
Realizability toposes and the tripos-to-topos
construction

Jonas Frey

June 2009

Kleene’s number realizability

Goal: extract algorithmic information from proofs in Heyting arithmetic

I Language of Heyting arithmetic: single-sorted first order
predicate logic with constant symbols for all primitive recursive
functions

I Logic for Heyting arithmetic: intuitionistic logic with induction on
arbitrary formulas

For a formal treatment, see e.g. [TvD88]
[TvD88] A. S. Troelstra and D. van Dalen, Constructivism in mathematics. Vol. I, Studies in Logic

and the Foundations of Mathematics, vol. 121, North-Holland Publishing Co., Amsterdam,
1988.

Kleene’s number realizability

I To each closed formula of ϕ of Heyting arithmetic, we want to
associate a set rn(ϕ) ⊆ N of realizers, to be viewed as codes
(Gödelnumbers) of algorithms

I Notations:
I (n, m) 7→ 〈n, m〉 is a primitive recursive coding of pairs, with

corresponding projections p0 and p1 (i.e., p0(〈n, m〉) = n and
p1(〈n, m〉) = m)

I {n}(m) (‘Kleene brackets’) denotes the (only partially defined)
evaluation of the nth partial recursive function at input m. For this to
make sense, we assume some recursive enumeration ϕn(·) of
partial recursive functions.

I When claiming s = t where s, t are terms possibly containing
Kleene brackets, we assert in particular that both terms are
defined.

Kleene’s number realizability

Now we can define rn(ϕ) by induction over the structure of ϕ.

n
 s = t iff s = t (s, t are closed terms)
n
 ϕ ∧ ψ iff p0(n)
 ϕ and p1(n)
 ψ

n
 ϕ⇒ ψ iff ∀m . (m
 ϕ)⇒ ({n}(m)
 ψ)

n
 ⊥ never
n
 ϕ ∨ ψ iff (p0(n) = 0 ∧ p1(n)
 ϕ) ∨ (p0(n) = 1 ∧ p1(n)
 ψ)

n
 ∀x . ϕ(x) iff ∀m ∈ N . {n}(m)
 ϕ(m)

n
 ∃x . ϕ(x) iff p1(n)
 ϕ(p0(n))

(For n ∈ N, n denotes the term S(. . .S︸ ︷︷ ︸
n times

(0) . . .) of Heyting arithmetic)

The effective tripos

I Now we will reformulate the ideas of Kleene realizability in a
categorical setting, which will lead us to the concept of tripos.

I A tripos is a certain kind of fibration. Fibrations are of interest in
categorical logic because they allow to model logics and type
theories. In this setting, triposes correspond to intuitionistic
higher order logic.

The effective tripos
Truth values, predicates

I Truth values in number realizability are sets of natural numbers
I Given a set I, a predicate on I is a function ϕ : I → P(N). We

denote the set of predicates on I by eff(I).
I On eff(I) we can define define a preorder `I by

ϕ `I ψ iff ∃e ∈ N ∀i ∈ I ∀n ∈ ϕ(i) . {e}(n) ∈ ψ(i)

The effective tripos
Reindexing / substitution

I For each u : I → J, we can define a function

eff(u) : eff(J)→ eff(I), ϕ 7→ ϕ ◦ u

eff(u) is monotonic with respect to `J ,`I .
I The assignment u 7→ eff(u) is furthermore compatible with

composition and maps identities to identities, and thus we obtain
a contravariant functor

eff : Setop → Preord

This functor is called the effective tripos. (A formal definition of
tripos will come later)

The effective tripos
Propositional connectives

I We will now describe how to interpret predicate logic in the
effective tripos. We begin with the propositional part.

I We define operations on truth values (subsets of N)
corresponding to propositional connectives.
∧,∨,⇒: PN× PN→ PN and ⊥ ∈ PN are given by

M ∧ N = {n | p0(n) ∈ M,p1(n) ∈ N}
M ∨ N = {n | p0(n) = 0 ∧ p1(n) ∈ M ∨ p0(n) = 1 ∧ p1(n) ∈ N}

M ⇒ N = {e | ∀n ∈ M . {e}(n) ∈ N}
⊥ = ∅

The effective tripos
Propositional connectives

I We can extend the definitions of the previous slide from truth
vaules to predicates by applying them pointwise, i.e.,
(ϕ ∧ ψ)(i) := ϕ(i) ∧ ψ(i) and so forth.

