
Forcing and Type Theory

Thierry Coquand

Oslo, June 11, 2009

Forcing and Type Theory

Krivine’s program

Starting point of this work: Krivine’s program

To understand the computational meaning of mathematical proofs

Intuitionistic logic: reduction machine (Krivine abstract machine) with a term,
an environment and a stack

Excluded-middle: one adds some new instructions, call-cc

Dependent choice: one adds a new instruction (a clock)

1

Forcing and Type Theory

Krivine’s program

Krivine has found a computational interpretation of principles such as

well-ordering of the reals

non principal ultrafilters over the natural numbers

continuum hypothesis

general axiom of choice

Furthermore the added instructions are remarkably simple (accessing and
adding some value at the bottom of the stack)

2

Forcing and Type Theory

Krivine’s program

How does this work?

Krivine uses forcing interpretation

With forcing, we can explain

well-ordering of the reals

non principal ultrafilters over the natural numbers

continuum hypothesis

using classical logic and dependent choice

3

Forcing and Type Theory

This talk

We present a possible interpretation of non principal ultrafilters using
dependent choice and excluded middle

No clear idea of the computational meaning

We take a simpler example: addition of one generic real Cohen to type theory

Clear computational interpretation and one mathematical application:
definable functionals are uniformely continuous

Iterated forcing: we can interpret a forall functional

4

Forcing and Type Theory

Reformulation of forcing

A.M. Levin “One conservative extension of formal mathematical analysis with
a scheme of dependent choice” (1977)

Forcing over the system HAω + EM + DC (for well-ordering of the reals)

Theorem: If HAω + EM + DC + SUF ` A then HAω + EM + DC ` A

The terms of the language are simply typed lambda terms. We have two basic
types N (natural numbers) and N2 (booleans). The atomic formulae are simply
the terms of type N2. There are two terms 0, 1 of type N2 and we identify 1 with
the true formula > and 0 with the false formula ⊥.

5

Forcing and Type Theory

Reformulation of forcing

The formulae are
ϕ ::= ϕ→ ϕ | t | ∀x.ϕ

where t is a term of type N2 (decidable atomic formula)

We use n,m, . . . for variables over the type N . Example: ∀n.∃cm.n < m.

¬ϕ to be ϕ→⊥

∃cx.ϕ is ¬∀x.¬ϕ

6

Forcing and Type Theory

Reformulation of forcing

The system HAω is intuitionistic with the usual rules of natural deduction and
induction over natural numbers and boolean. The rule EM is (¬¬ϕ)→ ϕ which
is equivalent to ϕ ∨ ¬ϕ. The rule DC is

∀n.∀x.∃y.ϕ(n, x, y)→ ∀u.∃f.ϕ(0, u, f(0)) ∧ ∀n.ϕ(n, f(n), f(n+ 1))

The rule CC is
∀n.∃y.ϕ(n, y)→ ∃f.∀n.ϕ(n, f(n))

7

Forcing and Type Theory

Forcing

We add a new symbol µ and new atomic formula µ(f) for f of type N → N2

We consider now the extension of the theory HAω with the axioms (we could
add the selectivity axiom)

µ(1) µ(fg)↔ (µ(f) ∧ µ(g))

µ(f) ∨c µ(1− f) µ(f)→ ∀m.∃cn > m.f(m)

8

Forcing and Type Theory

Forcing

We use letters p, q, r, . . . to denote forcing conditions, here simply terms of
type N → N2. One can think of forcing conditions as decidable subsets of N.

We define a formula p ϕ by induction on ϕ where ϕ is an extended formula
(which may contain the new symbol µ) and p is of type N → N2.

