if t ' x ⊕ y0 . . .⊕ yn

and x 6� yi for all i , 0 ≤ i ≤ n

→ normalization is needed!

Cryptographic systems need more
Reasoning on such systems involves

I comparing terms up to AC + involutivity of ⊕:

Commutativity: x ⊕ y ' y ⊕ x
Associativity: (x ⊕ y)⊕ z ' x ⊕ (y ⊕ z)

Neutral element: x ⊕ 0 ' x
Involutivity: x ⊕ x ' 0

I a relation � for occurrence:
if x , y and z are different terms,

I y occurs in x ⊕ y ⊕ z
I but y does not occur in x ⊕ y ⊕ z ⊕ y

x � y if x ' y
x � t if t ' x ⊕ y0 . . .⊕ yn

and x 6� yi for all i , 0 ≤ i ≤ n

→ normalization is needed!

Outline
Motivation

The case of cryptographic systems
State of the art
Back to cryptographic systems
Solving strategies

Solution (intuitive)
Basic idea
Analyse of T
Decomposing T
Stratifying and normalizing a term

Issues
Lifting
Alternation
Forbid fake inclusions
Fixpoints
Conversion rule

Conclusion

First attempt: rewrite, rewrite, rewrite. . .

Replace equations with rewrite rules

Commutativity: find an suitable well ordering on terms

Functional programming approach:

I Not very difficult – use general recursion
I Just boring

In a type theoretic framework, termination proof mandatory and
non-trivial:

I combination of polynomial and lexicographic ordering
I other approaches (lpo, rpo,. . .): overkill?
I AC matching: a non trivial matter

First attempt: rewrite, rewrite, rewrite. . .

Replace equations with rewrite rules

Commutativity: find an suitable well ordering on terms

Functional programming approach:

I Not very difficult – use general recursion
I Just boring

In a type theoretic framework, termination proof mandatory and
non-trivial:

I combination of polynomial and lexicographic ordering
I other approaches (lpo, rpo,. . .): overkill?
I AC matching: a non trivial matter

First attempt: rewrite, rewrite, rewrite. . .

Replace equations with rewrite rules

Commutativity: find an suitable well ordering on terms

Functional programming approach:

I Not very difficult – use general recursion
I Just boring

In a type theoretic framework, termination proof mandatory and
non-trivial:

I combination of polynomial and lexicographic ordering
I other approaches (lpo, rpo,. . .): overkill?
I AC matching: a non trivial matter

First attempt: rewrite, rewrite, rewrite. . .

Replace equations with rewrite rules

Commutativity: find an suitable well ordering on terms

Functional programming approach:
I Not very difficult – use general recursion

I Just boring
In a type theoretic framework, termination proof mandatory and
non-trivial:

I combination of polynomial and lexicographic ordering
I other approaches (lpo, rpo,. . .): overkill?
I AC matching: a non trivial matter

First attempt: rewrite, rewrite, rewrite. . .

Replace equations with rewrite rules

Commutativity: find an suitable well ordering on terms

Functional programming approach:
I Not very difficult – use general recursion
I Just boring

In a type theoretic framework, termination proof mandatory and
non-trivial:

I combination of polynomial and lexicographic ordering
I other approaches (lpo, rpo,. . .): overkill?
I AC matching: a non trivial matter

First attempt: rewrite, rewrite, rewrite. . .

Replace equations with rewrite rules

Commutativity: find an suitable well ordering on terms

Functional programming approach:
I Not very difficult – use general recursion
I Just boring

In a type theoretic framework, termination proof mandatory and
non-trivial:

I combination of polynomial and lexicographic ordering
I other approaches (lpo, rpo,. . .): overkill?
I AC matching: a non trivial matter

First attempt: rewrite, rewrite, rewrite. . .

Replace equations with rewrite rules

Commutativity: find an suitable well ordering on terms

Functional programming approach:
I Not very difficult – use general recursion
I Just boring

In a type theoretic framework, termination proof mandatory and
non-trivial:

I combination of polynomial and lexicographic ordering

I other approaches (lpo, rpo,. . .): overkill?
I AC matching: a non trivial matter

First attempt: rewrite, rewrite, rewrite. . .

Replace equations with rewrite rules

Commutativity: find an suitable well ordering on terms

Functional programming approach:
I Not very difficult – use general recursion
I Just boring

In a type theoretic framework, termination proof mandatory and
non-trivial:

I combination of polynomial and lexicographic ordering
I other approaches (lpo, rpo,. . .): overkill?

I AC matching: a non trivial matter

First attempt: rewrite, rewrite, rewrite. . .

