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Part 1

A universal characterization of the
tripos-to-topos construction



A universal characterization of the tripos-to-topos
construction

I What should a universal characterization of the tripos-to-topos
construction look like?

I It should be something two-dimensional, since triposes and
toposes form 2-categories in a natural way.



Definition of Tripos

Let C be a category with finite limits. A tripos over C is a functor

P : Cop → Poset,

such that
1. For each A ∈ C, P(A) is a Heyting algebra1.
2. For all f : A→ B in C the maps P(f ) : P(B)→ P(A) preserve all

structure of Heyting algebras.
3. For all f : A→ B in C, the maps P(f ) : P(B)→ P(A) have left and

right adjoints
∃f a P(f ) a ∀f

subject to the Beck-Chevalley condition.
4. For each A ∈ C there exists πA ∈ C and (3A) ∈ P(πA× A) such

that for all ψ ∈ P(C × A) there existsχψ : C → πA such that

P(χψ × A)(3A) = ψ.

1A Heyting algebra is a poset which is bicartesian closed as a category.



Tripos morphisms

A tripos morphism between triposes P : Cop → Poset and
Q : Dop → Poset is a pair (F ,Φ) of a functor

F : C→ D

and a natural transformation

Φ : P→ Q ◦ F

such that
1. F preserves finite products
2. For every C ∈ C, ΦC preserves finite meets.

If Φ commutes with existential quantification, i.e.

ΦD(∃fψ) = ∃Ff ΦC(ψ)

for all f : C → D in C and ψ ∈ P(C), then we call the tripos morphism
regular.



Tripos transformations

A tripos transformation

η : (F ,Φ)→ (G, Γ) : P→ Q

is a natural transformation

η : F → G

such that for all C ∈ C and all ψ ∈ P(C), we have

ΦC(ψ) ≤ Q(ηC)(ΓC(ψ)).



The 2-category Trip of triposes

Triposes, tripos morphisms and tripos transformations form a
2-category which we call Trip.



The 2-category Top of toposes

Toposes, finite limit preserving functors and arbitrary natural
transformations form a 2-category which we call Top.



The functor S : Top→ Trip

I For a given topos E, the functor E(−,Ω) is a tripos if we equip the
homsets with the inclusion ordering of the classified subobjects

I This construction is 2-functorial and gives rise to a 2-functor

S : Top→ Trip



I The tripos-to-topos construction can’t be a left biadjoint of S,
since it is oplax functorial (examples later).

I However, there is a characterization as a generalized
biadjunction.



Dc-categories

Definition

1. A dc-category is given by a 2-category C together with a
designated subclass Cr of the class of all 1-cells which contains
identities and is closed under composition and vertical
isomorphisms.
Elements of Cr are called regular 1-cells.
We call a dc-category geometric, if all left adjoints in it are
regular.

2. A special functor between dc-categories C and D is an oplax
functor F : C → D such that Ff is a regular 1-cell whenever f is a
regular 1-cell, all identity constraints FIA → IFA are invertible, and
the composition constraints F (gf )→ Fg Ff are invertible
whenever g is a regular 1-cell.

3. A special transformation between special functors F ,G is an
oplax natural transformation η : F → G such that all ηA are
regular 1-cells and the naturality constraint ηB Ff → Gf ηA is
invertible whenever f is a regular 1-cell.



Special biadjunctions

A special biadjunction between dc-categories C and D is given by

• special functors F : C → D U : D → C ,

• special transformations η : idC → UF ε : FU → idD

• invertible modifications µ : idU → Uε ◦ ηU ν : εF ◦ Fη → idF

such that the equalities

ηC
UνC

µFC
ηC

=

ηC

ηC

and

εD
νUD

FµD
εD

=

εD

εD

hold for all C ∈ C and D ∈ D .



Properties of special biadjunctions

I If they exist, special biadjoints are unique up to equivalence.
I For any special biadjunction F a U, the right adjoint U is strong.



The dc-categories of triposes and toposes

I To give Top and Trip the structure of dc-categories, specify
classes of regular 1-cells.

I A regular 1-cell in Trip is a tripos morphism which commutes
with ∃.

I A regular 1-cell in Top is a functor which preserves
epimorphisms (besides finite limits).



The characterization

Theorem
The 2-functor S : Top→ Trip is a special functor and has a special
left biadjoint

T a S : Top→ Trip

whose object part is the tripos-to-topos construction.



The topos TP

For a tripos P on C, TP is given as follows:

I The objects of TP are pairs A = (|A|,∼A), where |A| ∈ obj(C),
(∼A) ∈ P(|A| × |A|), and the judgments

x ∼A y ` y ∼A x
x ∼A y , y ∼A z ` x ∼A z

hold in the logic of P.
Intuition: “∼A is a partial equivalence relation on |A| in the logic of
P”



The topos TP

I A morphism from A to B is a predicate φ ∈ P(|A| × |B|) such that
the following judgments hold in P.