I This makes eff(I) into a pre- Heyting algebra, that is a distributive
pre-lattice with a binary operation⇒ satisfying

ϕ ∧ ψ `I γ iff ϕ `I ψ ⇒ γ

I We remark that we really have no choice in defining the
propositional connectives.
They are uniquely determined (up to ') by universal properties!

The effective tripos
Equality

On each set I we define the following equality predicate
eqI ∈ eff(I × I).

eqI(i , j) =

{
N i = j
∅ else

The effective tripos
Quantification

I Quantification should correspond on the semantic level to
operations of type ∀,∃ : eff(I × J)→ eff(I), subject to the
relations

ϕ `I ∀(ψ) iff ϕ ◦ π `I×J ψ, and
∃(ψ) `I ϕ iff ψ `I×J ϕ ◦ π,

where ϕ ∈ eff(I), ψ ∈ eff(I × J), and π : I × J → I is the first
projection.

I We consider quantification not only along projections, but along
arbitrary morphisms u : J → I. The governing relations are then

ϕ `I ∀u(ψ) iff ϕ ◦ u `J ψ, and
∃u(ψ) `I ϕ iff ψ `J ϕ ◦ u.

The effective tripos
Quantification

Quantification in the effective tripos is given as follows.

(∀uϕ)(i) =
⋂
j∈J

eq(uj , i)⇒ ϕ(j)

(∃uϕ)(i) =
⋃
j∈J

eq(uj , i) ∧ ϕ(j)

Here u : J → I and ϕ ∈ eff(J).

The effective tripos
Interpreting predicate logic

I Consider a language of many sorted predicate logic with sort
symbols S1, . . . ,Sn, function symbols fi , i ∈ I of specified arities
and relation symbols Rj , j ∈ J of specified arities.

I Assign sets JSK to sorts S, functions Jf K : JS1K× · · · × JSnK→ JSK
to to each function symbol f of arity S1 × · · · × Sn → S, and
predicates JRK ∈ eff(JS1K× · · · × JSmK to each relation symbol R
of arity S1 × · · · × Sm.

I Now we can assign by structural induction
I to each term x1:S1, . . . , xn:Sn | t : S in context a function

JtK : JS1K× · · · × JSnK→ JSK,
I and to each formula x1:S1, . . . , xn:Sn | ϕ in context a predicate

JϕK ∈ eff(JS1K× · · · × JSnK).

The effective tripos
Soundness of the interpretation

If a formula x1:S1, . . . , xn:Sn | ϕ is derivable in intuitionistic predicate
logic,

JϕK ' > in eff(JS1K× · · · × JSnK)

The effective tripos
The internal language

I The internal language is the language which has a sort symbols
for all sets, function symbols for all functions, and relation
symbols for all predicates of eff.

I The internal language is the appropriate tool to do calculations in
the effective tripos.

Triposes

More generally, the previously described way to interpret predicate
logic works in arbitrary triposes.

So what is a tripos?

Definition of Tripos

Let C be a cartesian closed category. A tripos over C is a
(pseudo-)functor

P : Cop → Preord

such that
1. All P(C) are pre-Heyting algebras
2. For f : I → J in C, the monotone mapping P(f) : P(J)→ P(I)

preserves all structure of pre-Heyting algebras
3. For all f : A→ B in C, the reindexing map P(f) : PB → PA has left

and right adjoints
∃f a f ∗ a ∀f

satisfying the Beck-Chevalley condition.
4. P has a generic predicate, that is a predicate tr ∈ P(Prop) such

that for all I ∈ Obj(C) and all ϕ ∈ P(I) there exists a (not
necessarily unique) morphism pϕq : I → Prop such that
P(pϕq)(tr) ' ϕ.

We want to describe now how to obtain a topos from a tripos. For
this, we first of all given a definition of topos.

Definition of topos

A topos is a category with finite limits, exponentials (a.k.a. internal
homs) and a subobject classifier.

The tripos-to-topos construction
The topos TP

For a tripos P on C, we can construct a topos TP as follows:

The objects of TP are pairs A = (|A|,∼A), where |A| ∈ Obj(C),
(∼A) ∈ P(|A| × |A|), and the judgements

x ∼A y ` y ∼A x
x ∼A y , y ∼A z ` x ∼A z

hold in the logic of P

Intuition: “∼A is a partial equivalence relation on |A| in the logic of P”

The tripos-to-topos construction
The topos TP (continued)

Morphisms of TP are given by functional relations with respect to P.
More precisely, a morphism from A to B is a (a`)-equivalence class
of predicates on |A| × |B| such that for some (or equivalently any)
representative φ the following judgements hold in P.