I(p) is ∀n.∃m > n. p(m) F (p) is ∃n.∀m > n. ¬p(m)

µ(f)→ I(f)

p 6 q is F (p(1− q))

9

Forcing and Type Theory

Forcing

p µ(f) is p 6 f

p ϕ is I(p)→ ϕ if ϕ is a boolean

p ϕ0 → ϕ1 is ∀q 6 p.(q ϕ0)→ (q ϕ1)

p ∀x.ϕ is ∀x.(p ϕ)

We can add other connectives and existential quantification

Not needed if we are only interested in classical logic

10

Forcing and Type Theory

Forcing

Proposition: If ϕ1, . . . , ϕn ` ϕ and p ϕ1, . . . , p ϕn then p ϕ

Using EM

Proposition: We have p ϕ0 ∨c ϕ1 iff

∀q 6 p.∃r 6 r. (r ϕ0) ∨c (r ϕ1)

and p ∃cx.ϕ iff
∀q 6 p.∃r 6 r.∃cx. r ϕ

11

Forcing and Type Theory

Forcing

Proposition: We have (classical version of the comprehension axiom)

p (∀n.ϕ(n, 0) ∨c ϕ(n, 1))→ ∃cf.∀nϕ(n, f(n))

This expresses that there are no more decidable functions in the extension
than in the ground model

Proposition: We have (countable choice)

p (∀n.∃cx.ϕ(n, x)→ ∃cf.∀nϕ(n, f(n))

12

Forcing and Type Theory

Forcing

All the axioms of non principal ultrafilters are forced

We have HAω ` (p→ ϕ)↔ (p ϕ) if ϕ does not mention µ

HAω + EM + DC + SUF ` ϕ implies HAω + EM + DC ` (ϕ) and hence
HAω + EM + DC ` ϕ

So we have a computational interpretation of non principal ultrafilters

Levin (1977) does the same with a well-ordering of the reals, which justifies
also the continuum hypothesis

13

Forcing and Type Theory

Forcing and Type Theory

Difficult to understand the computational interpretation

Simpler framework: topological model (Beth semantics) with intuitionistic
logic only

Main principle: we do not interpret the system by induction on types, but we
do a direct “global” interpretation using the fact that type theory is essentially
algebraic

14

Forcing and Type Theory

Type Theory

Alternative to set theory for constructive mathematics

Identification of types and propositions, elements and proofs

Total functional programming language with dependent types

We present a mathematical application of forcing: any definable functional of
type (N → N2)→ N2 is uniformely continuous

A new way to program the universal quantification on N → N2

15

Forcing and Type Theory

Type Theory

t ::= x | t t | λx.t | h | c

A,B ::= (Πx : A)B | U | N | N2 | Ord

A→ B for (Πx : A)B if x not free in B

t1 t2 for t1(t2) t1 t2 t3 for (t1 t2) t3

16

Forcing and Type Theory

Type Theory

Intensional type theory

Judgements ` t : A ` t1 = t2 : A ` A ` A1 = A2

data types N, N2, Ord

associated constructors 0 : N, S x : N [x : N], 0 : N2, 1 : N2

Hypothetical judgement Γ ` J

Γ,∆, . . . context of the form x1 : A1, . . . , xn : An

17

Forcing and Type Theory

Type Theory

Γ, x : A ` B
Γ ` (Πx : A)B

Γ ` A : U
Γ ` A Γ ` U

Γ ` x : Γ(x)
Γ, x : A ` t : B

Γ ` λx.t : (Πx : A)B
Γ ` t : (Πx : A)B Γ ` a : A

Γ ` t a : B(x/a)

Γ ` A : U Γ, x : A ` B : U
Γ ` (Πx : A)B : U

Γ ` t : A Γ ` A = B

Γ ` t : B

18

Forcing and Type Theory

Type Theory

If we have c : C(0) and g : (Πx : N) C(x)→ C(S(x))

we can introduce a function h : (Πx : N)C(x)

with computation rules h 0 = c h (S x) = g x (h x))

Thinking of C(x) as a proposition h is a proof of the universal proposition
(Πx : N)C(x) which we get by applying the principle of mathematical induction

In the case C(x) does not depend explicitely on x we get the schema of
primitive recursion (at higher types), schema introduced by Hilbert and used later
by Gödel

19

Forcing and Type Theory

Type Theory

We can introduce the type Ord, the type of ordinal numbers.

0 : Ord, S x : Ord [x : N], L u : Ord [u : N → Ord]

The elimination rule expresses both the principle of transfinite induction over
the second number class ordinals and definition of objects by transfinite recursion

20

Forcing and Type Theory

Type Theory

In the formal theory the abstract entities (natural numbers, ordinals, functions,
types, and so on) become represented by certain symbol configurations, called
terms, and the definitional schema, read from the left to the right, become
mechanical reduction rules for these symbol configurations.

