Classical Realisability
and Focalisation

Guillaume MUNCH-MACCAGNONTI!

Université Paris 7
Partially funded by INRIA Saclay and U. Penn.

Réalisabilité a Chambéry
June 4™, 2009

lGuillaume. Munch@pps. ..

Introduction:
Sequent calculi in computer science

Code v vs. environments e:

TFv:A|A Tle: Ak A
(v|e): (I A, A)

(cut)

Introduction:
Sequent calculi in computer science

Code v vs. environments e:
TFv:A|A Tle: Ak A

Wle - (frraa)y ©®

Reduction defined on commands:

(vile) = (V[€)

Sequent calculi in computer science

Example
Krivine’s weak head reduction machine: (Call-by-name)

(vv'||E) — (v]|V -E) "push"
(Aav[[v'-E) — (v[V/a]| E) "pop"

(using notations to come)

Sequent calculi in computer science

Example
Krivine’s weak head reduction machine: (Call-by-name)

(vv'||E) — (v]|V -E) "push"
(Aav[[v'-E) — (v[V/a]| E) "pop"

(using notations to come)

Example
Curien-Herbelin’s Apji, [Curien-Herbelin 2000].

(Call-by-value)
(vv'lle) = (vv'-e)
Ax.v [V -e) = (V|| px(v] e))
(V|| ux.c) — c[V/X] (V value)

Sequent calculi in computer science

» “Abstract” abstract machines (commands (v || €)) as a
way to define operational semantics.

» i.e. operational semantics as syntax with semantically
fine-grained constructs.

» programming languages (i.e. natural deduction with
useful connectives (abstraction, application)) defined
afterwards.

Sequent calculi in computer science

» “Abstract” abstract machines (commands (v || €)) as a
way to define operational semantics.

» i.e. operational semantics as syntax with semantically
fine-grained constructs.

» programming languages (i.e. natural deduction with
useful connectives (abstraction, application)) defined
afterwards.

» Back to the roots of computer science: computation as
the interaction of a program with data.

» e.g. for words w ... and states s, s’ ..., a finite
automata (NFA) can be represented by the interaction:

(awlls) — (wlls’)

Sequent calculi in computer science

» “System L”: Syntax a la Curien-Herbelin (2000) for a
representation of generic sequent calculi, with an
“abstract machine” flavor.

» Semantical investigations [Girard’s LC,
Danos-Joinet-Schellinx LK? ,, Laurent’s LLP] clarified
concepts around computation in classical logic

(polarities, focalization).

Sequent calculi in computer science

» “System L”: Syntax a la Curien-Herbelin (2000) for a
representation of generic sequent calculi, with an
“abstract machine” flavor.

» Semantical investigations [Girard’s LC,
Danos-Joinet-Schellinx LK? ,, Laurent’s LLP] clarified
concepts around computation in classical logic

(polarities, focalization).

» Here: design a “system L” that expresses into the
syntax what we know about the semantics.

Focalising System L

Focalising System L (L¢.): A syntax for sequent calculi
whose reduction rules correspond to the
semantics of Girard’s classical logic LC (1992).

» It is a term syntax for LK, (focalised classical logic
with the 4 connectives from LL), linear logic LL...

» It has a low technicality and the
readability/writeability of the)\ calculus.

It naturally extends Krivine’s classical realizability.

Focalising System L: Ideas

Focalisation: Four connectives (in addition to classical
negation): ®, %, &, ¢. Positive constructs are
strict; negative constructs are lazy.
[independently underlined by Zeilberger,
2008]

Values: The stoup [Girard, 1992]: same notion as the
values [Plotkin, 1975]. [Remark due to
Curien-Herbelin, 2000, might have appeared
implicitly before]

Indeed,compare:

r=AA "+ B; A

d V:=(V,V)]|...
(rAcB AN o © an (V. V)|

Focalising System L: Ideas

Two polarities: “Strict” and “Lazy” qualify connectives
instead of the strategy of reduction. Code can
mix constructs of the two polarities.

» Compare with e.g. \uji or Wadler’s “Dual Calculus”:
One non-confluent calculus with two confluent
restrictions, CBV and CBN (corresponds to the
“pre-1987” negations that necessarily coincide with a

modality).
» Duality of connectives # duality of constructs.