Replace equations with rewrite rules

Commutativity: find an suitable well ordering on terms

Functional programming approach:
I Not very difficult – use general recursion
I Just boring

In a type theoretic framework, termination proof mandatory and
non-trivial:

I combination of polynomial and lexicographic ordering
I other approaches (lpo, rpo,. . .): overkill?
I AC matching: a non trivial matter

(Dependent) type theoretic approach

Step 1

I Consider a more structured version of t
= provide an accurate and informative typing to t

Step 2

I Normalize by structural induction on the newly typed version
of t

Step 1 makes step 2 easy.

Better formulation: t : T transformed into t ′ : T ′
T ′ enriched version of T ,
trivial forgetful morphism T ′ → T .

Interesting part = T → T ′

(Dependent) type theoretic approach

Step 1
I Consider a more structured version of t

= provide an accurate and informative typing to t

Step 2

I Normalize by structural induction on the newly typed version
of t

Step 1 makes step 2 easy.

Better formulation: t : T transformed into t ′ : T ′
T ′ enriched version of T ,
trivial forgetful morphism T ′ → T .

Interesting part = T → T ′

(Dependent) type theoretic approach

Step 1
I Consider a more structured version of t

= provide an accurate and informative typing to t

Step 2

I Normalize by structural induction on the newly typed version
of t

Step 1 makes step 2 easy.

Better formulation: t : T transformed into t ′ : T ′
T ′ enriched version of T ,
trivial forgetful morphism T ′ → T .

Interesting part = T → T ′

(Dependent) type theoretic approach

Step 1
I Consider a more structured version of t

= provide an accurate and informative typing to t

Step 2

I Normalize by structural induction on the newly typed version
of t

Step 1 makes step 2 easy.

Better formulation: t : T transformed into t ′ : T ′
T ′ enriched version of T ,
trivial forgetful morphism T ′ → T .

Interesting part = T → T ′

(Dependent) type theoretic approach

Step 1
I Consider a more structured version of t

= provide an accurate and informative typing to t

Step 2
I Normalize by structural induction on the newly typed version

of t

Step 1 makes step 2 easy.

Better formulation: t : T transformed into t ′ : T ′
T ′ enriched version of T ,
trivial forgetful morphism T ′ → T .

Interesting part = T → T ′

(Dependent) type theoretic approach

Step 1
I Consider a more structured version of t

= provide an accurate and informative typing to t

Step 2
I Normalize by structural induction on the newly typed version

of t

Step 1 makes step 2 easy.

Better formulation: t : T transformed into t ′ : T ′
T ′ enriched version of T ,
trivial forgetful morphism T ′ → T .

Interesting part = T → T ′

(Dependent) type theoretic approach

Step 1
I Consider a more structured version of t

= provide an accurate and informative typing to t

Step 2
I Normalize by structural induction on the newly typed version

of t

Step 1 makes step 2 easy.

Better formulation: t : T transformed into t ′ : T ′
T ′ enriched version of T ,
trivial forgetful morphism T ′ → T .

Interesting part = T → T ′

(Dependent) type theoretic approach

Step 1
I Consider a more structured version of t

= provide an accurate and informative typing to t

Step 2
I Normalize by structural induction on the newly typed version

of t

Step 1 makes step 2 easy.

Better formulation: t : T transformed into t ′ : T ′
T ′ enriched version of T ,
trivial forgetful morphism T ′ → T .

Interesting part = T → T ′

(Dependent) type theoretic approach

Step 1
I Consider a more structured version of t

= provide an accurate and informative typing to t

Step 2
I Normalize by structural induction on the newly typed version

of t

Step 1 makes step 2 easy.

Better formulation: t : T transformed into t ′ : T ′
T ′ enriched version of T ,
trivial forgetful morphism T ′ → T .

Interesting part = T → T ′

Outline
Motivation

The case of cryptographic systems
State of the art
Back to cryptographic systems
Solving strategies

Solution (intuitive)
Basic idea
Analyse of T
Decomposing T
Stratifying and normalizing a term

Issues
Lifting
Alternation
Forbid fake inclusions
Fixpoints
Conversion rule

Conclusion

Lasagnas reveal the truth

I layering a term
I layers do not communicate:

each layer possesses its own normalization function
I in our case: need 2 layers, pasta and sauce
I normalizing pasta = identity
I normalizing sauce = rearranging + removing duplicates

Lasagnas reveal the truth

I layering a term
I layers do not communicate:

each layer possesses its own normalization function
I in our case: need 2 layers, pasta and sauce
I normalizing pasta = identity
I normalizing sauce = rearranging + removing duplicates

