A decomposition of the tripos-to-topos construction

Jonas Frey

June 2010

Part 1

A universal characterization of the tripos-to-topos construction

A universal characterization of the tripos-to-topos construction

 \triangleright What should a universal characterization of the tripos-to-topos construction look like?

KOD KARD KED KED A GAA

 \triangleright It should be something two-dimensional, since triposes and toposes form 2-categories in a natural way.

Definition of Tripos

Let $\mathbb C$ be a category with finite limits. A tripos over $\mathbb C$ is a functor

 $\mathcal{P}: \mathbb{C}^{op} \to \textbf{Poset},$

such that

- 1. For each $A \in \mathbb{C}$, $\mathcal{P}(A)$ is a Heyting algebra¹.
- 2. For all $f : A \rightarrow B$ in $\mathbb C$ the maps $\mathcal P(f) : \mathcal P(B) \rightarrow \mathcal P(A)$ preserve all structure of Heyting algebras.
- 3. For all $f : A \rightarrow B$ in C, the maps $\mathcal{P}(f) : \mathcal{P}(B) \rightarrow \mathcal{P}(A)$ have left and right adjoints

 $\exists_f \dashv \mathcal{P}(f) \dashv \forall_f$

subject to the Beck-Chevalley condition.

4. For each $A \in \mathbb{C}$ there exists $\pi A \in \mathbb{C}$ and $(\ni_{A}) \in \mathcal{P}(\pi A \times A)$ such that for all $\psi \in \mathcal{P}(\mathbf{C} \times \mathbf{A})$ there exists $\chi_{\psi}: \mathbf{C} \to \pi \mathbf{A}$ such that

 $\mathcal{P}(\chi_{\psi} \times \mathcal{A})(\ni_{\mathbf{A}}) = \psi.$

¹A Heyting algebra is a poset which is bicartesian clos[ed a](#page-2-0)[s a](#page-4-0) [c](#page-2-0)[at](#page-3-0)[eg](#page-4-0)[or](#page-0-0)[y.](#page-45-0) \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \sim \sim

Tripos morphisms

A tripos morphism between triposes <mark>ዎ : ℂ^{op} → Poset</mark> and $\mathcal{Q}: \mathbb{D}^{\mathsf{op}} \to \mathsf{Poset}$ is a pair (F, Φ) of a functor

 $F: \mathbb{C} \rightarrow \mathbb{D}$

and a natural transformation

 Φ : $P \rightarrow Q_0 F$

such that

- 1. *F* preserves finite products
- 2. For every $C \in \mathbb{C}$, Φ_C preserves finite meets.

If Φ commutes with existential quantification, i.e.

 $\Phi_D(\exists_f \psi) = \exists_{Ff} \Phi_C(\psi)$

for all $f: C \to D$ in $\mathbb C$ and $\psi \in \mathcal P(C)$, then we call the tripos morphism regular.

KORKARA KERKER DI VOOR

A tripos transformation

$$
\eta:(F,\Phi)\to (G,\Gamma):\mathcal{P}\to\mathcal{Q}
$$

is a natural transformation

 $n: F \to G$

such that for all $C \in \mathbb{C}$ and all $\psi \in \mathcal{P}(C)$, we have

 $\Phi_C(\psi) \leq \Omega(\eta_C)(\Gamma_C(\psi)).$

Triposes, tripos morphisms and tripos transformations form a 2-category which we call **Trip**.

Toposes, finite limit preserving functors and arbitrary natural transformations form a 2-category which we call **Top**.

- For a given topos \mathcal{E} , the functor $\mathcal{E}(-, \Omega)$ is a tripos if we equip the homsets with the inclusion ordering of the classified subobjects
- \triangleright This construction is 2-functorial and gives rise to a 2-functor

S : **Top** → **Trip**

KOD KAD KED KED E VAN

 \triangleright The tripos-to-topos construction can't be a left biadjoint of \boldsymbol{S} , since it is oplax functorial (examples later).

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 9 Q Q*

► However, there *is* a characterization as a generalized biadjunction.