Pattern-matching: Invertible constructs are represented
with an informal pattern-matching.

Focalising System L: Types

Polarisation: positive and negative formulae:

A= P|N

P = X|AQA|A®A|1|0O

N o= X |ABA|AKA| L|T
Positive variables x, y . .. ; negative variables o, 3. . ..

Contexts [have elements of the form o : P or x : N.

Focalising System L: Constructs

» Patterns (positive constructs) and pattern-matching
(negative constructs). [Link with focalisation
underlined independently from Zeilberger, 2008]

®: (t,u) X oulx,y).c
& p(u (x).clu(y).c) @ (t)

Focalising System L: Constructs

» Patterns (positive constructs) and pattern-matching
(negative constructs). [Link with focalisation
underlined independently from Zeilberger, 2008]

®: (t,u) X oulx,y).c
& p(u (x).clu(y).c) @ (t)

» Computational interpretation:
» ((t,u)|: constructor of the strict conjunction (OCaml’s
pair).
» |(t, u)): destructor of the lazy disjunction (its dual for

the duality of computation).
» |u(x,y).c): destructor of the strict conjunction (dual

for the duality of constructs).

Focalising System L: Constructs

®/7:
Ft:A|T I—u:B|A()
Lo AB| LA ©
c:(Fx:Ay:B,T)
Fu(x,y)c:ARB|T 2
D/&:
FECAT
(@)

FZ,‘(t)ZAl@AQ ‘ F

c:(Fx:AT) c:(Fy:B,T)

: &)
Fu(n(x).clu(y).c) A&B|T

One-sided vs. Two-sided sequents

Two traditions in sequent calculus:
» Gentzen two-sided sequents: [- A
» Input/output symmetry (“duality of computation”).

- e (t] £]t).

One-sided vs. Two-sided sequents

Two traditions in sequent calculus:
» Gentzen two-sided sequents: [- A
» Input/output symmetry (“duality of computation”).

- e (t] £]t).

» Girard’s one sided sequents: - I
» Amounts to quotienting with (¢ || u) = (u|| t).
» Reasoning modulo the duality of computation.
» No real meaning in terms of “abstract machines”.

In the following: we have one sided-sequents and

(t] uy = (u| t) for simplification. (To retrieve the
two-sided version one has to add a connective for classical
negation)

Focalising System L: Syntax

Ku= ol|x

| pa.c

| 2i(t)

| ux.c

| 1(ox (k) |12 () .)
| tp

(= t4)

(®,®))
(1,0)

(¥, &)
(L)

» Negation left implicit because we are one-sided
((t||u) = (u] t)). (Two sided-sequents recover classical
negation and resemblance to abstract machines)

» Shifts of polarities left implicit: we do not add
constraints of polarity to formulae. (Constructs are

their own shifts)

Focalising System L: Reduction

» Define values:
V=t [x[(V,V)]u(V)]()
» Head reduction —:

{nov.c|[to) —nc[t-/a]
(up.c || Vi) —nc[Vi/p]

with p a pattern (very informal).
» Plus conventional “¢” rules:

()l vey = o | (G,) [v0))

» Reduction is deterministic.

Realisability: Observation I, definition

Realisability: Observation L, definition

» The observation L : a set of closed commands which is
—p-saturated:

c—pc,del = cel
» If (t|| u) € L then one writes ¢l u.
Definition
» T (| Vue T tlu}
» Behaviours are sets of the form T+.

Realisability: Observation L, definition

» The observation L : a set of closed commands which is
—p-saturated:

c—pc,del = cel
» If (t|| u) € L then one writes ¢l u.
Definition
» T (| Vue T tlu}
» Behaviours are sets of the form T+.

Fact (Basic properties of the orthogonal)

» If U C V then V*+ C U+,
» U C U
> UL = UL

» U is a behaviour iff U = U+L.

Analogy with NFAs

Take I a set of (w || s) which is saturated for the reduction
of NFAs.

» Then the S+ with S a set of states are regular
languages.

Analogy with NFAs

Take I a set of (w || s) which is saturated for the reduction
of NFAs.