Type theory effectuates the computerization of abstract intuitionistic
mathematics that above all Bishop has asked for

It provides a framework in which we can express conceptual mathematics in a
computational way.

21

Forcing and Type Theory

Computability relation

ϕA(t) “t is computable at type A” for ` t : A

ϕN(t) iff ` t = k : N for some numeral k

ϕN2(t) iff ` t = b : N2 for some boolean b

ϕA→B(c) iff ϕA(a) implies ϕB(c a)

Theorem: If ` t : A then ϕA(t)

22

Forcing and Type Theory

Computability relation

This can be defined for dependent type theory

One considers an inductive-recursive definition of

A computable type

and for A computable type, a predicate ϕA

For instance if A computable and B(a) computable whenever ϕA(a) then
(Πx : A)B(x) is computable and ϕ(Πx:A)B(x)(c) iff ϕA(a) implies ϕB(a)(c a)

23

Forcing and Type Theory

Type Theory

All well-typed terms are computable, hence normalisable

A programming language with decidable type-checking

Total functional programming language (D. Turner)

This implements the initial model (term model, free model, syntactical model)
of type theory

Cartmell: generalised algebraic theory, (almost) equational presentation of
type theory (category with families, P. Dybjer)

24

Forcing and Type Theory

Forcing

First example in set theory: Cohen real where one adjoins to a model of set
theory M a “generic” set of integers f

This model M(f) negates the axiom of constructibility: the function f is
“lawless”

25

Forcing and Type Theory

Forcing

The model is constructed by transfinite induction on ordinals

For instance one define names by transfinite induction

Nα =
⋃

β<α

P(Nβ × P)

where P is the set of conditions

26

Forcing and Type Theory

Forcing

Boolean-valued model

V
(B)
α = {x | Fun(x) ∧Ran(x) ⊆ B ∧ ∃β < α[Dom(x) ⊆ V (B)

β]}

V (B) = {x | ∃α.[x ∈ V (B)
α]}

new collection of sets, also defined by transfinite induction

The elements in Vα = ∪β<αP(Vβ) are not in general elements of V (B)

27

Forcing and Type Theory

Cohen reals in type theory

Let us try to adjoin one Cohen real to the syntactical model of type theory

We try to adjoin a generic function: it will be represented by a new symbol
f : N → N2

The conditions p, q, . . . (finite amount of informations about this generic
function) are finite sets of compatible equations of the form

f(3) = 0, f(4) = 0, f(0) = 1, f(5) = 1, f(7) = 1

Write q 6 p if q refines p

28

Forcing and Type Theory

Cohen reals in type theory

A condition p defines a basic open Xp of Cantor space C

Inductive definition of covering relation p C U where U is a finite set of
conditions p1, . . . , pn

Basic covering: if n is not in the domain of p then

p, f(n) = 0 p, f(n) = 1

covers p

29

Forcing and Type Theory

Cohen reals in type theory

We define new judgements Γ `p J indexed by conditions

We shall have Γ `p1 J if Γ `p J and p1 6 p

The new rules are

Γ `p f : N → N2

Γ `p f n = b : N2 if f n = b is in p

30

Forcing and Type Theory

Cohen reals in type theory

If p is covered by p1, . . . , pn

Γ `p1 J . . . Γ `pn J

Γ `p J

for instance

n : N `p n = if (f 0) then n else n : N

31

Forcing and Type Theory

Cohen reals in type theory

This rule is reminiscent of Beth models

However we have

Γ, x : A `p t : B
Γ `p λx.t : A→ B

which does not correspond to the usual Beth semantics of implication

32

Forcing and Type Theory

Cohen reals in type theory

Connection between the standard model and the forcing extension?

