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Introduction:
Sequent calculi in computer science

Code v vs. environments e:

Γ ` v : A | ∆ Γ′ | e : A ` ∆′
(cut)

〈v ‖ e〉 : (Γ, Γ′ ` ∆,∆′)

Reduction defined on commands:

〈v ‖ e〉 → 〈v ′ ‖ e ′〉
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Sequent calculi in computer science
Example
Krivine’s weak head reduction machine: (Call-by-name)

〈v v ′ ‖E 〉 → 〈v ‖ v ′ · E 〉 "push"
〈λα.v ‖ v ′ · E 〉 → 〈v [v ′/α] ‖E 〉 "pop"

(using notations to come)

Example
Curien-Herbelin’s λ̄µµ̃v [Curien-Herbelin 2000].
(Call-by-value)

〈v v ′ ‖ e〉 → 〈v ‖ v ′ · e〉
〈λx .v ‖ v ′ · e〉 →

〈
v ′
∥∥µx .〈v ‖ e〉〉

〈V ‖µx .c〉 → c [V /x ] (V value)
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Sequent calculi in computer science

I “Abstract” abstract machines (commands 〈v ‖ e〉) as a
way to define operational semantics.

I i.e. operational semantics as syntax with semantically
fine-grained constructs.

I programming languages (i.e. natural deduction with
useful connectives (abstraction, application)) defined
afterwards.

I Back to the roots of computer science: computation as
the interaction of a program with data.

I e.g. for words w . . . and states s, s ′ . . . , a finite
automata (NFA) can be represented by the interaction:

〈a.w ‖ s〉 →
〈
w
∥∥ s ′〉
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Sequent calculi in computer science

I “System L”: Syntax à la Curien-Herbelin (2000) for a
representation of generic sequent calculi, with an
“abstract machine” flavor.

I Semantical investigations [Girard’s LC,
Danos-Joinet-Schellinx LK

η
pol , Laurent’s LLP] clarified

concepts around computation in classical logic
(polarities, focalization).

I Here: design a “system L” that expresses into the
syntax what we know about the semantics.
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Focalising System L

Focalising System L (Lfoc): A syntax for sequent calculi
whose reduction rules correspond to the
semantics of Girard’s classical logic LC (1992).

I It is a term syntax for LKpol (focalised classical logic
with the 4 connectives from LL), linear logic LL...

I It has a low technicality and the
readability/writeability of the λ calculus.

It naturally extends Krivine’s classical realizability.



Focalising System L: Ideas

Focalisation: Four connectives (in addition to classical
negation): ⊗,`,&,⊕. Positive constructs are
strict; negative constructs are lazy.
[independently underlined by Zeilberger,
2008]

Values: The stoup [Girard, 1992]: same notion as the
values [Plotkin, 1975]. [Remark due to
Curien-Herbelin, 2000, might have appeared
implicitly before]

Indeed,compare:

Γ ` A; ∆ Γ′ ` B; ∆′ (` ⊗)
Γ, Γ′ ` A⊗ B; ∆,∆′

and V ::= (V ,V ) | . . .



Focalising System L: Ideas

Two polarities: “Strict” and “Lazy” qualify connectives
instead of the strategy of reduction. Code can
mix constructs of the two polarities.

I Compare with e.g. λ̄µµ̃ or Wadler’s “Dual Calculus”:
One non-confluent calculus with two confluent
restrictions, CBV and CBN (corresponds to the
“pre-1987” negations that necessarily coincide with a
modality).

I Duality of connectives 6= duality of constructs.

Pattern-matching: Invertible constructs are represented
with an informal pattern-matching.



Focalising System L: Types

Polarisation: positive and negative formulae:

A ::= P | N
P ::= X | A⊗ A | A⊕ A | 1 | 0
N ::= X⊥ | A` A | A&A | ⊥ | >

Positive variables x , y . . . ; negative variables α, β . . . .
Contexts Γ have elements of the form α : P or x : N.



Focalising System L: Constructs

I Patterns (positive constructs) and pattern-matching
(negative constructs). [Link with focalisation
underlined independently from Zeilberger, 2008]

⊗ : (t, u) ` : µ(x , y ).c

& : µ(ı1 (x) .c | ı2 (y ) .c ′) ⊕ : ıi(t)

I Computational interpretation:
I 〈(t, u)|: constructor of the strict conjunction (OCaml’s

pair).
I |(t, u)〉: destructor of the lazy disjunction (its dual for

the duality of computation).
I |µ(x , y).c〉: destructor of the strict conjunction (dual

for the duality of constructs).
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Focalising System L: Constructs

⊗/`:

` t : A | Γ ` u : B | ∆
(⊗)

` (t, u) : A⊗ B | Γ,∆

c : ( ` x : A, y : B, Γ)
(`)

` µ(x , y).c : A` B | Γ

⊕/&:
` t : Ai | Γ

(⊕i )` ıi (t) : A1 ⊕ A2 | Γ

c : ( ` x : A, Γ) c ′ : ( ` y : B, Γ)
(&)

` µ(ı1 (x) .c | ı2 (y) .c ′) : A & B | Γ



One-sided vs. Two-sided sequents

Two traditions in sequent calculus:
I Gentzen two-sided sequents: Γ ` ∆

I Input/output symmetry (“duality of computation”).
I i.e. 〈t| 6= |t〉.