Lasagnas reveal the truth

I layering a term

I layers do not communicate:
each layer possesses its own normalization function

I in our case: need 2 layers, pasta and sauce
I normalizing pasta = identity
I normalizing sauce = rearranging + removing duplicates

Lasagnas reveal the truth

I layering a term
I layers do not communicate:

each layer possesses its own normalization function

I in our case: need 2 layers, pasta and sauce
I normalizing pasta = identity
I normalizing sauce = rearranging + removing duplicates

Lasagnas reveal the truth

I layering a term
I layers do not communicate:

each layer possesses its own normalization function
I in our case: need 2 layers, pasta and sauce

I normalizing pasta = identity
I normalizing sauce = rearranging + removing duplicates

Lasagnas reveal the truth

I layering a term
I layers do not communicate:

each layer possesses its own normalization function
I in our case: need 2 layers, pasta and sauce
I normalizing pasta = identity

I normalizing sauce = rearranging + removing duplicates

Lasagnas reveal the truth

I layering a term
I layers do not communicate:

each layer possesses its own normalization function
I in our case: need 2 layers, pasta and sauce
I normalizing pasta = identity
I normalizing sauce = rearranging + removing duplicates

Outline
Motivation

The case of cryptographic systems
State of the art
Back to cryptographic systems
Solving strategies

Solution (intuitive)
Basic idea
Analyse of T
Decomposing T
Stratifying and normalizing a term

Issues
Lifting
Alternation
Forbid fake inclusions
Fixpoints
Conversion rule

Conclusion

T as a lasagna

Inductive T : Set :=
| Zero: T
| PC : public const → T | SC : secret const → T
| E : T → T → T
| Xor : T → T → T
| Hash: T → T → T .

T as a lasagna

Inductive T : Set :=
| Zero: T
| PC : public const → T | SC : secret const → T
| E : T → T → T
| Xor : T → T → T
| Hash: T → T → T .

T as a lasagna
Inductive T : Set :=
| Zero: T
| PC : public const → T | SC : secret const → T
| E : T → T → T
| Xor : T → T → T
| Hash: T → T → T .

E

H

P ⊕

⊕

S 0

⊕

E

P 0

S

⊕

S 0

T as a lasagna
Inductive T : Set :=
| Zero: T
| PC : public const → T | SC : secret const → T
| E : T → T → T
| Xor : T → T → T
| Hash: T → T → T .

E

H

P ⊕

⊕

S 0

⊕

E

P 0

S

⊕

S 0

Outline
Motivation

The case of cryptographic systems
State of the art
Back to cryptographic systems
Solving strategies

Solution (intuitive)
Basic idea
Analyse of T
Decomposing T
Stratifying and normalizing a term

Issues
Lifting
Alternation
Forbid fake inclusions
Fixpoints
Conversion rule

Conclusion

Decomposing T

Variable A : Set.

Inductive Tx :Set :=
| X Zero : Tx
| X Xor : Tx → Tx → Tx

| X ns : A → Tx

Inductive Tn: Set :=
| NX PC : public const → Tn
| NX SC : secret const → Tn
| NX E : Tn → Tn → Tn
| NX Hash : Tn → Tn → Tn

| NX sum : A → Tn

Decomposing T

Variable A : Set.

Inductive Tx :Set :=
| X Zero : Tx
| X Xor : Tx → Tx → Tx
| X ns : A → Tx

Inductive Tn: Set :=
| NX PC : public const → Tn
| NX SC : secret const → Tn
| NX E : Tn → Tn → Tn
| NX Hash : Tn → Tn → Tn
| NX sum : A → Tn

Outline
Motivation

The case of cryptographic systems
State of the art
Back to cryptographic systems
Solving strategies

Solution (intuitive)
Basic idea
Analyse of T
Decomposing T
Stratifying and normalizing a term

Issues
Lifting
Alternation
Forbid fake inclusions
Fixpoints
Conversion rule

Conclusion

Stratifying and normalizing a term

Step 1 Translate a term t into t ′ according to the mapping
0 7→ X Zero, Xor 7→ X Xor, PC 7→ NX PC, etc.

The typing of t ′ is Tx(Tn(Tx(. . . (∅))))︸ ︷︷ ︸
k layers

for k large enough.

Step 2 A type is sortable if it is equipped with a decidable equality
and a decidable total ordering. If A is sortable, then

I Tn(A) is sortable as well;
I the multiset of A-leaves of a Tx(A)-term can be sorted (and

removed when possible) into a list;
I list(A) is sortable.

Stratifying and normalizing a term

Step 1 Translate a term t into t ′ according to the mapping
0 7→ X Zero, Xor 7→ X Xor, PC 7→ NX PC, etc.

