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Motivations
The Calculus λ⇒×

Our starting point:

Strong normalization of λ-calculus plus rewriting in presence
of union types [Blanqui & Riba 06].

More generally,

Simple characterization of reducibility candidates and
saturated sets.

Better understanding of reducibility.
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Terms

Terms:

t , u ∈ Λ ::= x | t u | λx .t | πi t | 〈t , u〉 .

Reductions:

(λx .t)u 7→β t [u/x ] πi〈t1, t2〉 7→β ti .

Two kinds of values:

λx .t and 〈t , u〉
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Types

Types:

T , U ∈ T ::= B | T ⇒ U | T × U

Typing rules:

(AX)
Γ, x : T ` x : T

(⇒ I)
Γ, x : U ` t : T

Γ ` λx .t : U ⇒ T
(⇒ E)

Γ ` t : U ⇒ T Γ ` u : U
Γ ` t u : T

(×I)
Γ ` t1 : T1 Γ ` t2 : T2

Γ ` 〈t1, t2〉 : T1 × T2
(×E)

Γ ` t : T1 × T2

Γ ` πi t : Ti
(i ∈ {1, 2})
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Interpret types T ∈ T as sets of SN terms JT K ⊆ SN .

Prove the soundness of the interpretation:

If Γ ` t : T and σ(x) ∈ JAK for all (x : A) ∈ Γ, then σ(t) ∈ JT K.

JT K must satisfy some closure conditions.
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Arrow:

A ⇒ B =def {t | ∀u (u ∈ A ⇒ tu ∈ B)}

Product:

A× B =def {t | π1t ∈ A ∧ π2t ∈ B}
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Neutrality

Atomic elimination contexts:

ε[ ] ::= [ ] t | πi [ ]

Elimination contexts: E [ ] ::= [ ] | E [ε[ ]].

t is neutral (t ∈ N ) iff t is not a value.

If t ∈ N , then
1 E [t ] ∈ N
2 If E [t ] → v , then v = E ′[t ′] with (E [ ], t) → (E ′[ ], t ′).
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Definitions

C ∈ CR iff C ⊆ SN and
(CR0) if t ∈ C and t → u then u ∈ C,
(CR1) if t ∈ N and (∀u (t → u ⇒ u ∈ C)) then t ∈ C.

If X ⊆ SN , X is the smallest set such that X ⊆ X ∈ CR.
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Application

Let X ∈ {⇒,×}

If A,B ∈ CR, then A X B ∈ CR.

A X B ⊆ SN .

A X B stable by reduction.

Let t ∈ N and (t)→ ⊆ A X B.
Since ε[t ] ∈ N , apply (CR1) on A,B.
By induction on ε[ ] ∈ SN . Let (ε[ ], t) → v .
If v = ε[t ′] with t → t ′, we conclude by assumption.
Otherwise, v = ε′[t ], and we conclude by induction
hypothesis.
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Let C ⊆ CR. We want⋃
C =def

⋃
C∈C

C ∈ CR

SN and (CR0) are OK.

(CR1)

Let t ∈ N with (t)→ ⊆
⋃
C.

We need some C ∈ C such that (t)→ ∈ C.
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Let CRU be the smallest set such that CR ⊆ CRU and
C ⊆ CRU ⇒

⋃
C ∈ CRU .

Hence, CR is stable by union iff CR = CRU .

Theorem 1. C ∈ CRU iff

C =
⋃
{t | t ∈ C}

Note that for all C ∈ CR,

C =
⋃
{t | t ∈ C}
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Definitions

Let t v u iff for all value v ,

t →∗ v ⇒ u →∗ v .

Let t vSN u iff t v u and t , u ∈ SN .

We have t v u iff for all value v ,

∀E [ ] (E [t ] →∗ v ⇒ E [u] →∗ v) .
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Results

Theorem 2. t = {u | u vSN t}.

Corollary 1. C ∈ CRU iff

C = {u | u vSN t ∈ C}

Corollary 2. CR is stable by union iff CR is the set of all
C ⊆ SN such that

C = {u | u vSN t ∈ C}
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Principal Reduct

Therefore, CR = CRU iff for all C,

C = {u | u vSN t ∈ C} ⇒ C ∈ CR

(CR0) Since (u vSN t ∧ u → u′) ⇒ u′ vSN t .
(CR1) Let t ∈ N such that (t)→ ⊆ C. We need some

u ∈ C such that u vSN t .

Theorem 3. CR = CRU iff for every t ∈ N ∩ SN , there is
u ∈ (t)→ such that t v u.

Note that u = maxv (t)→.
We say that u is a principal reduct of t .
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Application to λ⇒×

In λ⇒×, we seek for principal reducts of t ∈ N ∩ SN .

Weak Standardization:

Let t →β u and E [t ] → v with v 6= E [u].

Then v = E ′[t ′] with (E [ ], t) → (E ′[ ], t ′) and there exists u′

such that t ′ →β u′ and E [u] →∗ E ′[u′].
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In a recent paper [Riba 07]:

We have given a characterization of the stability by union of
CR.

We have shown that it holds for λ⇒×, and for more
elaborated calculi.

It those cases, we have shown that Girard’s Reducibility
candidates are exactly the Tait’s saturated sets that are
stable by reduction.

Future Work:

Application to orthogonal rewriting.

What happens when mixing union types and
non-determinism?
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