Introduction

Higher-order arithmetic (tuned) The forcing transformation The forcing machine

A computational analysis of
proof transformation by forcing

Conclusion

Alexandre Miquel

June 1st, 2010 — LAMA, Chambéry

Introduction Higher-order arithmetic (tuned) The forcing transformation The forcing machine Conclusion

Introduction

@ The forcing technique :
e Introduced by Cohen to prove Cons(ZFC + —HC)
o Formulae interpreted as sets of conditions (belonging to a fixed poset C)

o Formula translation : A — plEA (peC)

@ Krivine's interpretation of forcing (in 2nd/3rd order arithmetic)

e Underlying program transformation t > t* (on Curry-style proof-terms)

o Correctness expressed via generalized realizability structures

@ The aims of this talk :

o Rephrase the translation in PAw™ (independently from realizability)

o Present the underlying program transformation t > t*
and study its computational contents

o Reveal the underlying computation model (i.e. abstract machine)

© Introduction

© Higher-order arithmetic (tuned)
© The forcing transformation
© The forcing machine

© Conclusion

© Introduction

© Higher-order arithmetic (tuned)
© The forcing transformation

@ The forcing machine

© Conclusion

Introduction Higher-order arithmetic (tuned) The forcing transformation

Higher-order arithmetic (PAw™)

The forcing machine

@ A multi-sorted language that allows to express

Individuals

Propositions

Functions over individuals
Predicates over individuals
Predicates over predicates...

Syntax of sorts (kinds) and higher-order terms

Conclusion

(sort ¢)
(sort o)
(b=, t=e—>0e 2)
(t—=o0, t—=1—0, ..)

((¢t = 0) = o,

)

Sorts T,o = t | o | T—o0o
Terms M;,NAB == x | X x.M | MN | 0 | s | rec,
| A=B | VXA | (M=M)A
o Implication without computational contents : (M = M')A

e Means: A if M=M
T otherwise

o Provably equivalentto: M=, M' = A

(equality of denotations)
(T = type of all proofs)

(Leibniz equality)

Introduction Higher-order arithmetic (tuned) The forcing transformation The forcing machine Conclusion

Conversion (1/2)

o Conversion M =g M’ parameterized by a (finite) set of equations
E = M = M{, e, My = M;((non oriented, well sorted)

@ Reflexivity, symmetry, transitivity 4+ base case :

EN |
=€

@ [-conversion, recursion :

(AT .MN = M{x:= N}
recc MM'0 = M
recc MM’ (sN) =¢ M’ N(rec: MM N)

@ Usual context rules + extended rule for (M = M")A :

A ey A

(M=M)A = (M=M)A

Introduction

Conversion

(2/2)

@ Rules for identifying (computationally equivalent) propositions :

Higher-order arithmetic (tuned)

The forcing transformation

The forcing machine

Conclusion

VxTVy? A Zeg Vy°Vx" A
VxTA = A xT ¢FV(A)
A=Vx"B = Vx" (A= B) xT ¢FV/(A)
(M=MYN=NA = (N=N)YM=M)A
(M=MA = A
A= (M=M)B = (M=M)A= B)
Vx" (M= M)A =2 (M= M)Vx"A xT @FV(M,M’)
e Example : T = (tt=ff)L (type of all proof-terms)

where tt = Ax°y° . x,

ff=Xx°°.y and L =Vz°z

Introduction Higher-order arithmetic (tuned) The forcing transformation

Deduction system (typing)

The forcing machine Conclusion

@ Proof terms : t,bu = x | M.t | tv | « (Curry-style)

e Contexts : M o= x3:Aq,...