» Then the S+ with S a set of states are regular
languages.
In particular, take I the smallest observation that contains
(¢ || s¢) for each final state sg. Then:
» {so} is the language the automaton accepts;
» Colinearity, i.e. {s}* = {s'}" is the Nerode
equivalence.
An analogy:

» useful to introduce classical realizability,

» that shows that the interaction between the two sides of
the cut is like the interaction between a program and data
that lies at the roots of computer science.

Realisability: Behaviours

Back to Lg,.. Instead of regular expressions that define
regular languages: we have closed logical formulae A that
define behaviours |A|.

» Formulas extended with parameters
ReN=p(T, f N V) (sets of closed positive terms).

» Ex.: {V1, o}t @ ({Va} @ X) is a formula.

» For A a closed formula one defines a behaviour |A|.

Realisability: Behaviours

Back to Lg,.. Instead of regular expressions that define
regular languages: we have closed logical formulae A that
define behaviours |A|.

» Formulas extended with parameters
ReN=p(T, f N V) (sets of closed positive terms).

» Ex.: {V1, o}t @ ({Va} @ X) is a formula.

» For A a closed formula one defines a behaviour |A|.

» Definition such that |A|* = |AL].
» Base cases of the definition:
def
> R =

. ‘Rl’def

Realisability: Behaviour of ®, &, definition

» Case of ®@/%:

> |A® B & (1A x B

- A% Bl (1AL x 1B
» Case of B /&:
> |Ae B Y (1A + B

> A& B (JAL + (BT

Realisability: Adequacy lemma

“Proof systems build terms that belong to the behaviours of their types.”

Theorem
Suppose c typable in {LK,o, LL ...}
of type - k1 : A1, ... Kn: Ape

Then .
\V/I', L, € |A1J'| - C[t,'/z,?} el
In particular
Ft:A = telA

(formulae are all closed)

Realisability: Adequacy lemma

Proof.
(Positive case).
Case - ux.c : N;T. This comes from ¢ : (x : N;I). One has:

(ux.c [ty) — c[t./x]

only when t, is a value! O

Realisability: Adequacy lemma

Proof.
(Positive case).
Case - ux.c : N;T. This comes from ¢ : (x : N;I). One has:

(ux.c [ty) — c[t./x]

only when t, is a value! O
We need the:

Fact
(Generation) Behaviours are generated by the set of their

values.
1L
|A|V = |A’

Application 1: Head normalisation

Theorem
Ift-t: Pthen (t|| tp) —} (V| tp) for some value V.

Application 1: Head normalisation

Theorem
Ift-t: Pthen (t|| tp) —} (V| tp) for some value V.

Proof.
» Take I = { C | 3V value, c —} (V| tp) }

Application 1: Head normalisation

Theorem
Ift-t: Pthen (t|| tp) —} (V| tp) for some value V.

Proof.
» Take I = { C | 3V value, c —} (V| tp) }

» One has t € |P| (Adequacy Lemma).

Application 1: Head normalisation

Theorem
Ift-t: Pthen (t|| tp) —} (V| tp) for some value V.

Proof.
» Take I = { C | 3V value, c —} (V| tp) }

» One has t € |P| (Adequacy Lemma).

» One has tp € |P|,~ = |P*| (Generation theorem).

Hence (t| tp) € L.

Application 2: Disjunction property

Theorem
If-t: A® B then (t| tp) —7 (u:(V)| tp) for some
i € {1,2} and some value V.

Application 2: Disjunction property

Theorem
If-t: A® B then (t| tp) —7 (u:(V)| tp) for some
i € {1,2} and some value V.

Proof.
» Take L = { ¢ | 3i,3V value, ¢ —} (u:(V) | tp) }.

Application 2: Disjunction property

Theorem

If-t: A® B then (t| tp) —7 (u:(V)| tp) for some
i € {1,2} and some value V.

Proof.

» Take L = { ¢ | 3i,3V value, ¢ —} (u:(V) | tp) }.

» One has t € |A @ B| (Adequacy Lemma).
» One has tp € |A+ & B*| (Generation theorem).

Hence (t || tp) € L.

Application 2: Disjunction property

Theorem

If-t: A® B then (t| tp) —7 (u:(V)| tp) for some
i € {1,2} and some value V.