I Girard’s one sided sequents: ` Γ

I Amounts to quotienting with 〈t ‖ u〉 ≡ 〈u ‖ t〉.
I Reasoning modulo the duality of computation.
I No real meaning in terms of “abstract machines”.

In the following: we have one sided-sequents and
〈t ‖ u〉 ≡ 〈u ‖ t〉 for simplification. (To retrieve the
two-sided version one has to add a connective for classical
negation)
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Focalising System L: Syntax

κ ::= α | x
t+ ::= x | µα.c

| (t, t) | ıi(t) (⊗,⊕i)

| () (1, 0)

t− ::= α | µx .c
| µ(κ, κ).c | µ(ı1 (κ) .c | ı2 (κ) .c) (`,&)

| µ().c | tp (⊥,>)

c ::= 〈t+ ‖ t−〉 | 〈t− ‖ t+〉

I Negation left implicit because we are one-sided
(〈t ‖ u〉 ≡ 〈u ‖ t〉). (Two sided-sequents recover classical
negation and resemblance to abstract machines)

I Shifts of polarities left implicit: we do not add
constraints of polarity to formulae. (Constructs are
their own shifts)



Focalising System L: Reduction
I Define values:

V ::= t− | x | (V ,V ) | ıi(V ) | ()

I Head reduction→h:

〈µα.c ‖ t−〉 →hc [t−/α]

〈µp.c ‖V+〉 →hc [V+/p]

with p a pattern (very informal).
I Plus conventional “ς” rules:

〈(t, u) ‖ v−〉 →h

〈
t

∥∥∥µκ.〈u ∥∥µκ′.〈(κ, κ′) ‖ v−〉〉〉
. . .

I Reduction is deterministic.



Realisability: Observation ⊥⊥, definition

I The observation ⊥⊥ : a set of closed commands which is
→h-saturated:

c →h c
′, c ′ ∈ ⊥⊥ =⇒ c ∈ ⊥⊥

I If 〈t ‖ u〉 ∈ ⊥⊥ then one writes t⊥⊥u.

Definition
I T⊥

def.
= { t | ∀u ∈ T , t⊥⊥u }.

I Behaviours are sets of the form T⊥.

Fact (Basic properties of the orthogonal)

I If U ⊆ V then V⊥ ⊆ U⊥.
I U ⊆ U⊥⊥.
I U⊥ = U⊥⊥⊥.
I U is a behaviour iff U = U⊥⊥.
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Analogy with NFAs
Take ⊥⊥ a set of 〈w ‖ s〉 which is saturated for the reduction
of NFAs.

I Then the S⊥ with S a set of states are regular
languages.

In particular, take ⊥⊥ the smallest observation that contains
〈ε ‖ sF 〉 for each final state sF . Then:

I {s0}⊥ is the language the automaton accepts;
I Colinearity, i.e. {s}⊥ = {s ′}⊥ is the Nerode

equivalence.
An analogy:

I useful to introduce classical realizability,
I that shows that the interaction between the two sides of

the cut is like the interaction between a program and data
that lies at the roots of computer science.
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Realisability: Behaviours

Back to Lfoc. Instead of regular expressions that define
regular languages: we have closed logical formulae A that
define behaviours |A|.

I Formulas extended with parameters
R ∈ Π = ℘(T 0

+ ∩ V) (sets of closed positive terms).
I Ex.: {V1,V2}⊥ ⊗ ({V3} ⊕ X ) is a formula.

I For A a closed formula one defines a behaviour |A|.

I Definition such that |A|⊥ = |A⊥|.
I Base cases of the definition:

I |R| def.
= R⊥⊥

I |R⊥| def.
= R⊥
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Realisability: Behaviour of ⊗, ⊕, definition

I Case of ⊗/`:

I |A⊗ B| def.
= (|A| × |B|)⊥⊥

I |A` B| def.
=
(
|A⊥| × |B⊥|

)⊥
I Case of ⊕/&:

I |A⊕ B| def.
= (|A|+ |B|)⊥⊥

I |A & B| def.
=
(
|A⊥|+ |B⊥|

)⊥



Realisability: Adequacy lemma
“Proof systems build terms that belong to the behaviours of their types.”

Theorem
Suppose c typable in {LKpol ,LL . . .}
of type ` κ1 : A1, . . . , κn : An.

Then
∀i , ti ∈ |A1

⊥| =⇒ c

[−→
ti

/−→κi

]
∈ ⊥⊥

In particular
` t : A =⇒ t ∈ |A|

(formulae are all closed)



Realisability: Adequacy lemma

Proof.
(Positive case).
Case ` µx .c : N; Γ. This comes from c : (x : N; Γ). One has:

〈µx .c ‖ t+〉 → c [t+/x ]

only when t+ is a value!

We need the:

Fact
(Generation) Behaviours are generated by the set of their
values.

|A|V
⊥⊥ = |A|
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Application 1: Head normalisation

Theorem
If ` t : P then 〈t ‖ tp〉 →∗h 〈V ‖ tp〉 for some value V .