Deduction /typing rules

y Xn @ An

(A; of sort o)

FrE=A " ETFt:A ¢
ETNx:AFt: B ETHt:A=B ETFu:A
ETHFXx.t: A=B ETkFHtu:B

EM=MTFt:A ETEt: (M=MA

ETEt: (M=M)A ETHt:A
ETHt: A ETEFt: VXA
————— x"&FV(&EN)
ETHt:VXTA ETEt: Alx:=N"}
ETFax: (A= B)=A)=A

Remark : All proof-terms have type T = (tt

=ff)L

(normalization fails)

Introduction Higher-order arithmetic (tuned) The forcing transformation The forcing machine Conclusion
From operational semantics...
@ Krivine's \.-calculus
e A-calculus with call/cc and continuation constants :
t,bu = x | M.t | tu | « | ks
o An abstract machine with explicit stacks :
o Stack = list of closed terms (notation : 7, 7’)
@ Process = closed term x stack
@ Evaluation rules (weak head normalization, call by name)
(Grab) Ax.t * u-m - t{x:=u} x =
(Push) tu * - t *x u-m
(Call/cc) « x t-7 - t o, kypemw
(Resume) ke * t-n' - t * 7

Introduction Higher-order arithmetic (tuned) The forcing transformation The forcing machine Conclusion

... to classical realizability semantics

@ Interpreting higher-order terms :

o Individuals interpreted as natural numbers [] =N
o Propositions interpreted as falsity values o] = B(M)
e Functions interpreted set-theoretically [r = o] = [o]1"!
@ Parameterized by a pole I C Ac Tl (closed under anti-evaluation)

@ Interpreting logical constructions :

vx"Al, = U [Alpxee [A=Bl, = [Al, B,
ec[r]

[(M = M)A, = {[[A]]p if [M], = [M],

%] otherwise

Adequacy

If @ Ex1: A, .., x,: At B (in PAw™)
Op':g, UleﬂAlﬂi,...,unE[[An]]#
then : t{xy :==u1;...;x, = Uy} € [[BH'

© Introduction

© Higher-order arithmetic (tuned)
© The forcing transformation
@ The forcing machine

© Conclusion

Introduction Higher-order arithmetic (tuned) The forcing transformation The forcing machine Conclusion

Representing conditions

@ Intuition : Represent the set of conditions as an upwards closed
subset of a meet-semilattice

o Take :
e A sort k of conditions, equipped with
e A binary product (p, q) — pq (of sort k — Kk — k)
o Aunitl (of sort k)
o A predicate p — C|[p] of well-formedness (of sort K — 0)

e Typical example : finite functions from 7 to o are modelled by

O K =T—>0—0 (binary relations C 7 x o)
e pg = MXy? .pxyVagxy (union of relations p and q)
el = X"y, L (empty relation)

o C[p] = “pis a finite function from 7 to o”

Introduction Higher-order arithmetic (tuned) The forcing transformation The forcing machine Conclusion

Combinators

@ The forcing translation is parameterized by

e The sort k + closed terms -, 1, C (logical level)
o 9 closed proof terms ., a1, ..., as (computational level)
ax : C[1]

ot Vp" Vq" (Clpg] = Clp])

a2t Vp" Vq" (Clpqg] = Clq])

as : Vp" Vq" (Clpq] = Clqp])

as = Vp" (Clp] = Clpp])

as : Vp" Vq® Vr® (C[(pq)r] = Clp(qr)])
as = Vp" Vq" Vr® (Clp(ar)] = Cl(pqg)r])
a7 Vp" (Clp] = Clp1])

ag : Vp" (Cl[p] = C[1p])

This set is not minimal. One can take au., a1, @3, aa, as, a7 and define :
Qp = Q1 03, Q.= Q30Q50Q30Q50Q3 Qg:.:= Q30 Q7

Introduction Higher-order arithmetic (tuned) The forcing transformation The forcing machine Conclusion

Derived combinators

@ The combinators g, ..., ag can be composed :
Example : aroagoas : Vp©Vg® Vr® (Cl(pq)r] = C[rp])

@ We will also use the following derived combinators :

Qg = @30Q1006003 1 Vp® Vq" Vr® (Cl(pq)r] = Clpr])
Qo = moas o Vpt Vg”© vr® (Cl(pg)r] = Clgr])
a1 = agoas 1 Vp" Vq" (Clpq] = C[p(pq)])

ez = asoas : Vp*Vq" vr® (Clp(ar)] = Clq(rp)])
a3 = azoar : Vp" Vq" Vr™ (Clp(qr)] = C[(rp)q])
as = asoazoapomoay @ Vp®Vq®Vr® (Clp(qr)] = Clq(rr)])
s = agoas : Vp" Vg" Vr* (Clp(qr)] = Clap])

o Important remark :

o Clpg] = Clp] A Clq], but C[p] A C[q] # Clpq] (in general)
e Two conditions p and g are compatible when C[pgq]