The typing of t ′ is Tx(Tn(Tx(. . . (∅))))︸ ︷︷ ︸
k layers

for k large enough.

Step 2 A type is sortable if it is equipped with a decidable equality
and a decidable total ordering. If A is sortable, then

I Tn(A) is sortable as well;
I the multiset of A-leaves of a Tx(A)-term can be sorted (and

removed when possible) into a list;
I list(A) is sortable.

Stratifying and normalizing a term

Step 1 Translate a term t into t ′ according to the mapping
0 7→ X Zero, Xor 7→ X Xor, PC 7→ NX PC, etc.

The typing of t ′ is Tx(Tn(Tx(. . . (∅))))︸ ︷︷ ︸
k layers

for k large enough.

Step 2 A type is sortable if it is equipped with a decidable equality
and a decidable total ordering. If A is sortable, then

I Tn(A) is sortable as well;
I the multiset of A-leaves of a Tx(A)-term can be sorted (and

removed when possible) into a list;
I list(A) is sortable.

Stratifying and normalizing a term

Step 1 Translate a term t into t ′ according to the mapping
0 7→ X Zero, Xor 7→ X Xor, PC 7→ NX PC, etc.

The typing of t ′ is Tx(Tn(Tx(. . . (∅))))︸ ︷︷ ︸
k layers

for k large enough.

Step 2 A type is sortable if it is equipped with a decidable equality
and a decidable total ordering. If A is sortable, then

I Tn(A) is sortable as well;

I the multiset of A-leaves of a Tx(A)-term can be sorted (and
removed when possible) into a list;

I list(A) is sortable.

Stratifying and normalizing a term

Step 1 Translate a term t into t ′ according to the mapping
0 7→ X Zero, Xor 7→ X Xor, PC 7→ NX PC, etc.

The typing of t ′ is Tx(Tn(Tx(. . . (∅))))︸ ︷︷ ︸
k layers

for k large enough.

Step 2 A type is sortable if it is equipped with a decidable equality
and a decidable total ordering. If A is sortable, then

I Tn(A) is sortable as well;
I the multiset of A-leaves of a Tx(A)-term can be sorted (and

removed when possible) into a list;

I list(A) is sortable.

Stratifying and normalizing a term

Step 1 Translate a term t into t ′ according to the mapping
0 7→ X Zero, Xor 7→ X Xor, PC 7→ NX PC, etc.

The typing of t ′ is Tx(Tn(Tx(. . . (∅))))︸ ︷︷ ︸
k layers

for k large enough.

Step 2 A type is sortable if it is equipped with a decidable equality
and a decidable total ordering. If A is sortable, then

I Tn(A) is sortable as well;
I the multiset of A-leaves of a Tx(A)-term can be sorted (and

removed when possible) into a list;
I list(A) is sortable.

Stratifying and normalizing a term

Step 1 Translate a term t into t ′ according to the mapping
0 7→ X Zero, Xor 7→ X Xor, PC 7→ NX PC, etc.

The typing of t ′ is Tx(Tn(Tx(. . . (∅))))︸ ︷︷ ︸
k layers

for k large enough.

Step 2 A type is sortable if it is equipped with a decidable equality
and a decidable total ordering. If A is sortable, then

I Tn(A) is sortable as well;
I the multiset of A-leaves of a Tx(A)-term can be sorted (and

removed when possible) into a list;
I list(A) is sortable.

Stratifying and normalizing a term

Step 1 Translate a term t into t ′ according to the mapping
0 7→ X Zero, Xor 7→ X Xor, PC 7→ NX PC, etc.

The typing of t ′ is Tx(Tn(Tx(. . . (∅))))︸ ︷︷ ︸
k layers

for k large enough.

Step 2 A type is sortable if it is equipped with a decidable equality
and a decidable total ordering. If A is sortable, then

I Tn(A) is sortable as well;
I the multiset of A-leaves of a Tx(A)-term can be sorted (and

removed when possible) into a list;
I list(A) is sortable.

Outline
Motivation

The case of cryptographic systems
State of the art
Back to cryptographic systems
Solving strategies

Solution (intuitive)
Basic idea
Analyse of T
Decomposing T
Stratifying and normalizing a term

Issues
Lifting
Alternation
Forbid fake inclusions
Fixpoints
Conversion rule

Conclusion

Lifting lasagna

Lx k def
== Tx(Tn(Tx(. . . (∅))))︸ ︷︷ ︸

k layers

for k large enough.

I What is k?
I The number of layers on the left subterm and on the right

subterm are different in general.
Take the max

I Standard solution: {le n m} + {le m n}

I interactive definition, large proof term
I heavy encoding of m − n or n −m
I need to lift Lx n and Lx m to Lx (max n m)

I Lightweight approach: max n m def
== m + (n −m)

I liftx : Lx k → Lx (k + d), liftn : Ln k → Ln (k + d)
I No need to proof that max is the max.

