Parametricity

Neil Ghani

and F.Forsberg, T.Revell, F.Orsanigo, R.Atkey MSP group, The Scottish Free State

1

More people should know more about Parametricity!

- Philosophy: The world is more uniform than set-theorists think!
	- cf continuity, homotopy theory, category theory, symmetry
- Categorically: The correct approach to contravariance
	- Much better than (strong)-dinaturality
- Logically: A sophisticated principle of invariance
	- Excitingly applicable over natural and social sciences
- Programming: A theory of refinement
	- Rippling changes to ^a component though ^a system
- Step 1: Take a type theory
	- Traditionally System F, but MLTT more so recently.
- Step 2: Give a relational interpretation of type theory
	- This exposes structural invariants within type theory
- Step 3: Use invariants/uniformities to prove properties
	- Theorems for free, (Di)-Naturality, Initial algebras etc.

Overview of this Course

- Lecture 1: Basic Parametricity
	- A concrete model using sets and relations
- Lecture 2: Fibrational Parametricity
	- An abstract model based upon fibrations
- Lecture 3: Cubical Parametricity
	- From proof-irrelevance, to proof-relevance and on!
- Lecture 4: MLTT-Parametricity
	- Parametricity and Dependent Types

Lecture 1: Parametricity via Sets and Relations

- Thesis: The world is more uniform than set-theorists think
	- It contains structural constraints (continuity, symmetry ...)
	- In logic and type theory, there is parametricity
- \bullet Polymorphism: A type constructor $\forall a$:Type. Ta .
	- $-$ Size \Rightarrow work with an intuitionistic meta-theory
	- We can't look at all types so there must be some uniformity.
	- $-$ Eg, how many functions $\forall a.a \rightarrow a$
	- Contrast ad-hoc polymorphism/parametric polymorphism

• Free Theorems: Parametricity shows that *any* function

rev : $\forall a. \mathsf{List}{} a \rightarrow \mathsf{List}{} a$

satisfies the algebraic equation

 $\mathsf{rev}(\mathsf{map} fxs) = \mathsf{map} f(\mathsf{rev} xs)$

- Refinement: Assume a system $T[X]$ containing a component X .
	- $-$ Assume related implementations X_1 and X_2 of X .
	- $-$ Are the systems $T[X_1]$ and $T[X_2]$ related?

• Data Types: Parametricity ensures System F has products, sums, initial algebras (cf Church encodings), second order existentials and final coalgebras

$$
A \times B = \forall X.(A \rightarrow B \rightarrow X) \rightarrow X
$$

\n
$$
A + B = \forall X.(A \rightarrow X) \rightarrow (B \rightarrow X) \rightarrow X
$$

\n
$$
\mu F = \forall X.(FX \rightarrow X) \rightarrow X
$$

\n
$$
\exists X.T = \forall X.(\forall Y.TY \rightarrow X) \rightarrow X
$$

\n
$$
\nu F = \exists X.X \times (X \rightarrow TX)
$$

• Type Isomorphisms: Parametricity can be used to isomorphisms such as

$$
\forall X. A[X, C \times X] \cong \forall X. A[C \to X, X]
$$

Motivation 3: Category Theory

• Naturality: All elements α of $\forall X.FX \rightarrow GX$ are natural

- Mixed Variance? What about $ev::\forall X.\forall Y.(X \rightarrow Y) \times X \rightarrow Y$
	- Dinaturals and strong dinaturals don't behave well
- Key Idea: Parametricity intuitively offers

$$
\begin{array}{c}\nFX \xrightarrow{FR} FY \\
\alpha X \downarrow \\
GX \xrightarrow{GR} GY\n\end{array}
$$

1.1 Syntax of System F

- Key Idea: Formalise types via judgements $\Gamma \vdash T$: Type
	- $-$ Variables: $X_1, \ldots X_n \vdash X_i$: Type
	- $-$ Functions: If $\Gamma \vdash U, V$: Type, then $\Gamma \vdash U \to V$: Type
	- $-$ Forall Types: If $\Gamma, X \vdash T$: Type, then $\Gamma \vdash \forall X . T$: Type
	- $-$ Judgements for defining terms: Γ,Δ $\vdash t : T$ where we ensure $\Gamma\vdash T$: Type and $(x_i:T_i)\in \Delta \Rightarrow \Gamma\vdash T_i$: Type
- John Reynolds: Gave not one, but two semantics called logical relations of the following form. Let Set be ^a universe of sets.

$$
\begin{array}{ll}\n\llbracket T \rrbracket_0 & \in & \mathsf{Set}^{|\Gamma|} \to \mathsf{Set} \\
\llbracket T \rrbracket_1 & \in & \forall \theta_1, \theta_2 \in \mathsf{Set}^{|\Gamma|}.\n\end{array}
$$
\n
$$
\text{Rel}^{|\Gamma|}(\theta_1, \theta_2) \to \text{Rel}(\llbracket T \rrbracket_0 \theta_1, \llbracket T \rrbracket_0 \theta_2)
$$