φ(x , y) ` x ∼A x ∧ y ∼B y
φ(x , y), x ∼A x ′, y ∼B y ′ ` φ(x ′, y ′)

φ(x , y), φ(x , y ′) ` y ∼B y ′

x ∼A x ` ∃y . φ(x , y)

The tripos-to-topos construction
The topos TP (continued)

Given morphisms

A
[φ] //B

[γ] //C ,

their composition is given by [γ ◦ φ], where γ ◦ φ ∈ P|A|×|C| is the
predicate

x , z | ∃y . φ(x , y) ∧ γ(y , z).

The identity morphism on A is [∼A].

The tripos-to-topos construction (comment)

I The construction only uses regular logic (conjunction and
existential quantification), however we need full higher order logic
to obtain a topos.

The effective topos

I The topos that we obtain when we apply the tripos-to-topos
construction to the effective tripos is called the effective topos,
denoted by Eff .

I Eff can be viewed as ‘the universe of recursive mathematics’
I Eff has a natural numbers object, which we denote by N.

The morphisms f : N→ N are precisely the total recursive
functions.
More generally, morphisms between objects generated from N
by products and arrow types (i.e. the finite type hierarchy)
correspond precisely to the hereditarily effective operations.

I Eff gives rise to nice models of System F and the Calculus of
Constructions.

But can we do all this also with λ-terms?

Yes, but we obtain a different topos.
This means that equivalent computability models can give rise to
different toposes, in other words there are different universes of
recursive mathematics.

We now want to describe how the previously described construction
can be characterized by a universal property.

It will turn out that the tripos-to-topos construction is in a certain
2-dimensional sense left adjoint to a forgetful functor from toposes to
triposes

To make this precise, we have to define the 2-categories that we want
to work in.

2-categories of toposes

What should be the one-cells?

Possible choices:
I Logical functors : Too restrictive
I Geometric morphisms : Good, but the tentative unit of the

biadjunction we want to present is not a geometric morphism
I Cartesian (finite limit preserving) functors : Right choice
I Regular functors : Have special status among cartesian functors

Geometric morphisms can be recovered later as adjunctions of
cartesian functors.

Tripos morphisms
From now on, we will view triposes as fibrations instead of presheafs,
by means of the Grothendieck construction.

Given triposes P : X → C and Q : Y → D, a morphism between them
is a pair

(F : C → D, Φ : X → Y)

of functors such that
1. The diagram

X Φ //

P

��

Y

Q

��
C

F
// D

commutes (on the nose).
2. Φ maps cartesian arrows to cartesian arrows.
3. F preserves finite limits and Φ preserves finite meets.

If Φ furthermore commutes with existential quantification, then we call
the tripos morphism regular.

2-cells of triposes

A 2-cell
η : (F ,Φ)→ (G, Γ) : P→ Q

is a natural transformation

η : F → G

such that for all A ∈ Obj(C) and all ψ ∈ Obj(PA), we have

x | (Φψ)(x) ` (Γψ)(ηA(x))

in the logic of Q.

Embedding toposes into triposes

For a given category C, we denote by M(C) the full subcategory of
C↓C on the monomorphisms.

For each topos E , its subobject fibration

∂1
1 : M(E)→ E

is a tripos, which we denote by SE .

It is straightforward to check that this gives rise to a 2-functor S from
toposes to triposes.

1∂1 is the codomain projection

The tripos-to-topos construction
Mapping tripos morphisms to functors between toposes

Now that we know what a tripos morphism is, we can try to define
how the tripos-to-topos construction maps a tripos morhpism to a
functor between toposes.

I Easy for regular tripos morphisms:
Given a regular tripos morphism

(F ,Φ) : P→ Q,

the functor
T (F ,Φ) : TP→ TQ

is given by
(|A|,∼A) 7→ (F (|A|),Φ(∼A))

([φ] : (|A|,∼A)→ (|B|,∼B)) 7→ [Φφ]

The tripos-to-topos construction
Mapping tripos morphisms to functors between toposes

I This method does not work if (F ,Φ) is not regular, because then,
Φφ is not total in general

I Interestingly, this can be circumvented by using a completion
process for objects in TP.

I Construction becomes more clumsy
I Find an elegant characterization!