Lifting lasagna

Lx k def
== Tx(Tn(Tx(. . . (∅))))︸ ︷︷ ︸

k layers

for k large enough.

I What is k?

I The number of layers on the left subterm and on the right
subterm are different in general.

Take the max

I Standard solution: {le n m} + {le m n}

I interactive definition, large proof term
I heavy encoding of m − n or n −m
I need to lift Lx n and Lx m to Lx (max n m)

I Lightweight approach: max n m def
== m + (n −m)

I liftx : Lx k → Lx (k + d), liftn : Ln k → Ln (k + d)
I No need to proof that max is the max.

Lifting lasagna

Lx k def
== Tx(Tn(Tx(. . . (∅))))︸ ︷︷ ︸

k layers

for k large enough.

I What is k?
I The number of layers on the left subterm and on the right

subterm are different in general.

Take the max

I Standard solution: {le n m} + {le m n}

I interactive definition, large proof term
I heavy encoding of m − n or n −m
I need to lift Lx n and Lx m to Lx (max n m)

I Lightweight approach: max n m def
== m + (n −m)

I liftx : Lx k → Lx (k + d), liftn : Ln k → Ln (k + d)
I No need to proof that max is the max.

Lifting lasagna
Lx k def

== Tx(Tn(Tx(. . . (∅))))︸ ︷︷ ︸
k layers

for k large enough.

I What is k?
I The number of layers on the left subterm and on the right

subterm are different in general.

E

H

P ⊕

⊕

S 0

⊕

E

P 0

S

⊕

S 0

Take the max

I Standard solution: {le n m} + {le m n}

I interactive definition, large proof term
I heavy encoding of m − n or n −m
I need to lift Lx n and Lx m to Lx (max n m)

I Lightweight approach: max n m def
== m + (n −m)

I liftx : Lx k → Lx (k + d), liftn : Ln k → Ln (k + d)
I No need to proof that max is the max.

Lifting lasagna

Lx k def
== Tx(Tn(Tx(. . . (∅))))︸ ︷︷ ︸

k layers

for k large enough.

I What is k?
I The number of layers on the left subterm and on the right

subterm are different in general.
Take the max

I Standard solution: {le n m} + {le m n}

I interactive definition, large proof term
I heavy encoding of m − n or n −m
I need to lift Lx n and Lx m to Lx (max n m)

I Lightweight approach: max n m def
== m + (n −m)

I liftx : Lx k → Lx (k + d), liftn : Ln k → Ln (k + d)
I No need to proof that max is the max.

Lifting lasagna

Lx k def
== Tx(Tn(Tx(. . . (∅))))︸ ︷︷ ︸

k layers

for k large enough.

I What is k?
I The number of layers on the left subterm and on the right

subterm are different in general.
Take the max

I Standard solution: {le n m} + {le m n}

I interactive definition, large proof term
I heavy encoding of m − n or n −m
I need to lift Lx n and Lx m to Lx (max n m)

I Lightweight approach: max n m def
== m + (n −m)

I liftx : Lx k → Lx (k + d), liftn : Ln k → Ln (k + d)
I No need to proof that max is the max.

Lifting lasagna

Lx k def
== Tx(Tn(Tx(. . . (∅))))︸ ︷︷ ︸

k layers

for k large enough.

I What is k?
I The number of layers on the left subterm and on the right

subterm are different in general.
Take the max

I Standard solution: {le n m} + {le m n}
I interactive definition, large proof term

I heavy encoding of m − n or n −m
I need to lift Lx n and Lx m to Lx (max n m)

I Lightweight approach: max n m def
== m + (n −m)

I liftx : Lx k → Lx (k + d), liftn : Ln k → Ln (k + d)
I No need to proof that max is the max.

Lifting lasagna

Lx k def
== Tx(Tn(Tx(. . . (∅))))︸ ︷︷ ︸

k layers

for k large enough.

I What is k?
I The number of layers on the left subterm and on the right

subterm are different in general.
Take the max

I Standard solution: {le n m} + {le m n}
I interactive definition, large proof term
I heavy encoding of m − n or n −m

I need to lift Lx n and Lx m to Lx (max n m)

I Lightweight approach: max n m def
== m + (n −m)

I liftx : Lx k → Lx (k + d), liftn : Ln k → Ln (k + d)
I No need to proof that max is the max.

Lifting lasagna

Lx k def
== Tx(Tn(Tx(. . . (∅))))︸ ︷︷ ︸

k layers

for k large enough.