Proof.

» Take L = { ¢ | 3i,3V value, ¢ —} (u:(V) | tp) }.

» One has t € |A @ B| (Adequacy Lemma).
» One has tp € |A+ & B*| (Generation theorem).

Hence (t || tp) € L.

» Generalises to any positive type.

» A form of type safety without resorting to subject
reduction!

Datatypes

» Suppose:
(tla) =5 w(V)[a)
Not a real disjunction property if a« € FV (V)!

Datatypes

» Suppose:
(tla) =5 w(V)[a)
Not a real disjunction property if a« € FV (V)!
» Particular case of constructivity: Hereditarily positive
formulae [Girard, 1992], e.g.:

Bool def 191

One has:
1@l = {u(),=0}

Datatypes

» Suppose:
(tla) =5 w(V)[a)
Not a real disjunction property if a« € FV (V)!
» Particular case of constructivity: Hereditarily positive
formulae [Girard, 1992], e.g.:

Bool def 191

One has:
1@l = {u(),=0}

» A kind of storage theorem without the need for
storage operators.
Indeed, one has:

Ax.x IF ({21(),22()} — A) — (Bool — A)

Application: Issues with quantification

Simple method to add a new feature in the language:
» Caracterise the feature in terms of behaviours
» Ensure these behaviours are generated by their values.

Application: Issues with quantification

Simple method to add a new feature in the language:
» Caracterise the feature in terms of behaviours
» Ensure these behaviours are generated by their values.

Both steps are modular: we only have to check if the new
feature is compatible with a generic notion of computation
in LKpol-

» Example of universal quantification / polymorphism.

Application 3: Issues with quantification

» If we try to define the behaviour of quantification like
this:
VXAl = [|AIR/X]]
Ren
then the generation theorem fails as the above
behaviour is not generated by its values.

Application 3: Issues with quantification

» If we try to define the behaviour of quantification like

this:
VXAl = [|AIR/X]]
Ren
then the generation theorem fails as the above
behaviour is not generated by its values.
2 solutions:
» Introduce a shift (Girard’s method)

» Introduce an explicit value restriction (Polymorphism
a la ML):

AX A = (ﬂ !A[R/X]\V)

Rel

Application 4: Parametricity

Example
If-t:VX(X X — X®X)

then (¢ || {(V1, V2) - tp}) — ((Vi, V)) [tp)
for any positive values V;, V; and for some /,j € {1,2}.

Application 4: Parametricity

Example

IfEt: VXXX = X®X)

then (¢ || {(V1, V2) - tp}) — ((Vi, V)) [tp)

for any positive values V;, V; and for some /,j € {1,2}.

Proof.
Let V1, V, be positive values.

» L={c|3ije{1,2},c—; {(V;, V)| tp) }.
» With R = {V, \,} as a parameter one derives
(t{(Vi,Vo)-a}):(Fa: R®R).
» One hastp € |R® R|™.
Hence (t || {(V4, V) - tp}) € L by the adequacy lemma.

Conclusion
Proximity of Classical Realizability with Ludics:
» There is a daimon:

"I (when ¢ € 1)

o:(F_AL..., TA)
» Daimon implies internal completeness of the
connectives:

|A® Bly = |Aly x |Bly

under some generic conditions.

» Decomposition of the universal quantification under
the form AX TA = VX A where A enjoys “shocking
equalities”:

IAX (A® B)| = |(AX A) & (AX B)|
IAX (A® B)| = |(AX A) @ (AX B)]

Conclusion

Lfoc gives a very simple and non-bureaucratic account of
various trends of proof theory:

» Syntaxes for sequent calculi [Curien-Herbelin] and

the duality of computation

» Focalisation [Andreoli, Girard]

» Classical realisability [Krivine]
...very close to CS (values, distinction strict/lazy, analogy
with automata).

End

Thanks to Pierre-Louis Curien, Hugo Herbelin, Stephen
Zdancewic, Jeffrey Vaughan & the anonymous referees for
comments on this work.

[§ Guillaume Munch-Maccagnoni. Focalisation and
classical realisability. To appear in the proceedings of
CSL’09.