Dc-categories

Definition

- 1. A dc-category is given by a 2-category $\mathscr C$ together with a designated subclass \mathcal{C}_r of the class of all 1-cells which contains identities and is closed under composition and vertical isomorphisms. Elements of \mathscr{C}_r are called regular 1-cells. We call a dc-category geometric, if all left adjoints in it are regular.
- 2. A special functor between dc-categories $\mathscr C$ and $\mathscr D$ is an oplax functor $F: \mathscr{C} \to \mathscr{D}$ such that *Ff* is a regular 1-cell whenever *f* is a regular 1-cell, all identity constraints $FI_A \rightarrow I_{FA}$ are invertible, and the composition constraints $F(gf) \rightarrow FgFf$ are invertible whenever *g* is a regular 1-cell.
- 3. A special transformation between special functors *F*, *G* is an oplax natural transformation η : $F \rightarrow G$ such that all η_A are regular 1-cells and the naturality constraint η_B *Ff* \rightarrow *Gf* η_A is invertible whenever *f* is a regular 1-cell.

Special biadjunctions

A special biadjunction between dc-categories $\mathscr C$ and $\mathscr D$ is given by

-
- \bullet special transformations $\quad \eta : {\rm id}_\mathscr{C} \to \mathsf{UF} \qquad \quad \varepsilon : \mathsf{FU} \to {\rm id}_\mathscr{D}$
-

• special functors $\qquad \qquad F : \mathscr{C} \to \mathscr{D} \qquad \qquad U : \mathscr{D} \to \mathscr{C},$

KOD KARD KED KED A GAA

• invertible modifications $\mu : id_U \to U \varepsilon \circ \eta U \quad \nu : \varepsilon \mathsf{F} \circ \mathsf{F} \eta \to id_{\mathsf{F}}$

such that the equalities

hold for all $C \in \mathscr{C}$ and $D \in \mathscr{D}$.

- \blacktriangleright If they exist, special biadjoints are unique up to equivalence.
- For any special biadjunction $\mathbf{F} \dashv \mathbf{U}$, the right adjoint **U** is strong.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q Q*

- ► To give **Top** and **Trip** the structure of dc-categories, specify classes of *regular* 1-cells.
- ► A regular 1-cell in **Trip** is a tripos morphism which commutes with ∃.

KOD KARD KED KED A GAA

► A regular 1-cell in **Top** is a functor which preserves epimorphisms (besides finite limits).

Theorem

The 2-functor S : **Top** → **Trip** *is a special functor and has a special left biadjoint*

 $T \dashv S$: **Top** \rightarrow **Trip**

K ロ > K 個 > K ミ > K ミ > 「ミ → り Q Q →

whose object part is the tripos-to-topos construction.

For a tripos P on C , $\mathcal{T}P$ is given as follows:

► The objects of $T\mathcal{P}$ are pairs $A = (|A|, \sim_A)$, where $|A| \in ob(C)$, (\sim_A) ∈ $\mathcal{P}(|A| \times |A|)$, and the judgments

> *x* ∼*A y* \vdash *y* ∼*A X x* ∼*A y*, *y* ∼*A z* \vdash *x* ∼*A z*

hold in the logic of P.

Intuition: "∼*^A* is a partial equivalence relation on |*A*| in the logic of \mathcal{P} "

KORKARA KERKER DI VOOR

A morphism from *A* to *B* is a predicate $\phi \in \mathcal{P}(|A| \times |B|)$ such that the following judgments hold in P.

K ロ > K @ > K 할 > K 할 > 1 할 : X 9 Q Q

\triangleright The composition of two morphisms

$$
A \stackrel{\phi}{\longrightarrow} B \stackrel{\gamma}{\longrightarrow} C,
$$

is given by

 $(\gamma \circ \phi)(a, c) \equiv \exists b \cdot \phi(a, b) \wedge \gamma(b, c).$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 9 Q Q*

^I The identity morphism on *A* is ∼*A*.

Mapping tripos morphisms to functors between toposes

Given a regular tripos morphism

 $(F, \Phi) : \mathcal{P} \to \mathcal{Q},$

we can define a functor

 $T(F, \Phi) : T\mathcal{P} \to T\mathcal{Q}$

by

 $(|A|, \sim_A)$ \mapsto $(F(|A|), \Phi(\sim_A))$ $(\gamma : (|\mathcal{A}|, {\sim_\mathcal{A}}) \to (|\mathcal{B}|, {\sim_\mathcal{B}})) \quad \mapsto \qquad \qquad \Phi \gamma$

This works because the definition of partial equivalence relations, functional relations and composition only uses ∧ and ∃, which are preserved by regular tripos morphisms.