I What is k?
I The number of layers on the left subterm and on the right

subterm are different in general.
Take the max

I Standard solution: {le n m} + {le m n}
I interactive definition, large proof term
I heavy encoding of m − n or n −m
I need to lift Lx n and Lx m to Lx (max n m)

I Lightweight approach: max n m def
== m + (n −m)

I liftx : Lx k → Lx (k + d), liftn : Ln k → Ln (k + d)
I No need to proof that max is the max.

Lifting lasagna

Lx k def
== Tx(Tn(Tx(. . . (∅))))︸ ︷︷ ︸

k layers

for k large enough.

I What is k?
I The number of layers on the left subterm and on the right

subterm are different in general.
Take the max

I Standard solution: {le n m} + {le m n}
I interactive definition, large proof term
I heavy encoding of m − n or n −m
I need to lift Lx n and Lx m to Lx (max n m)

I Lightweight approach: max n m def
== m + (n −m)

I liftx : Lx k → Lx (k + d), liftn : Ln k → Ln (k + d)
I No need to proof that max is the max.

Lifting lasagna

Lx k def
== Tx(Tn(Tx(. . . (∅))))︸ ︷︷ ︸

k layers

for k large enough.

I What is k?
I The number of layers on the left subterm and on the right

subterm are different in general.
Take the max

I Standard solution: {le n m} + {le m n}
I interactive definition, large proof term
I heavy encoding of m − n or n −m
I need to lift Lx n and Lx m to Lx (max n m)

I Lightweight approach: max n m def
== m + (n −m)

I liftx : Lx k → Lx (k + d), liftn : Ln k → Ln (k + d)

I No need to proof that max is the max.

Lifting lasagna

Lx k def
== Tx(Tn(Tx(. . . (∅))))︸ ︷︷ ︸

k layers

for k large enough.

I What is k?
I The number of layers on the left subterm and on the right

subterm are different in general.
Take the max

I Standard solution: {le n m} + {le m n}
I interactive definition, large proof term
I heavy encoding of m − n or n −m
I need to lift Lx n and Lx m to Lx (max n m)

I Lightweight approach: max n m def
== m + (n −m)

I liftx : Lx k → Lx (k + d), liftn : Ln k → Ln (k + d)
I No need to proof that max is the max.

Outline
Motivation

The case of cryptographic systems
State of the art
Back to cryptographic systems
Solving strategies

Solution (intuitive)
Basic idea
Analyse of T
Decomposing T
Stratifying and normalizing a term

Issues
Lifting
Alternation
Forbid fake inclusions
Fixpoints
Conversion rule

Conclusion

Internalizing alternation

Well designed types help us to design programs

Many functions are defined by mutual induction,
e.g. liftx and liftn

Control them using alternating natural numbers

Inductive alteven: Set :=
| 0e : alteven
| So→e : altodd → alteven

with altodd : Set :=
| Se→o : alteven → altodd

Internalizing alternation

Well designed types help us to design programs

Many functions are defined by mutual induction,
e.g. liftx and liftn

Control them using alternating natural numbers

Inductive alteven: Set :=
| 0e : alteven
| So→e : altodd → alteven

with altodd : Set :=
| Se→o : alteven → altodd

Internalizing alternation

Well designed types help us to design programs

Many functions are defined by mutual induction,
e.g. liftx and liftn

Control them using alternating natural numbers

Inductive alteven: Set :=
| 0e : alteven
| So→e : altodd → alteven

with altodd : Set :=
| Se→o : alteven → altodd

Internalizing alternation

Well designed types help us to design programs

Many functions are defined by mutual induction,
e.g. liftx and liftn

Control them using alternating natural numbers

Inductive alteven: Set :=
| 0e : alteven
| So→e : altodd → alteven

with altodd : Set :=
| Se→o : alteven → altodd

Internalizing alternation

Well designed types help us to design programs

Many functions are defined by mutual induction,
e.g. liftx and liftn

Control them using alternating natural numbers

Inductive alteven: Set :=
| 0e : alteven
| So→e : altodd → alteven

with altodd : Set :=
| Se→o : alteven → altodd

Outline
Motivation

The case of cryptographic systems
State of the art
Back to cryptographic systems
Solving strategies

Solution (intuitive)
Basic idea
Analyse of T
Decomposing T
Stratifying and normalizing a term

Issues
Lifting
Alternation
Forbid fake inclusions
Fixpoints
Conversion rule

Conclusion

Forbid fake inclusions

Inductive Tx : Set :=
| X Zero : Tx
| X ns : A → Tx
| X Xor : Tx → Tx → Tx

Inductive Tn: Set :=
| NX PC : public const → Tn
| NX SC : secret const → Tn
| NX sum : A → Tn
| NX E : Tn → Tn → Tn
| NX Hash : Tn → Tn → Tn

X ns (NX sum (X ns (NX sum (. . .))))