(strict) φ(x , y) ` x ∼A x ∧ y ∼B y
(cong) φ(x , y), x ∼A x ′, y ∼B y ′ ` φ(x ′, y ′)
(singval) φ(x , y), φ(x , y ′) ` y ∼B y ′

(tot) x ∼A x ` ∃y .φ(x , y)



The topos TP

I The composition of two morphisms

A
φ //B

γ //C ,

is given by

(γ ◦ φ)(a, c) ≡ ∃b .φ(a,b) ∧ γ(b, c).

I The identity morphism on A is ∼A.



Mapping tripos morphisms to functors between
toposes

Given a regular tripos morphism

(F ,Φ) : P→ Q,

we can define a functor

T (F ,Φ) : TP→ TQ

by
(|A|,∼A) 7→ (F (|A|),Φ(∼A))

(γ : (|A|,∼A)→ (|B|,∼B)) 7→ Φγ

This works because the definition of partial equivalence relations,
functional relations and composition only uses ∧ and ∃, which are
preserved by regular tripos morphisms.



Mapping tripos morphisms to functors between
toposes

I This method only works if (F ,Φ) is regular.
I For plain tripos morphisms, we have to use a trick involving

weakly complete objects.



Weakly complete objects

Definition
(C, τ) in TP is weakly complete, if for every

φ : (A, ρ)→ (C, τ),

there exists a morphism f : A→ C (in the base category) such that

φ(a, c) a` ρ(a,a) ∧ τ(fa, c)

I f is not unique, but φ can be reconstructed from f .
I For weakly complete (C, τ), TP((A, ρ), (C, σ)) is a quotient of

C(A,C) by the partial equivalence relation

f ∼ g ⇔ ρ(x , y) ` σ(fx ,gy).



Weakly complete objects (continued)

I For each object (A, ρ) in TP, there is an isomorphic weakly
complete object (Ã, ρ̃) with underlying object πA and partial
equivalence relation

m,n:π(A) | (∃x :A .ρ(x , x) ∧ ∀y :A .y ∈ m⇔ ρ(x , y))

∧(∀x .x ∈ m⇔ x ∈ n)

I This means that TP is equivalent to its full subcategory T̃P on
the weakly complete objects.

I For an arbitrary tripos morphism (F ,Φ) : P→ R, we can define a
functor

T̃ (F ,Φ) : T̃P→ TR

by

(A, ρ) 7→ (FA,Φρ)

↓ [f ] 7→ ↓ (a,b | ρ(a,a) ∧ σ(Ffa,b))

(B, σ) 7→ (FB,Φρ)



I Problem: In general we have to pre- or postcompose by the
equivalence TP ' T̃P, which renders computations complicated.

I Role of weakly complete objects conceptually not clear.
I Proposed solution: decompose the tripos-to-topos construction

in two steps, in the intermediate step, the weakly complete
objects have a categorical characterization.



Part 2

A decomposition of the tripos-to-topos
construction



The category FP

Definition
For a tripos P we define a category FP such that

I FP has the same objects as TP

I FP((A, ρ), (B, σ)) is the subquotient of C(A,B) by

f ∼ g ⇔ ρ(x , y) ` σ(fx ,gy).

I FP can be identified with a luff subcategory of TP.



Coarse objects

I Central observation: Weakly complete objects in TP can be
characterized as coarse objects in FP, where coarse is defined
as follows.

Definition
An object C of a category is called coarse, if for every morphism
f : A �� B which is monic and epic at the same time, and every

g : A→ C there exists a mediating arrow in
A // f // //

g ��??????? B

���
�
�

C

.



Coarse objects

Lemma
Weakly complete objects in TP coincide with coarse objects in FP.

Proof:
I Weakly complete objects are coarse, because mono-epis in FP

are isos in TP.
I To see that coarse objects are weakly complete, let
φ : (A, ρ)→ (C, τ) in TP, and consider the following diagram in
FP:

(A× C, (ρ⊗ τ)|φ) // [π] // //

[π′] ''OOOOOOOOOOO
(A, ρ)

���
�
�

(C, σ)

The mediator gives the desired morphism in the base.



2nd observation: The coarse objects of FP form a reflective
subcategory (which we will call TP from now on).

J a I : TP→ FP

Given an arbitrary tripos morphism (F ,Φ) : P→ R, we can now
define

F (F ,Φ) : FP → FR

(A, ρ) 7→ (FA,Φρ)

[f ] 7→ [Ff ]

and we obtain a a functor between TP and TQ by pre- and
postcomposing by the right and left adjoints of the reflections.



An abstract look at the decomposition

Abstractly, the decomposition arises when we factor the forgetful
functor S : Top→ Trip through an intermediate dc-category

Top S //

U ##GGGGGGGG Trip

QTop
S

;;wwwwwwww
,

the dc-category of q-toposes.



Q-Toposes

Definition

I A monomorphism m : U → B in a category C is called strong, if
for every commutative square

A

e
����

// U
��
m

��
Q

h
??�

�
�

�
// B

where e is an epimorphism, there exists a (unique) h.
I A q-topos is a category C with finite limits, an exponentiable

classifier of strong monomorphisms, and pullback stable
quotients of strong equivalence relations.