If Γ ` J then we have Γ `p J for any p

No transfinite recursion

Conversely, assume ` g : N → N2

Proposition: If Γ `p J and g satisfies the condition p then Γ(f/g) ` J(f/g)

Corollary: If Γ ` A and Γ `p a : A then there exists a′ such that Γ ` a′ : A

33

Forcing and Type Theory

Cohen reals in type theory

If p is covered by p1, . . . , pn

Γ `p1 J . . . Γ `pn J

Γ `p J

and g satisfies p then g satisfies exactly one of the pi

34

Forcing and Type Theory

Computability relation

We define p ϕA(t) for `p t : A

p ϕN(t) iff there a covering p1, . . . , pn of p and numerals k1, . . . , kn such
that

`p1 t = k1 : N . . . `pn t = kn : N

p ϕN2(t) iff there a covering p1, . . . , pn of p and booleans b1, . . . , bn such
that

`p1 t = b1 : N2 . . . `pn t = bn : N2

35

Forcing and Type Theory

Computability relation

p ϕA→B(t) iff for any p1 6 p we have

p1 ϕA(u) implies p1 ϕB(t u)

Beth/topological model

36

Forcing and Type Theory

Computability relation

Lemma: The generic function f : N → N2 is computable

 ϕN→N2(f)

We have p ϕN2(f k) for any condition p and numeral k

Theorem: If `p t : A then p ϕA(t)

37

Forcing and Type Theory

Uniform continuity

Corollary: If ` t : (N → N2)→ N2 then there exists a finite formal covering
p1, . . . , pn of Cantor space and booleans b1, . . . , bn such that `pi

t f = bi : N2

Any definable functional is uniformely continuous

Proof: Since we have ϕ(N→N2)→N2
(t) and ϕN→N2(f) we also have

 ϕN2(t f)

If ` g : N → N2 is a standard function, it will satisfy exactly one condition pi

and then ` t g = bi : N2 by substitution of f by g

38

Forcing and Type Theory

Evaluation of expressions

In standard type theory we have only one “process” (Krivine’s terminology)
running

For forcing extensions of type theory the result of the evaluation of a term t
at stage p will be a formal sum Σpiti where p1, . . . , pn is a covering (partition) of
p

39

Forcing and Type Theory

Evaluation of expressions

The new rules are

p (f n) = p b if f(n) = b in p

p (f n) = p0 0 + p1 1 otherwise where pi extends p with f(n) = i

Otherwise we have

p ((λx.t) u) = p t(x/u)

40

Forcing and Type Theory

Evaluation of expressions

In general we evaluate formal sums Σpi ti where pi is a “partition of unity”

Several independent computations in parallel

Natural notion of equality, and the reduction is still Church-Rosser

41

Forcing and Type Theory

Evaluation of expressions

If f does not appear in t then the evaluation proceeds as in standard type
theory

We have an extension of standard type theory. We can apply any standard
term t : (Πg : N → N2)C(g) to the generic function f

Conversion and type-checking are still decidable

42

Forcing and Type Theory

Evaluation of expressions

If ` t : (N → N2)→ N2 we can decide if ∀g.t g is true or not by computing

t f = Σpibi

Then ∀g.t g is true iff b1 = · · · = bn = 1

43

Forcing and Type Theory

Evaluation of expressions

Thus we can evaluate

∀ : ((N → N2)→ N2)→ N2

when applied to standard expressions

Can we build a model where this functional is always evaluated?

44

Forcing and Type Theory

Addition of infinitely many Cohen reals

Iterated forcing

We can add finitely many generic functions f1, . . . , fn

The conditions are now of the form

f1(3) = 0, f1(4) = 1, f2(0) = 1, f2(3) = 1, f2(4) = 0, f3(5) = 1

The conditions define now basic open Xp of Cn

45

Forcing and Type Theory

Addition of infinitely many Cohen reals

`n,p ∀ t = 1 : N2 iff there is a covering p1, . . . , pl of p adding fn+1 such that

`n+1,pi
t fn+1 = 1

`n,p ∀ t = 0 : N2 iff there is a condition q 6 p using fn+1 such that

`n+1,q t fn+1 = 0

46

Forcing and Type Theory

Evaluation of expressions

Consider π1 : Xp × C → Xp. If we evaluate

p (t fn+1) = Σqici

then q1, . . . , ql is a covering of Xp×C, which can be seen as a boolean valued
continuous function ψ : Xp × C → N2

We can find p1, . . . , pn covering of Xp such that ψ depends only on its second
component on Xpi

× C and then

p (∀ t) = Σpjbj

47

Forcing and Type Theory

Addition of infinitely many Cohen reals

In this way we get a computation of the functional

∀ : ((N → N2)→ N2)→ N2

48

Forcing and Type Theory

Addition of infinitely many Cohen reals

In this model we use a “varying space”

C ← C2 ← C3 ← . . .