Forbid fake inclusions

Inductive Tx : Set :=
| X Zero : Tx
| X ns : A → Tx
| X Xor : Tx → Tx → Tx

Inductive Tn: Set :=
| NX PC : public const → Tn
| NX SC : secret const → Tn
| NX sum : A → Tn
| NX E : Tn → Tn → Tn
| NX Hash : Tn → Tn → Tn

X ns (NX sum (X ns (NX sum (. . .))))

Forbid fake inclusions

Inductive Tx : Set :=
| X Zero : Tx
| X ns : A → Tx
| X Xor : Tx → Tx → Tx

Inductive Tn: Set :=
| NX PC : public const → Tn
| NX SC : secret const → Tn
| NX sum : A → Tn
| NX E : Tn → Tn → Tn
| NX Hash : Tn → Tn → Tn

X ns (NX sum (X ns (NX sum (. . .))))

Forbid fake inclusions

Inductive Tx : bool → Set :=
| X Zero : ∀ b, Tx b
| X ns : ∀ b, Is true b → A → Tx b
| X Xor : ∀ b, Tx true → Tx true → Tx b

Inductive Tn: bool → Set :=
| NX PC : ∀ b, public const → Tn b
| NX SC : ∀ b, secret const → Tn b
| NX sum : ∀ b, Is true b → A → Tn b
| NX E : ∀ b, Tn true → Tn true → Tn b
| NX Hash : ∀ b, Tn true → Tn true → Tn b

X ns (NX sum (X ns (NX sum (. . .))))

Outline
Motivation

The case of cryptographic systems
State of the art
Back to cryptographic systems
Solving strategies

Solution (intuitive)
Basic idea
Analyse of T
Decomposing T
Stratifying and normalizing a term

Issues
Lifting
Alternation
Forbid fake inclusions
Fixpoints
Conversion rule

Conclusion

Mutual induction

I Prefer fixpoints: built-in computation, no inversion

I Use map combinators

Many 10 lines definitions, almost no theorem

Fixpoint lift lasagna x e1 e2 {struct e1} :
Lx e1 → Lx (e1 + e2) :=
match e1 return Lx e1 → Lx (e1 + e2) with
| 0e ⇒ fun emp ⇒ match emp with end
| So→e o1 ⇒ mapx (lift lasagna n o1 e2) false
end

with lift lasagna n o1 e2 {struct o1} :
Ln o1 → Ln (o1 + e2) :=
match o1 return Ln o1 → Ln (o1 + e2) with
| Se→o e1 ⇒ mapn (lift lasagna x e1 e2) false
end.

Mutual induction

I Prefer fixpoints: built-in computation, no inversion
I Use map combinators

Many 10 lines definitions, almost no theorem

Fixpoint lift lasagna x e1 e2 {struct e1} :
Lx e1 → Lx (e1 + e2) :=
match e1 return Lx e1 → Lx (e1 + e2) with
| 0e ⇒ fun emp ⇒ match emp with end
| So→e o1 ⇒ mapx (lift lasagna n o1 e2) false
end

with lift lasagna n o1 e2 {struct o1} :
Ln o1 → Ln (o1 + e2) :=
match o1 return Ln o1 → Ln (o1 + e2) with
| Se→o e1 ⇒ mapn (lift lasagna x e1 e2) false
end.

Mutual induction

I Prefer fixpoints: built-in computation, no inversion
I Use map combinators

Many 10 lines definitions, almost no theorem

Fixpoint lift lasagna x e1 e2 {struct e1} :
Lx e1 → Lx (e1 + e2) :=
match e1 return Lx e1 → Lx (e1 + e2) with
| 0e ⇒ fun emp ⇒ match emp with end
| So→e o1 ⇒ mapx (lift lasagna n o1 e2) false
end

with lift lasagna n o1 e2 {struct o1} :
Ln o1 → Ln (o1 + e2) :=
match o1 return Ln o1 → Ln (o1 + e2) with
| Se→o e1 ⇒ mapn (lift lasagna x e1 e2) false
end.

Mutual induction

I Prefer fixpoints: built-in computation, no inversion
I Use map combinators

Many 10 lines definitions, almost no theorem

Fixpoint lift lasagna x e1 e2 {struct e1} :
Lx e1 → Lx (e1 + e2) :=
match e1 return Lx e1 → Lx (e1 + e2) with
| 0e ⇒ fun emp ⇒ match emp with end
| So→e o1 ⇒ mapx (lift lasagna n o1 e2) false
end

with lift lasagna n o1 e2 {struct o1} :
Ln o1 → Ln (o1 + e2) :=
match o1 return Ln o1 → Ln (o1 + e2) with
| Se→o e1 ⇒ mapn (lift lasagna x e1 e2) false
end.