I The dc-category of q-toposes has finite limit preserving functors
as 1-cells. Regular 1-cells additionally preserve epimorphisms
and strong epimorphisms.
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We have to prove that
I The presheaf SC of strong subobjects of a q-topos C is a tripos.
I For any tripos P, the category FP is a q-topos.
I The coarse objects of any q-topos form a reflective subcategory

which is a topos.



Q-toposes to triposes

To show that the presheaf of strong monomorphisms on a q-topos is
a tripos, we define an internal language which is very similar to the
type theory based on equality in the book Higher order categorical
logic of Lambek and Scott.



Types:
A ::= X | 1 | Ω | PA | A× A X ∈ obj(C)

Terms:
We use ∆ to denote a context x1:A1, . . . , xn:An of typed variables.

(i=1,...,n)
∆ | xi : Ai ∆ | ∗ : 1

∆, x :A | ϕ[x ] : Ω

∆ | {x |ϕ[x ]} : PA

∆ | a : A ∆ | b : B

∆ | (a, b) : A× B

∆ ` a : A ∆ ` M : PA
∆ ` a ∈ M : Ω

∆ ` a : A ∆ ` a′ : A
∆ ` a = a′ : Ω

∆ | a : X
f ∈ C(X ,Y )

∆ | f (a) : Y

Deduction rules:
Ax
(i=1,...,n)∆ | p1, . . . , pn ` pi

∆ | Γ ` p ∆ | Γ, p ` q
Cut

∆ | Γ ` q

=R
∆ | Γ ` t = t

∆, x :A | Γ ` ϕ[x , x ]
=L

∆ | Γ, s = t ` ϕ[s, t]

∆, x :A | Γ ` p[x ] = (x ∈ M)
P-η

∆ | Γ ` {x |p[x ]} = M
P-β

∆ | Γ ` (a ∈ {x |p[x ]}) = p[a]

1-η
∆ | Γ ` t = ∗

∆ | Γ, p ` q ∆ | Γ, q ` p
Ext

∆ | Γ ` p = q

∆ | Γ ` (a1, a2) = (a′
1, a

′
2) ×-β

(i=1,2)∆ | Γ ` ai = a′
i

∆, x :A, y :B | Γ, t = (x , y) ` p[t]
×-η

∆ | Γ ` p[t]



Q-toposes to toposes

To obtain the coarse reflection C of an object C of a q-topos C, we
take the epi / strong mono factorization of the canonical mono
C � PC.

C �� C .→ PC

Since coarse objects are closed under finite limits, and the power
objects are already coarse, it follows that the subcategory is a topos.



Triposes to q-toposes

left out



Part 3

Examples



Triposes from complete Heyting algebras

I For a complete Heyting algebra A, the functor

PA = Set(−,A)

is a tripos if we equip the sets Set(I,A) with the pointwise
ordering.

I For a meet preserving map f : A→ A′ between complete Heyting
algebras, the induced natural transformation

Pf = Set(−, f ) : Set(−,A)→ Set(−,A′)

is a tripos morphism
I FPA ' Sep(A) (separated presheaves on A)
I TPA ' Sh(A) (sheaves on A)



Example

I B is the 2-element Heyting algebra B = {true, false} with
false ≤ true.

I

B δ // B× B ∧ // B

PB
Pδ // PB×B

P∧ // PB

Sep(B) // Sep(B× B) // Sep(B)

a

��

a

��

a

��
Sh(B) ' Set

VV

Sh(B× B) ' Set× Set

VV

Sh(B) ' Set

VV

∆
//

×
//
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Example

I Comparing the composition of the images of the tripos
transformations with the image of the composition we get

Set
∆ //

id

BBSet× Set
× // Set

KS
η

I This shows that the tripos-to-topos construction is only oplax
functorial, as claimed earlier.



Analyzing the unit of T a S

The unit of T a S : Top→ Trip gives rise to 1-cells (D,∆) : P→ STP

and to 2-cells
P

⇓

(F ,Φ) //

��

R

��
STP // STR

which decompose into

P
⇓α

(F ,Φ) //

��

R

��
SFP

⇓β

//

��

SFR

��
STP // STR

.

Lemma
α is an isomorphism whenever Φ commutes with ∃ along diagonal
mappings δ : A→ A× A, and β is an isomorphism whenever Φ
commutes with ∃ along projections. Furthermore, α is always an
epimorphism and β is always a monomorphism.



Example

The tripos transformation P∧ : PB×B → PB commutes with ∃ along δ.
Therefore we have

Set

∼=

id //

��

Set

��
Sep(B× B)

⇓β

//

��

Sep(B)

��
Set× Set // Set

.



Example: Modified realizability

The embedding

∇ = (¬¬ ◦∆) : PB → mr

of the classical predicates into the modified realizability tripos mr
commutes with ∃ along projections. This gives

Set

⇓α

id //

��

Set

��
F (PB)

∼=

//

��

F (mr)

��
Set // T (mr)

.