Mapping tripos morphisms to functors between toposes

- In This method only works if (F, Φ) is regular.
- \triangleright For plain tripos morphisms, we have to use a trick involving *weakly complete objects*.

Weakly complete objects

Definition

 (C, τ) in TP is *weakly complete*, if for every

 $\phi: (A, \rho) \to (C, \tau)$,

there exists a morphism $f : A \rightarrow C$ (in the base category) such that

 $\phi(a, c) \dashv \vdash \rho(a, a) \wedge \tau(fa, c)$

- \blacktriangleright *f* is not unique, but ϕ can be reconstructed from *f*.
- For weakly complete (C, τ) , $\mathcal{TP}((A, \rho), (C, \sigma))$ is a quotient of $\mathbb{C}(A, C)$ by the partial equivalence relation

 $f \sim g \Leftrightarrow \rho(x, y) \vdash \sigma(fx, qy).$

KORKARA KERKER DI VOOR

Weakly complete objects (continued)

For each object (A, ρ) in $\mathcal{T} \mathcal{P}$, there is an isomorphic weakly complete object $(\tilde{A}, \tilde{\rho})$ with underlying object πA and partial equivalence relation

> *m*, *n*:π(*A*) |(∃*x*:*A*.ρ(*x*, *x*) ∧ ∀*y*:*A*.*y* ∈ *m* ⇔ ρ(*x*, *y*)) ∧(∀*x* .*x* ∈ *m* ⇔ *x* ∈ *n*)

- \triangleright This means that \overline{T} ^p is equivalent to its full subcategory \overline{T} ^p on the weakly complete objects.
- For an *arbitrary* tripos morphism $(F, \Phi) : \mathbb{P} \to \mathbb{R}$, we can define a functor

 $\tilde{\mathbf{T}}(F, \Phi)$: $\widetilde{\mathbf{T}}\mathcal{P} \to \mathbf{T}\mathcal{R}$

by

 $(A, \rho) \rightarrow (FA, \Phi \rho)$ \downarrow [*f*] \mapsto \downarrow (*a*, *b*) ρ (*a*, *a*) \wedge σ (*Ffa*, *b*)) $(B, \sigma) \rightarrow (FB, \Phi \rho)$

A DIA K F A A B A DIA A B A VION

- \triangleright Problem: In general we have to pre- or postcompose by the equivalence $T\mathcal{P} \simeq T\mathcal{P}$, which renders computations complicated.
- \triangleright Role of weakly complete objects conceptually not clear.
- \triangleright Proposed solution: decompose the tripos-to-topos construction in two steps, in the intermediate step, the weakly complete objects have a categorical characterization.

KOD KARD KED KED A GAA

Part 2

A decomposition of the tripos-to-topos construction

K ロ > K @ > K 할 > K 할 > 1 할 : X 9 Q Q

Definition

For a tripos P we define a category *F*P such that

- \blacktriangleright **F** \mathcal{P} has the same objects as **T** \mathcal{P}
- \blacktriangleright $\mathbf{F}\mathcal{P}((A,\rho),(\mathbf{B},\sigma))$ is the subquotient of $\mathbb{C}(A,B)$ by

$$
f \sim g \quad \Leftrightarrow \quad \rho(x,y) \vdash \sigma(fx,gy).
$$

KEL KALLA BIKA BIKA KA

 \blacktriangleright **F**P can be identified with a *luff* subcategory of $\mathbf{T} \mathcal{P}$.

► Central observation: Weakly complete objects in $\overline{T}P$ can be characterized as *coarse objects* in *F*P, where *coarse* is defined as follows.

Definition

An object *C* of a category is called coarse, if for every morphism $f : A \rightarrow B$ which is monic and epic at the same time, and every

 $g : A \rightarrow C$ there exists a mediating arrow in

A DIA K F A A B A DIA A B A VION

Lemma

*Weakly complete objects in T*P *coincide with coarse objects in F*P*.*

Proof:

- ► Weakly complete objects are coarse, because mono-epis in F^P are isos in *T*P.
- \triangleright To see that coarse objects are weakly complete, let ϕ : $(A, \rho) \rightarrow (C, \tau)$ in T_P, and consider the following diagram in *F*P:

$$
(A \times C, (\rho \otimes \tau)|_{\phi}) \xrightarrow{[\pi]} (A, \rho)
$$
\n
$$
\downarrow
$$
\n
$$
(C, \sigma)
$$

A DIA K F A A B A DIA A B A VION

The mediator gives the desired morphism in the base.