Mutual induction

I Prefer fixpoints: built-in computation, no inversion
I Use map combinators

Many 10 lines definitions, almost no theorem

Fixpoint lift lasagna x e1 e2 {struct e1} :
Lx e1 → Lx (e1 + e2) :=
match e1 return Lx e1 → Lx (e1 + e2) with
| 0e ⇒ fun emp ⇒ match emp with end
| So→e o1 ⇒ mapx (lift lasagna n o1 e2) false
end

with lift lasagna n o1 e2 {struct o1} :
Ln o1 → Ln (o1 + e2) :=
match o1 return Ln o1 → Ln (o1 + e2) with
| Se→o e1 ⇒ mapn (lift lasagna x e1 e2) false
end.

Outline
Motivation

The case of cryptographic systems
State of the art
Back to cryptographic systems
Solving strategies

Solution (intuitive)
Basic idea
Analyse of T
Decomposing T
Stratifying and normalizing a term

Issues
Lifting
Alternation
Forbid fake inclusions
Fixpoints
Conversion rule

Conclusion

Conversion rule

Used everywhere

Definition bin xor
(bin : ∀ A b, Tx A true → Tx A true → Tx A b) o1 o2 b
(l1 : lasagna cand x o1 true)
(l2 : lasagna cand x o2 true) :
lasagna cand x (max oo o1 o2) b :=

bin (Ln (max oo o1 o2)) b
(lift lasagna cand x true o1 (o2 - o1) l1)
(coerce max comm

(lift lasagna cand x true o2 (o1 - o2) l2)).

Conversion rule

Used everywhere

Definition bin xor
(bin : ∀ A b, Tx A true → Tx A true → Tx A b) o1 o2 b
(l1 : lasagna cand x o1 true)
(l2 : lasagna cand x o2 true) :
lasagna cand x (max oo o1 o2) b :=

bin (Ln (max oo o1 o2)) b
(lift lasagna cand x true o1 (o2 - o1) l1)
(coerce max comm

(lift lasagna cand x true o2 (o1 - o2) l2)).

Conversion rule

Used everywhere

Definition bin xor
(bin : ∀ A b, Tx A true → Tx A true → Tx A b) o1 o2 b
(l1 : lasagna cand x o1 true)
(l2 : lasagna cand x o2 true) :
lasagna cand x (max oo o1 o2) b :=

bin (Ln (max oo o1 o2)) b
(lift lasagna cand x true o1 (o2 - o1) l1)
(coerce max comm

(lift lasagna cand x true o2 (o1 - o2) l2)).

Conclusion

Type theory is flexible

I Polymorphism
I Mutually inductive types
I Dependent types
I Conversion rule
I JMEQ not used (until now)

Conclusion

Type theory is flexible

I Polymorphism

I Mutually inductive types
I Dependent types
I Conversion rule
I JMEQ not used

(until now)

Conclusion

Type theory is flexible

I Polymorphism
I Mutually inductive types

I Dependent types
I Conversion rule
I JMEQ not used

(until now)

Conclusion

Type theory is flexible

I Polymorphism
I Mutually inductive types
I Dependent types

I Conversion rule
I JMEQ not used

(until now)

Conclusion

Type theory is flexible

I Polymorphism
I Mutually inductive types
I Dependent types
I Conversion rule

I JMEQ not used

(until now)

Conclusion

Type theory is flexible

I Polymorphism
I Mutually inductive types
I Dependent types
I Conversion rule
I JMEQ not used

(until now)

Conclusion

Type theory is flexible

I Polymorphism
I Mutually inductive types
I Dependent types
I Conversion rule
I JMEQ not used

(until now)

Conclusion

Type theory is flexible

I Polymorphism
I Mutually inductive types
I Dependent types
I Conversion rule
I JMEQ not used (until now)

Conclusion

Type theory is flexible

I Polymorphism
I Mutually inductive types
I Dependent types
I Conversion rule
I JMEQ not used (until now)

	Motivation
	The case of cryptographic systems
	State of the art
	Back to cryptographic systems
	Solving strategies

	Solution (intuitive)
	Basic idea
	Analyse of T
	Decomposing T
	Stratifying and normalizing a term

	Issues
	Lifting
	Alternation
	Forbid fake inclusions
	Fixpoints
	Conversion rule

	Conclusion