Proof.
I Take ⊥⊥ =

{
c
∣∣ ∃V value, c →∗h 〈V ‖ tp〉

}
I One has t ∈ |P| (Adequacy Lemma).

I One has tp ∈ |P|V
⊥ = |P⊥| (Generation theorem).

Hence 〈t ‖ tp〉 ∈ ⊥⊥.
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Application 2: Disjunction property

Theorem
If ` t : A⊕ B then 〈t ‖ tp〉 →∗h 〈ıi(V ) ‖ tp〉 for some
i ∈ {1, 2} and some value V .

Proof.
I Take ⊥⊥ =

{
c
∣∣ ∃i ,∃V value, c →∗h 〈ıi(V ) ‖ tp〉

}
.

I One has t ∈ |A⊕ B| (Adequacy Lemma).
I One has tp ∈ |A⊥ & B⊥| (Generation theorem).

Hence 〈t ‖ tp〉 ∈ ⊥⊥.

I Generalises to any positive type.
I A form of type safety without resorting to subject

reduction!
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Datatypes
I Suppose:

〈t ‖α〉 →∗h 〈ıi(V ) ‖α〉
Not a real disjunction property if α ∈ FV (V )!

I Particular case of constructivity: Hereditarily positive
formulae [Girard, 1992], e.g.:

Bool def.
= 1⊕ 1

One has:
|1⊕ 1| = {ı1(), ı2()}⊥⊥

I A kind of storage theorem without the need for
storage operators.
Indeed, one has:

λx .x 
 ({ı1(), ı2()} → A)→ (Bool→ A)
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Application: Issues with quantification

Simple method to add a new feature in the language:
I Caracterise the feature in terms of behaviours
I Ensure these behaviours are generated by their values.

Both steps are modular: we only have to check if the new
feature is compatible with a generic notion of computation
in LKpol .

I Example of universal quantification / polymorphism.
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Application 3: Issues with quantification

I If we try to define the behaviour of quantification like
this:

|∀X A| =
⋂
R∈Π

|A[R/X ]|

then the generation theorem fails as the above
behaviour is not generated by its values.

2 solutions:
I Introduce a shift (Girard’s method)
I Introduce an explicit value restriction (Polymorphism

à la ML):

|

∀

X A| =

(⋂
R∈Π

|A[R/X ]|V

)⊥⊥
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Application 4: Parametricity

Example
If ` t : ∀X (X ⊗ X → X ⊗ X )
then 〈t ‖ {(V1,V2) · tp}〉 →∗h 〈(Vi ,Vj) ‖ tp〉
for any positive values Vi ,Vj and for some i , j ∈ {1, 2}.

Proof.
Let V1,V2 be positive values.

I ⊥⊥ =
{
c
∣∣ ∃i , j ∈ {1, 2}, c →∗h 〈(Vi ,Vj) ‖ tp〉

}
.

I With R = {V1,V2} as a parameter one derives
〈t ‖ {(V1,V2) · α}〉 : (` α : R ⊗ R).

I One has tp ∈ |R ⊗ R|⊥.
Hence 〈t ‖ {(V1,V2) · tp}〉 ∈ ⊥⊥ by the adequacy lemma.



Application 4: Parametricity

Example
If ` t : ∀X (X ⊗ X → X ⊗ X )
then 〈t ‖ {(V1,V2) · tp}〉 →∗h 〈(Vi ,Vj) ‖ tp〉
for any positive values Vi ,Vj and for some i , j ∈ {1, 2}.

Proof.
Let V1,V2 be positive values.

I ⊥⊥ =
{
c
∣∣ ∃i , j ∈ {1, 2}, c →∗h 〈(Vi ,Vj) ‖ tp〉

}
.

I With R = {V1,V2} as a parameter one derives
〈t ‖ {(V1,V2) · α}〉 : (` α : R ⊗ R).

I One has tp ∈ |R ⊗ R|⊥.
Hence 〈t ‖ {(V1,V2) · tp}〉 ∈ ⊥⊥ by the adequacy lemma.



Conclusion
Proximity of Classical Realizability with Ludics:

I There is a daimon:
z (when c0 ∈ ⊥⊥)

c0 : (` _ : A1, . . . , _ : An)

I Daimon implies internal completeness of the
connectives:

|A⊗ B|V = |A|V × |B|V

under some generic conditions.
I Decomposition of the universal quantification under

the form

∀

X ˆA = ∀X A where

∀

enjoys “shocking
equalities”:

|

∀

X (A⊕ B)| = |(

∀

X A)⊕ (

∀

X B)|
|

∀

X (A⊗ B)| = |(

∀

X A)⊗ (

∀

X B)|



Conclusion

Lfoc gives a very simple and non-bureaucratic account of
various trends of proof theory:

I Syntaxes for sequent calculi [Curien-Herbelin] and
the duality of computation

I Focalisation [Andreoli, Girard]
I Classical realisability [Krivine]

...very close to CS (values, distinction strict/lazy, analogy
with automata).



End
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