2nd observation: The coarse objects of *F*P form a reflective subcategory (which we will call **T**P from now on).

 $J \dashv I : \mathcal{T} \mathcal{P} \rightarrow \mathcal{F} \mathcal{P}$

Given an arbitrary tripos morphism $(F, \Phi) : \mathbb{P} \to \mathbb{R}$, we can now define

$$
F(F, \Phi) : F\mathcal{P} \rightarrow F\mathcal{R}
$$

\n
$$
(A, \rho) \mapsto (F A, \Phi \rho)
$$

\n
$$
[f] \mapsto [F]
$$

KORKARA KERKER DI VOOR

and we obtain a a functor between $\mathbf{T} \mathcal{P}$ and $\mathbf{T} \mathcal{Q}$ by pre- and postcomposing by the right and left adjoints of the reflections. Abstractly, the decomposition arises when we factor the forgetful functor *S* : **Top** → **Trip** through an intermediate dc-category

KEL KALLA BIKA BIKA KA

the dc-category of q-toposes.

Q-Toposes

Definition

A monomorphism $m: U \rightarrow B$ in a category C is called strong, if for every commutative square

$$
A \longrightarrow U
$$
\n
$$
e \downarrow h \nearrow \downarrow m
$$
\n
$$
Q \longrightarrow B
$$

where *e* is an epimorphism, there exists a (unique) *h*.

- A q-topos is a category $\mathcal C$ with finite limits, an exponentiable classifier of strong monomorphisms, and pullback stable quotients of strong equivalence relations.
- \triangleright The dc-category of q-toposes has finite limit preserving functors as 1-cells. Regular 1-cells additionally preserve epimorphisms *and* strong epimorphisms.

We have to prove that

- \triangleright The presheaf *SC* of strong subobjects of a q-topos *C* is a tripos.
- For any tripos \mathcal{P} , the category $\mathbf{F} \mathcal{P}$ is a q-topos.
- \triangleright The coarse objects of any q-topos form a reflective subcategory which is a topos.

イロト イ押 トイヨ トイヨ トーヨー

 QQQ

To show that the presheaf of strong monomorphisms on a q-topos is a tripos, we define an internal language which is very similar to the type theory based on equality in the book *Higher order categorical logic* of Lambek and Scott.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q Q*

Types:

 $A ::= X | 1 | ∩ | PA | A × A$ $X ∈ obj(C)$

Terms:

We use Δ to denote a context $x_1: A_1, \ldots, x_n: A_n$ of typed variables.

$\Delta x_i : A_i$	$(i=1,...,n)$	$\Delta * : 1$
$\Delta, x : A \varphi[x] : \Omega$	$\Delta a : A \Delta b : B$	
$\Delta \{x \varphi[x]\} : PA$	$\Delta a : A \Delta b : B$	
$\Delta \vdash a : A \Delta \vdash M : PA$	$\Delta \vdash a : A \Delta \vdash a' : A$	
$\Delta \vdash a \in M : \Omega$	$\Delta \vdash a : A \Delta \vdash a' : A$	
$\Delta a : X$	$\Delta \vdash a = a' : \Omega$	
$\Delta f(a) : Y \in C(X, Y)$		

Deduction rules:

$$
\frac{\Delta | p_1, \dots, p_n \vdash p_i}{\Delta | p_1, \dots, p_n \vdash p_i} \xrightarrow{(i=1,\dots,n)} \frac{\Delta | \Gamma \vdash t = t}{\Delta | \Gamma \vdash t = t} = \mathsf{R}
$$
\n
$$
\frac{\Delta, x:A | \Gamma \vdash p[x] = (x \in M)}{\Delta | \Gamma \vdash \{x|p[x]\} = M} \mathsf{P}_{\neg \eta}
$$
\n
$$
\frac{\Delta | \Gamma \vdash t = *}{}^{1 \neg \eta}
$$

$$
\frac{\Delta \mid \Gamma \vdash p \qquad \Delta \mid \Gamma, p \vdash q}{\Delta \mid \Gamma \vdash q} \text{Cut}
$$
\n
$$
\frac{\Delta, x:A \mid \Gamma \vdash \varphi[x, x]}{\Delta \mid \Gamma, s = t \vdash \varphi[s, t]} = L
$$

 Δ | Γ \vdash (*a* \in {*x*|*p*[*x*]}) = *p*[*a*] Δ | Γ, *[p](#page-31-0)* + *[q](#page-33-0)* Δ | Γ, *q* + *p* Δ | Γ + *p* = *q* To obtain the coarse reflection \overline{C} of an object C of a q-topos C , we take the epi / strong mono factorization of the canonical mono $C \rightarrowtail PC$.