Motivating example

I Every complete Heyting algebra A give rise to a tripos Ã over
Set:

I Fibre over I is AI

I Reindexing is given by precomposition
I Meet preserving maps between complete Heyting algebras give

rise to tripos morphisms

Consider the succession of tripos morphisms

B̃ δ̃ // B̃× B
∧̃ // B̃ ,

where B = {true, false} with false ≤ true.
What do we get when applying the tripos-to-topos construction?

Motivating example

Answer:

Set ∆ //Set× Set
× //Set ,

Motivating example

However, the composition gets mapped to the identity functor!

Set
∆ //

id

BBSet× Set
× // Set

KS
η

The tripos-to-topos construction seems to be an oplax functor!

Towards a universal characterization of the
tripos-to-topos construction

I We want to characterize the tripos-to-topos construction as being
left adjoint to S (the forgetful functor from toposes to triposes)

I This can not be an ordinary biadjunction, as the tripos-to-topos
construction seems to be oplax, and ordinary biadjunctions live
in the framework of bicategories and pseudofunctors.

I However, we still have something that looks like a unit and gives
rise to a ‘universal lifting property’ (explained below).

Towards a universal characterization of the
tripos-to-topos construction
The ‘unit’ of the ‘adjunction’

For each tripos P : X → C, there is a tripos transformation

(D,Ξ) : P→ STP

X Ξ //

P

��

M(TP)

∂1

��
C

D
// TP

D is the so-called ‘constant objects functor’, it is defined as

A 7→ (A,=A)

f 7→ [x , y | f (x) = y]

Exercise: For the definition of Ξ, make yourself clear how one can
associate subobjects of DA to predicates on A in P.

The universal lifting property

It turns out that that we have a lifting property for (D,Ξ) that has a
slight resemblance to the condition for left adjointability of functors in
one dimension.

For each tripos morphism
(F ,Φ), there is a cartesian
functor (̂F ,Φ) and a tripos
transformation α such that for
all H and β, there is a unique
mediating ι.

In other words, the category
(P↙S)((D,Ξ), (F ,Φ)) has an
initial object ((̂F ,Φ), α).

P

(D,Ξ)

��

(F ,Φ)

''OOOOOOOOOOOOOOOOOO

SE

STP

11
@@

E

TP

(̂F ,Φ)

00

H

@@

α

�

��
////

β

	�

ι
��

////

The universal lifting property

The universal lifting property suffices to construct an oplax functor,
however it does not determine the tentative unit (D,Ξ) up to
equivalence.

We will now define a three-dimensional category in which the
2-category of triposes and the 2-category of triposes are objects, and
the tripos-to-topos construction is an ordinary biadjunction.

In this structure, the above ‘universal lifting property’ will be part of a
characterization of left adjointablility.

In comparison to the tripos-to-topos construction, we will from now on
revert all 2-cells, such that everything is lax instead of oplax

dc-categories

I The canonical tricategory is given by bicategories,
pseudofunctors, pseudo-natural transformations and
modifications.

I When we try to define a tricategory out of lax functors and lax
transformations, we run into two problems:

First problem: Given pseudofunctors F ,F ′,G,G′ and lax
transformations η, θ as in the left diagram below, there are two
generally non-isomorphic ways to define (θ ◦ η)A : GFA→ G′F ′A:

A

F
&&

F ′

88 B

G
##

G′

;; Cη�� θ��
GFA

GηA //
θFA ��

F ′A
θF′A��

G′FA
G′ηA

// G′F ′A

θηA 2:llll llll .

dc-categories

Second problem: If the functor G
is also lax, then the composition
G ◦ η is not even definable! If we
try to compose constraint cells of G
and η to construct the constraint cell
(Gη)f , we run into a problem:

GFA
GFf //

G(ηB◦Ff)

��G(F ′f◦ηB)((

GηA

��

GFB

GηB

��
GF ′A

GF ′f
// GF ′B

;C����

;C����

{� ����

dc-categories avoid these problems while still having lax features!

dc-categories
Definition

A dc-category is just a 2-category A together with a designated
subclass Ar of the class of all 1-cells such that

I Ar contains all equivalences,
I Ar is closed under composition, and
I Ar is closed under vertical isomorphisms; i.e if f ∈ Ar and f ∼= g,

then g ∈ Ar .
We call the arrows in Ar regular arrows, and denote them by ‘� //’ in
diagrams.

dc-categories
Definition

A semi-lax functor between dc-categories A and B is a lax functor
(F , φ) : A→ B such that

I F maps regular arrows in A to regular arrows in B,
I all φA : idFA → F (idA) are invertible,
I φ(f ,g) : Fg ◦ Ff → F (g ◦ f) is invertible whenever g is regular

dc-categories
Definition

A semi-lax transformation between semi-lax functors F ,G is a lax
natural transformation η : F → G such that

I For each object A, ηA is regular, and
I ηf is invertible whenever f is regular.

dc-categories

Exercise: Verify that semi-lax functors and transformations can be
composed just like pseudofunctors and pseudo-natural
transformations. In particular, check that the disturbing 2-cells
mentioned 3 slides earlier become invertible.