Introduction Higher-order arithmetic (tuned) The forcing transformation The forcing machine

Ordering

o Let p<gq = VYr*(Clpr] = Clagr])

o < is a preorder with greatest element 1 :

Ac.c © Vp* (p<p)
Axyc.y(xc) : VpVgEVri (p<qg=q<r=p<r)
ag o ap VpF (p<L1)

Conclusion

@ Product pq is the l.u.b. of p and ¢ :

ag : Vp® Vq* (pq < p)
a1o : Vp®Vg”® (pg < q)
Axy.aizoyoapoxoaiy : VpRVgrRVrE (r<p=r<gq=r<pq)

o C (set of ‘good’ conditions) is upwards closed :

Axc.oq (x(azc)) : Vp®Vg" (p<q= C[p] = Clq])

@ Bad conditions are smallest elements :

Axc.x(onc) : Vp* (=C[p] =Vq" p<q)

Introduction Higher-order arithmetic (tuned) The forcing transformation The forcing machine

The auxiliary translation (_)*

@ Translating sorts : 7+ 7*

* *

) o"=Kk—o (r—=o)' =7 >0

Conclusion

Intuition : Propositions become sets of conditions

o Translating terms : M — M*

*

") = x7 0* = 0
AT M) = M . M* s = s
(MN)* = M*N* reci = rec,«
(A= B)* = Ar".Vg"Vr'"{r = qr')(Vs"(Cl[gs] = A*s) = B*r’)
(YxTA)* Ar® YXT ARy

((My = M2)A)* Art My = M3)(A*r)

v

o (M{x™ :=N})* = M*{x™ = N*} (substitutivity)
o If M; =g M, then M =g M3 (compatibility with conversion)

Introduction Higher-order arithmetic (tuned) The forcing transformation The forcing machine

The forcing translation

@ Given a proposition A and a condition p, let :

plEA = Vr*(Clpr] = A'r)

Conclusion

o The forcing translation is trivial on ¥V and (_ = _)_:

pIFVX"A =5 VX7 (plk A)
plE (M= M)A =5 (M =M)pl A)

o All the complexity lies in implication ! (cf next slide)

General properties

1 = XMxyc.y(xc) : Vp"Vq"(¢<p=(plFA)=(qlFA))
B2 = Mxc.x(oac) : Vp® (=C[p] = plFA)
Bz = Mxc.x(agc) : Vp"Vg" ((plk A) = (pql- A))

Ba = Mxc.x(awc) : Vp"VgT ((qlF A) = (pql- A))

Introduction Higher-order arithmetic (tuned) The forcing transformation The forcing machine Conclusion

Forcing an implication

@ Definition of p IF A = B looks strange :

pl-A=B Vre(Clpr] = (A= B)"r)

o Vre(Clpr] = Vq*vr'™(r = qr')((q I+ A) = B*r'))

el

e But it is equivalent to

va((ql- A) = (pq I B)) (pirA=B qM)

pql- B

Coercions between plF A= B and Vq((qlFA)= (pglF B))

T = Axcy.xy (aec) : (Vg((gIFA)=(pqlFB)) = pl-A= B)
Y2 = Axyc.x(asc)y : (plFA=B) = Vq ((q!F A) = (pq - B))
v3 = Axyc.x (a1 ¢c)y . (pFA=B) = (plFA) = (plkB)