 $C \rightarrowtail \overline{C} \rightarrowtail PC$

Since coarse objects are closed under finite limits, and the power objects are already coarse, it follows that the subcategory is a topos.

A DIA K F A A B A DIA A B A VION

Triposes to q-toposes

left out

Part 3 Examples

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

Triposes from complete Heyting algebras

► For a complete Heyting algebra A, the functor

```
\mathcal{P}_A = \mathsf{Set}(-, A)
```
is a tripos if we equip the sets **Set**(*I*, *A*) with the pointwise ordering.

For a meet preserving map $f : A \rightarrow A'$ between complete Heyting algebras, the induced natural transformation

 $\mathcal{P}_f = \mathsf{Set}(-, f)$: $\mathsf{Set}(-, A) \to \mathsf{Set}(-, A')$

A DIA K F A A B A DIA A B A VION

is a tripos morphism

- \blacktriangleright $\mathsf{F}\mathbb{P}_A \simeq$ **Sep**(*A*) (separated presheaves on *A*)
- \blacktriangleright **T** $\mathcal{P}_A \simeq$ **Sh**(*A*) (sheaves on *A*)

 \blacktriangleright

 \triangleright **B** is the 2-element Heyting algebra $\mathbb{B} = \{true, false\}$ with false \leq true.

$$
\mathbb{B} \xrightarrow{\qquad \qquad \delta \qquad} \mathbb{B} \times \mathbb{B} \xrightarrow{\qquad \qquad \wedge \qquad} \mathbb{B}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ .. 할 .. 9 Q Q*

 \blacktriangleright

 \triangleright **B** is the 2-element Heyting algebra $\mathbb{B} = \{true, false\}$ with false $<$ true.

 \triangleright **B** is the 2-element Heyting algebra $\mathbb{B} = \{true, false\}$ with false $<$ true. \blacktriangleright

 \triangleright **B** is the 2-element Heyting algebra $\mathbb{B} = \{true, false\}$ with false $<$ true.

イロト イ押 トイヨ トイヨ トーヨー

 $2Q$

 \triangleright **B** is the 2-element Heyting algebra $\mathbb{B} = \{$ true, false $\}$ with false $<$ true.

KOD KOD KED KED E VOLC

 \triangleright Comparing the composition of the images of the tripos transformations with the image of the composition we get

KID KAR KERKER E 1990

 \triangleright This shows that the tripos-to-topos construction is only oplax functorial, as claimed earlier.

The unit of $T \dashv S$: **Top** \rightarrow **Trip** gives rise to 1-cells (D, Δ) : $\mathcal{P} \rightarrow ST\mathcal{P}$ and to 2-cells \mathcal{P} ⇓ $\xrightarrow{(F,\Phi)} \mathcal{R}$ ŗ ŗ $STP \rightarrow STR$ which decompose into $\mathcal{P} \xrightarrow{(F,\Phi)} \mathcal{R}$ $_{\Downarrow\alpha}$ ŗ ŗ S *F* $P \rightarrow S$ *F* R \cdot \downarrow \downarrow β \downarrow ŗ ŗ $STP \rightarrow STR$

Lemma

α *is an isomorphism whenever* Φ *commutes with* ∃ *along diagonal mappings* δ : *A* → *A* × *A, and* β *is an isomorphism whenever* Φ *commutes with* ∃ *along projections. Furthermore,* α *is always an epimorphism and* β *is always a monomorphism.*

A DIA K F A A B A DIA A B A VION

The tripos transformation $\mathcal{P}_{\wedge} : \mathcal{P}_{\mathbb{B} \times \mathbb{B}} \to \mathcal{P}_{\mathbb{B}}$ commutes with \exists along δ . Therefore we have

The embedding

$$
\nabla = (\neg \neg \circ \Delta) \quad : \quad \mathcal{P}_{\mathbb{B}} \to \text{mr}
$$

of the classical predicates into the modified realizability tripos **mr** commutes with ∃ along projections. This gives

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q Q*