Conjecture: dc-categories, semi-lax functors, semi-lax
transformations and modifications form a tricategory.

This seems reasonable, because semi-lax functors and
transformations are very similar to pseudofunctors and
pseudo-natural transformations in their behaviour. (However, I did not
even manage to comprehend the proof that the pseudofunctors and
pseudo-natural transformations form a tricategory)

Abstract biadjunctions

I Adjunctions between categories can be generalized to
adjunctions in bicategories, and they can be categorified to
adjunctions between bicategories.

I If we combine these processes, we get biadjunctions in
tricategories.

adjunctions
between categories

generalization //

categorification

��

adjunctions
in bicategories

categorification

��
biadjunctions

between bicategories generalization
// biadjunctions
in tricategories

Abstract biadjunctions

To categorify the definition of adjunctions via triangle-equalities, we
replace the triangle equalities by isomorphic 3-cells

��U ������
F

�� Uε

η

B

A

µ _*4 �� U

B

A

and

�� F????��
U

��F ε

η

B

A

ν _*4 �� F

B

A

The most interesting question is ‘What are the new axioms?’

Abstract biadjunctions

In semi string diagram style, the axioms for abstract biadjunctions are ///////

�� ����� ///
��

��

ε

η

ε
_*4 1111111

�� ��

ε

 =

 �� ����� ///
��

�������
��

ε

η

ε
_ *4 ��

�������
��

ε


and �������

��
///
�� ����� ��

η

ε

η
_*4

�� ��

η

 =

 ��
///
�� �����

///////

��

η

ε

η
_ *4

��
///////

��

η


This elegant and comprehensible representation is due to John Baez
[HDA4], if we write the equations out as pasting diagrams or even
purely symbolic, things get badly readable because of the constraint
cells.

Semi-lax adjunctions

A semi-lax adjunction is what we get if we interpret abstract definition
of biadjunction in the three-dimensional structure of dc-categories.

We now state the central theorems.

Theorem 1: If (F ,U, η, ε, µ, ν) is a semi-lax adjunction, then U is a
pseudofunctor.

This is remarkable, as it reveals an asymmetry in the concept of
semi-lax adjunction.

Semi-lax adjunctions
Theorem 2: Let A,B be dc-categories and let (U, φ) : B→ A be a
pseudo functor that maps regular arrows to regular arrows. Then U
has a left semi-lax adjoint iff

1. For each A ∈ Obj(A) there is an
FA ∈ Obj(B) and a regular arrow
ηA : A � //UFA such that for all
B ∈ Obj(B) and f : A→ UB, the
category (A↗U)(ηA, f) has a
terminal object (f̂ , αf).

2. If f : A→ UB is regular then f̂ is
also regular and αf is invertible.

3. (idFA, φ
−1
FA ◦ ηA) is terminal in

(A↗U)(ηA, ηA).
4. For all f : A→ UB and all regular

g : B 7→ C,
(gf̂ , (φ−1

(f̂ ,g)
◦ ηA)(Ug ◦ αf)) is

terminal in (A↗U)(ηA,Ugf).

Ad (1): A f

""
_

ηA ��
UFA //___ UB

FA
f̂ //____ B

α 5=rrr rrr

Ad (3): A_
ηA ��

� ηA

))SSSSSSSSSS

UFA idUFA //

UidFA

::UFA

FA idFA // FA

=

∼=

Ad (4): A f

��
_
η

��
UFA //

U(gf̂)

88UB � // UC

FA
f̂

// B �
g

// C

∼=

α 7?wwww

Semi-lax adjunctions

Theorem 3: The forgetful functor S from toposes to triposes has a
semi-lax left adjoint.

Conclusion:

What have we achieved?
I We found a universal characterization of the tripos-to-topos

construction.
I We found an interesting tricategory(?) with lax features.