Each space Cn has a notion of covering

We do not need to consider the projection map Cn+1 → Cn to be a covering

49

Forcing and Type Theory

Extension of type theory

One cannot program quantification or the fan functional in standard type
theory (R. Gandy, Howard)

It is possible to program these functionals with general recursion (W. Tait,
R. Gandy, U. Berger, A. Simpson, M. Escardo) and the normalization of this
program usually relies on the continuity property

50

Forcing and Type Theory

Extension of type theory

We suggest here a different way to implement these functionals without relying
on general recursion

These models, with one or infinitely many Cohen reals, still have the
normalization property

Conversion and type-checking are still decidable

Probably, Cantor space N → N2 is spatial in this model

51

Forcing and Type Theory

Algebraic numbers

Algebraic closure of a field: usual justification is done by transfinite
induction/Zorn’s Lemma

This is used for instance in the theory of algebraic curves: the theory is
simpler/more uniform if one starts from a field which is algebraically closed

52

Forcing and Type Theory

Algebraic numbers

The necessity of using an algebraically closed ground field introduced -and
has perpetuated for 110 years- a fundamentally transcendental construction at
the foundation of the theory of algebraic curves. Kronecker’s approach, which
calls for adjoining new constants algebraically as they are needed, is much more
consonant with the nature of the subject

H. Edwards Mathematical Ideas, Ideals, and Ideology, Math. Intelligencer 14
(1992), no. 2, 6–19.

53

Forcing and Type Theory

Algebraic numbers

Extension of type theory with a type K of algebraic numbers

Algebraic closure of the rationals

We want to add quantities with conditions

An algebraic extension of the rational field Q is desribed by adjunction relations
of the form ϕ1(q1) = 0, ϕ2(q1, q2) = 0, . . . Adjunction of each qj extends the
field of “known” quantities

54

Forcing and Type Theory

The Kronecker-Duval Philosophy

Teo Mora’s book Solving Polynomial Equations

Kronecker’s model gives a powerful tool for computing with algebraic numbers
provided we have an algorithm for factorizing polynomials over a given algebraic
extension of the rationals

Such an algorithm exists but its practical complexity is so unsatisfactory that
the solution provided by Kronecker’s ideas has no practical impact.

In 1987 Duval added an unexpected twist to Kronecker’s proposal, showing
how factorization can be easily avoided. Her proposal threw light on Kronecker’s
ideas, clarifying the philosophy behind them.

55

Forcing and Type Theory

Algebraic numbers

We have to build a model in which we can can realize

(Π u : K) [Id(u, 0) + (Σv : K)Id(uv, 1)]

(Π u1 . . . ul : K)(Σ v : K) Id(vl + u1v
l−1 + · · ·+ ul, 0)

56

Forcing and Type Theory

Algebraic numbers

The conditions are now given by finitely many indeterminates x1, . . . , xn and
finitely many polynomials conditions P1(x1) = 0, P2(x1, x2) = 0, . . .

Equational extension of type theory

For instance x2
1 − 2 = 0, x2

2 − 2 = 0

At each stage, the canonical value of a closed element of type K is a
polynomial in x1, . . . , xn

57

Forcing and Type Theory

Algebraic numbers

We explain how to realize the field axiom

(Π u : K) [Id(u, 0) + (Σv : K)Id(uv, 1)]

58

Forcing and Type Theory

Algebraic numbers

We compute u: it evaluates to a polynomial P (x1)

We can assume the defining condition P1(x1) = 0 to be square free

We compute the gcd of P with P1: we find a spliting of P1 = P11P12 with
P11 divides P and P12 prime to P

Since P12 prime to P we find a relation AP12 + BP = 1 and B(x1) is an
inverse of P (x1) for P12(x1) = 0