Y4 = Axcy.x(y(aisc)) : -A'p = pl-FA=B

Introduction Higher-order arithmetic (tuned) The forcing transformation

The forcing machine Conclusion
Translating proof-terms
@ Krivine's program transformation t — t* :
x* = x c” = Aex.@(Mk.x (s c) (12 Kk)) wu=rxe x((ags <)
(tu)" = yat'u* AB=NTE - (@ @)
(Ax.t)* = 31 (Ax. t* {x = Bax} {x := Baxi}i=1) =Ny - 5)

bounded var other free vars of t

o The translation inserts
o 1 (“fold”) in front of every abstraction
o ~3 (“apply”) in front of every application

o A bound occurrence of x in t is translated as (5(84x),
where n is the de Bruijn index of this occurrence

Soundness (in PAw™)

If E x1: A, ..., xy A Bt B
then &% x1:(plF A1), ..., xn:(plFA,) F t* : (plkB)

Introduction Higher-order arithmetic (tuned) The forcing transformation The forcing machine Conclusion

Computational meaning of the transformation

o Aproof of plFA = Vr*(C[pr] = A*r) is a function waiting
an argument c : C[pr] (for some r) ~» computational condition

(Ax.t)" *x c-u-m - t{x:=u} * asc-7
(tu) x c-m = t* x ouc-utem
ac* * c-t-mw — t x auc-ki-mw
ki % c-t-@ - t x oisceT
where : th = " {x:=Bax}{x = B3x}1,
K = qake

as = Clp(gr)] = Cl(pqg)r]

o Clpr] = Clp(pr)]
a2 Clp(gr)] = Claq(rr)]
ais + Clp(gr)] = Claqp]

© Introduction

© Higher-order arithmetic (tuned)
© The forcing transformation
© The forcing machine

© Conclusion

Introduction Higher-order arithmetic (tuned) The forcing transformation The forcing machine Conclusion
Krivine Forcing Abstract Machine (KFAM)
Terms t,bu = x | M.t | tu | «
Environments e == 0 | ex=c
Closures c == (tle) | ke | (tle)" | ki
|
Stacks s = < | c-T forcing closures
@ Real mode :
(xle,y=¢) * 7 - (xle) » = (v # x)
(xle,x=¢) * = - c x T
(Ax.tle) x ¢-m = (tle,x=c¢) x 7
(tule) = = - (tle) * (ule) =
(cle) * ¢ > c *x kg m
kr x c-m > c * T
@ Forcing mode :
(xle,y=¢)* x -7 - (x|e)* * agco-m (v #x)
(xle,x=¢)* * -7 - C * a1pC T
(Ax.tle)* * co-c-m > (tleex=c)* x asco-7
(tule)* * co-m - (tle)* * aiico-(ule)* - m
(cle)* x co-c-m = c * auc-ki-mw
ki x -c -’ > cC x aiscy T

Introduction Higher-order arithmetic (tuned) The forcing transformation The forcing machine Conclusion

Adequacy in real and forcing modes

@ New abstract machine means :

o New classical realizability model (based on the KFAM)
o New adequacy results

Adequacy (real mode)

If @ Ex1: AL, ..., xa: Ay -t B (in PAwT)
o pEE aclMlt ... ceAlt
then: (txx=ci,...,xn=cn) € [B]y

@ Assuming that o; € [type of a;] (for i =6,9,10,11,14,15)

Adequacy (forcing mode)

If @ Ex1:AL,...,xn: An -t B (in PAwT)
@ pEE, a€lplFA;, ..., € [plF Adly
then: (ta=ci,...,xa=cn)" € [(pop1)---pnl- Bl

Introduction Higher-order arithmetic (tuned)

Conclusion

Underlying methodology

The forcing transformation The forcing machine

Conclusion

Translation of
formulas & proofs

Example : Negative translation

Program
transform

Computation model
(transform becomes identity)

~» CPS transform ~+ stack based machine

@ This methodology applies to the forcing translation

o A new abstract machine : the KFAM

o Reminiscent from well known tricks of computer architecture
(protection rings, virtual memory, hardware tracing, ...)

© How this computation model is used in particular cases of forcing?

@ Use this methodology the other way around!

o Deduce new logical translations from computation models
borrowed to computer architecture, operating systems, ...

	Introduction
	Higher-order arithmetic (tuned)
	The forcing transformation
	The forcing machine
	Conclusion