Core Definitions of the Logical Relation

• Variables: Pretty Obvious

$$
\llbracket X_1, \dots, X_n \vdash X_i \rrbracket_0 \theta = \theta_i
$$

$$
\llbracket X_1, \dots, X_n \vdash X_i \rrbracket_1 r = r_i
$$

• Arrow Types: If $\Gamma \vdash U \to V$: Type

$$
\llbracket \Gamma \vdash U \to V \rrbracket_0 \theta = \llbracket \Gamma \vdash U \rrbracket_0 \theta \to \llbracket \Gamma \vdash V \rrbracket_0 \theta
$$

(f, g) $\in \llbracket \Gamma \vdash U \to V \rrbracket_1 r$ iff $(a, b) \in \llbracket \Gamma \vdash U \rrbracket_1 r \Rightarrow$
 $(fa, gb) \in \llbracket \Gamma \vdash V \rrbracket_1 r$

- Key Idea: Reynolds relational semantics allows us to say
	- related functions map related inputs to related outputs

The Logical Relation for ∀*-types: If* Γ ⊢ ∀X.T : Type*, then ...*

• Forall Types I: $||\mathbf{F} \vdash \forall X \cdot T||_0 \theta$ is the set

 ${f : (S : \mathsf{Set}) \to \llbracket T \rrbracket_0 (\theta, S) | R \in \mathsf{Rel}(A, B) \Rightarrow (fA, fB) \in \llbracket T \rrbracket_1(\mathsf{Eq}(\theta, R))$

- Parametrically polymorphic functions are ad-hoc functions with a uniformity
- They map related types (inputs) to related values (outputs)
- Forall Types II: $(f,g) \in \llbracket \Gamma \vdash \forall X . T \rrbracket_1 r$ iff

 $R: \mathsf{Rel}(A, B) \Rightarrow (fA, qB) \in \llbracket \mathsf{I} \vdash T \rrbracket_1(r, R)$

- two parametrically polymorphic functions are related iff
- they map related inputs to related outputs.

Finally, Properties of the Logical Relation

• Identity Extension Lemma: A lemma about types

 $[\![\Gamma \vdash T]\!]_1(\mathsf{Eq}\theta) = \mathsf{Eq}([\![\Gamma \vdash T]\!]_0\theta)$

Equality relations mapped to equality relations

• Fundamental Theorem: First give ^a standard semantics to terms. If $Γ, Δ ⊢ t : T$, then

 $[\![\Gamma, \Delta \vdash t : T]\!]_0 : (\theta : \mathsf{Set}^{|\Gamma|}) \to [\![\Gamma \vdash \Delta]\!]_0 \theta \to [\![\Gamma \vdash T]\!]_0 \theta$

and then prove that

— if
$$
\theta_1, \theta_2 \in \text{Set}^{|\Gamma|}
$$
 and $r \in \text{Rel}^{|\Gamma|}(\theta_1, \theta_2)$, and if

- $a_1\in \llbracket \mathsf{\Gamma\vdash\Delta}\rrbracket_0 \theta_1$ and $a_2\in \llbracket \mathsf{\Gamma\vdash\Delta}\rrbracket_0 \theta_2$ then
- $(a_1, a_2) \in [\![\Gamma \vdash \Delta]\!]_1 r \Rightarrow ([\![t]\!]_0 \theta_1 a_1, [\![t]\!]_0 \theta_2 a_2) \in [\![\Gamma \vdash T]\!]_1 r$

Terms map related inputs to related outputs

 \bullet Theorem: If F is positive and f is a morphism, then

 $\mathsf{gr}(\llbracket \mathsf{F} \rrbracket_0 \mathsf{f}) = \llbracket \mathsf{F} \rrbracket_1 (\mathsf{gr}^{} \mathsf{f})$

- Theorem: $\forall X.X \rightarrow X = 1$
	- Proof:
- Theorem: All elements of $\forall X.FX \rightarrow GX$ are natural
	- Proof:
- Key Idea: Use IEL and interesting graph relations!

Lecture 2: Fibrational Parametricity

- Question: Who likes Type Theory?
	- Well, it has some uses as we have seen
	- But as formulae grow, they get hard to manipulate
	- And, more advanced systems and notions of relation?
- Goal: Categorify to understand and generalise
	- A respectful categorical abstraction of what the above constructions actually amount to
	- Lets abstract them so they can be generalised to other calculi
	- And lets have some diagrams!