Since P11 divides P we have P (x1) = 0 if P11(x1) = 0

59

Forcing and Type Theory

Algebraic numbers

Example: with the condition p

x2
1 − 2 = 0, x2

2 − 2 = 0

is the element u = x1 − x2 invertible?

the system splits in two systems

x2
1 − 2 = 0, x1 − x2 = 0 over which we have u = 0

x2
1 − 2 = 0, x1 + x2 = 0 over which we have uv = 1 with v = x1/4

60

Forcing and Type Theory

Algebraic numbers

We need to realize also the axiom of algebraic closure

(Π u1 . . . ul : K)(Σ v : K) Id(vl + u1v
l−1 + · · ·+ ul, 0)

For this, we add a new kind of covering: any condition

P1(x1) = 0, . . . , Pn(x1, . . . , xn) = 0

is covered by the condition obtained by adding a new indeterminate xn+1 and
a new polynomial condition

Pn+1 = xl
n+1 +Q1x

l−1
n+1 + · · ·+Ql = 0

where Q1, . . . , Ql are polynomials in x1, . . . , xn

61

Forcing and Type Theory

Algebraic numbers

We add two (Skolem) functions

α(u1, . . . , ul) : K [u1 . . . ul : K]

β(u1, . . . , ul) : Id(αl + u1α
l−1 + · · ·+ ul, 0) [u1 . . . ul : K]

Reminiscent of Hilbert’s ε-symbol

62

Forcing and Type Theory

Algebraic numbers

They should behave as functions: α(u1, . . . , ul) = α(v1, . . . , vl) : K whenever
u1 = v1 : K, . . . , ul = vl : K

For this we have to check if the equations

xl + u1x
l−1 + · · ·+ ul = 0 : K

has already received a solution in the condition, and if not one extends the
condition with a new the indeterminate solution x of this equation

The computation rule is then α(u1, . . . , ul) = x

63

Forcing and Type Theory

Algebraic numbers

Evaluation rule for α(u1, . . . , ul) at p

We evaluate u1, . . . , ul (this may involve a spliting of the condition p)

if xl + u1x
l−1 + · · ·+ ul = 0 : K has received a solution xm in p the value is

xm

otherwise we introduce a new indeterminate xn+1 with the equation

xl
n+1 + u1x

l−1
n+1 + · · ·+ ul = 0

and the value is xn+1

64

Forcing and Type Theory

Algebraic numbers

We have a computational interpretation of type theory extended with a type
of algebraic numbers K

We still have the normalization property and decidability of type checking

We can use all the general results proved about decidable field in the standard
theory and instantiate them on the field K

65

Forcing and Type Theory

Algebraic numbers

In this model we have a canonical example of a topological system (G. Sambin)

(X,A, |=)

X a set of points, here X = K

A is a formal topology, here the Zariski lattice of K[x], of basic open D(a)
with a in K[x]

u |= D(a) is defined to be ¬Id(a(u), 0)

66

Forcing and Type Theory

Algebraic numbers

We then have a spatial or extensional topological system

D(a1) ∧ · · · ∧D(an) 6 D(b1) ∨ · · · ∨D(bm)

iff

(Πu : X) u |= D(a1) ∧ · · · ∧ u |= D(an)→ u |= D(b1) ∨ · · · ∨ u |= D(bm)

67

Forcing and Type Theory

Algebraic numbers

This can be generalised to any algebraic curves (algebraic extension of K(x)):
X is then the set of places of the curve and A the space of valuations associated
to this curve

For instance for A = V al(K(x),K) the set of points is X = K ∪ {∞}

68

Forcing and Type Theory

Generalizations

The same method can be applied for other theories in algebra

real algebraic closure, separable algebraic closure (Galois theory, we add all
the roots of a polynomial at the same time), differential closure

Krivine’s work Structure de réalisabilité, RAM et ultrafiltre sur N reduces
non effective principles (non principal ultrafilters, well-ordering of the reals) to
classical dependent choice. (See also previous work of A.M. Levin.) This gives a
computational interpretation of such principles.

Connection with Goodman’s combination of forcing + realizability

69