Who's Afraid of Fibrations

- Defn: A categorical abstraction of ^a domain of computation and ^a logic over it. For us, Set and Rel
	- $-$ A category B , called the base and a category E , called the total category. A functor $p: E \to B$ mapping each logical formula to the object it is ^a property of.
	- $-$ Define E_B to be those objects of E mapped by p to B
	- Every $f : B \to B'$ defines a functor $f^* : E_{B'} \to E_B$
- Added Structure: Truth and opreindexing
	- $-$ Truth: Each fibre has a terminal object \top_B
	- Opreindexing: Each $f : B \to B'$ is such that f^* has a left adjoint $\overline{\Sigma}_f$
- Fibrations: Define some categories
	- Set is the category of small sets and functions. Rel has as objects binary relations and as morphisms, pairs of functions between the carriers of the relations preserving relatedness. $p: \mathsf{Rel} \to \mathsf{Set} \times \mathsf{Set}$ maps $R: \mathsf{Rel}(X,Y)$ to $(X,Y).$
- Semantics of Types: If $\Gamma \vdash T$: Type, and $n = |\Gamma|$, then

• Key Idea: No action of type semantics on morphisms!!! And can generalise to all fibrations!

- Definition: Equality defines a functor $Eq: Set \rightarrow Rel$
- Identity Extension Lemma: Simply ...

• Why Fibrations: Equality can be defined in any bifibration with fibred terminal objects

$$
\mathsf{Eq} X = \Sigma_{\delta:X \to X \times X} \top X
$$

Can We Axiomatise the Logical Relations

- Arrow Types: The logical relation $R \to R'$ is simply the exponential in Rel.
	- Logical relations are not ad-hoc but fundamental structure
- ∀-types: Strengthen notion of cone to remove non-parametric elements
	- $-$ A T-cone with vertex X is a collection of maps $X \to \llbracket T \rrbracket_0 Y$ for every Y . Terminal such are the ad-hoc polymorphic functions.
	- $-$ An T-eqcone with vertex X is a collection of maps α_Y : $X \to \llbracket T \rrbracket_0 Y$ for every Y , and for every R : Rel (X,Y) , a map $\alpha_R : \mathsf{Eq} \mathsf{X} \to \llbracket T \rrbracket_1 R$ over (α_X, α_Y)
	- $-$ The parametric elements are those in the terminal $T\text{-eqcone}$

Fundamental Theorem of Logical Relations, Fibrationally

• Recall: The standard interpretation of a term $\Gamma, \Delta \vdash t : T$ is a function

 $[\![\Gamma, \Delta \vdash t : T]\!]_0 : (\theta : \mathsf{Set}^{|\Gamma|}) \to [\![\Gamma \vdash \Delta]\!]_0 \theta \to [\![\Gamma \vdash T]\!]_0 \theta$

or, categorically:

$$
[\![\Gamma,\Delta\vdash t:T]\!]_0:\mathsf{Nat}\ [\![\Gamma\vdash\Delta]\!]_0\ [\![\Gamma\vdash T]\!]_0
$$

• Question: But what about the fundamental theorem ... its just a natural transformation

$$
[\![\Gamma,\Delta\vdash t:T]\!]_1:\mathsf{Nat}\ [\![\Gamma\vdash\Delta]\!]_1\ [\![\Gamma\vdash T]\!]_1
$$

over $[\![\mathsf{\Gamma}, \Delta \vdash t : T]\!]_0 \times [\![\mathsf{\Gamma}, \Delta \vdash t : T]\!]_0$

• Key Idea: Types and terms are not interpreted as functors and natural transformations, but fibred functors and fibred natural transformations

- Recall: Reynolds solved the contravariance problem by ditching the action on morphisms. Surely cheating!
	- But every function $f: A \rightarrow B$ defines a graph $grf: RelAB$
	- $-$ Reynolds key insight: replace the action of $\llbracket T \rrbracket_0$ on f with an action of $\llbracket T \rrbracket_1$ on $\operatorname{\sf gr} f$
- Fibrationally: Define gr : Set \rightarrow \rightarrow Rel by
	- $\mathsf{p} = (f, id_B)^* \mathsf{Eq} B$, or
	- $-$ gr $f = \mathsf{\Sigma}_{(id_A, f)}$ Eq A .
	- Equivalent with BC.
- Graph Lemma: We need both directions of the graph lemma
	- Reindexing gives $\llbracket F \rrbracket_1(\text{gr} f) \rightarrow \text{gr}(\llbracket F \rrbracket_0 f)$
	- Opreindexing gives $gr([F]_0f) \to [F]_1(grf)$
- Theorem: $gr : Set^{-} \rightarrow Rel$ is full and faithful when Eq is.
	- So not only do we trade morphisms in the base for objects in the total category, but ...
	- ... we trade commuting squares in the base of morphisms in the total category
- Related work: Hermida kicked off fibrational parametricity
	- Birkedal, Mogelberg, Simpson, Dunphy/Reddy
	- Us: bifibrations for the graph lemma, universal characterisation of parametric elements.
- Future: Clean enough to travel many directions including
	- Higher Dimensional Parametricity and intensional MLTT
	- Parametricity for Symmetry
	- Parametricity in the Natural Sciences