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The Scenario

In Krivine’s work on Classical Realizability

he emphasizes that his notion of realizability

is a generalization of forcing as known from

set theory.

Thus Krivine’s classical realizability is not cap-

tured by partial combinatory algebras (pca’s)

as known from realizability (toposes) since

RT(A) Groth. topos ⇒ A trivial pca

But the order pca’s of J. van Oosten and

P. Hofstra provide a common generalization

of realizability and Heyting valued models.
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Classical Realizability (1)

The collection of (possibly open) terms is

given by the grammar

t ::= x | λx.t | ts | cc t | kπ

where π ranges over stacks (i.e. lists) of closed

terms. We write Λ for the set of closed terms

and Π for the set of stacks of closed terms.

A process is a pair t ∗π with t ∈ Λ and π ∈ Π.

The operational semantics of Λ is given by

the relation � (head reduction) on processes

defined inductively by the clauses

(pop) λx.t ∗ s.π � t[s/x] ∗ π
(push) ts ∗ π � t ∗ s.π
(store) cc t ∗ π � t ∗ kπ.π

(restore) kπ ∗ t.π′ � t ∗ π
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Classical Realizability (2)

This language has a natural interpretation

within the bifree solution of

D ∼= ΣList(D) ∼=
∏
n∈ω

ΣDn

NB We have D ∼= Σ × DD. Thus DD is a

retract of D and, accordingly, D is a model

for λβ-calculus.

The interpretation of Λ is given by

Jλx.tK %〈〉 = >
Jλx.tK %〈d, k〉 = JtK %[d/x]k

JtsK %k = JtK %〈JsK %, k〉
Jcc tK %k = JtK %〈ret(k), k〉
JkπK % = ret(JπK %)

where

ret(k)〈〉 = >
ret(k)〈d, k′〉 = d(k)

and

J〈〉K % = 〈〉
Jt.πK % = 〈JtK %, JπK %〉
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Classical Realizability (3)

A set ⊥⊥ of processes is called saturated iff

q ∈ ⊥⊥ whenever q� p ∈⊥⊥. We write t ⊥ π

for t∗π ∈⊥⊥. (In the model D one may choose

⊥⊥ as an arbitrary subset of D × List(D), e.g.

⊥⊥ = {t ∗ π | t(π) = >}.)
For X ⊆ Π and Y ⊆ Λ we put

X⊥ = {t ∈ Λ | ∀π ∈ X. t ⊥ π}

Y ⊥ = {π ∈ Π | ∀t ∈ Y. t ⊥ π}

Obviously (−)⊥ is antitonic and Z ⊆ Z⊥⊥ and

thus Z⊥ = Z⊥⊥⊥.

For a saturated set ⊥⊥ of processes second

order logic over a set M of individuals is in-

terpreted as follows: n-ary predicate variables

range over functions Mn → P(Π) and formu-

las A are interpreted as ||A|| ⊆ Π

||X(t1, . . . , tn)||% = %(X)([[t1]]%, . . . , [[t1]]%)

||A→B||% = |A|%.||B||%
||∀xA(x)|| =

⋃
a∈M ||A(a)||

||∀XA[X]||% =
⋃
R∈P(Π)Mn ||A||%[R/X]

where |A|% = ||A||⊥% .
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Classical Realizability (4)

We have |∀XA| =
⋂
R∈P(Π)Mn |A[R/X]|.

In general |A→B| is a proper subset of

|A|→|B| = {t∈Λ | ∀s∈|A| ts ∈ |B|}

since in general

ts ∗ π ∈ ⊥⊥ 6⇒ t ∗ s.π ∈ ⊥⊥

But for every t ∈ |A|→|B| its η-expansion

λx.tx ∈ |A→B|.

But, of course, we have |A→B| = |A|→|B|
whenever ⊥⊥ is also closed under head reduc-

tion, i.e. ⊥⊥3 p� q implies q ∈ ⊥⊥.

One may even assume that ⊥⊥ is stable w.r.t.

the semantic equality =D induced by the model

D. In particular Λ/=D
is a pca.
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Classical Realizability (5)

However, there are interesting situations where

one has to go beyond such a framework. For

realizing the countable choice axiom CAC

Krivine introduced a new language construct

χ∗ with the reduction rule

χ∗ ∗ t.π � t ∗ nt.π

where nt is the Church numeral representa-

tion of a Gödel number for t, c.f. quote(t) of

LISP.

NB quote is in conflict with β-reduction!

NB The term χ∗ realizes Krivine’s Axiom

∃S∀x
(
∀nIntZ(x, Sx,n) → ∀XZ(x,X)

)
which entails CAC.
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Axiomatic Class. Realiz. (1)

Instead of the usual pca’s one may consider

the following axiomatic framework which we

call Abstract Krivine Structure (AKS) :

• a set Λ of “terms” together with a binary

application operation (written as juxta-

position) and distinguished elements K,

S, cc ∈ Λ

• a set Π of “stacks” together with a push

operation (push) from Λ×Π to Π (written

t.π) and a unary operation k : Π → Λ

• a saturated subset ⊥⊥ of Λ×Π

where saturated means that ⊥⊥c = Λ×Π \ ⊥⊥
satisfies the closure conditions

(S1) ts ? π in ⊥⊥c implies t ? s.π in ⊥⊥c

(S2) K ? t.s.π in ⊥⊥c implies t ? π in ⊥⊥c

(S3) S ? t.s.u.π in ⊥⊥c implies tu(su) ? π in ⊥⊥c

(S4) cc ? t.π in ⊥⊥c implies t ? kπ.π in ⊥⊥c

(S5) kπ ? t.π′ in ⊥⊥c implies t ? π in ⊥⊥c.
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Axiomatic Class. Realiz. (2)

A proposition A is given by a subset ||A|| ⊆ Π.

The set of realizers for A is given by

|A| = ||A||⊥ = {t ∈ Λ | ∀π ∈ ||A|| t ? π ∈ ⊥⊥}

Logic is interpreted as follows

||R(~t)|| = R
(q
~t
y)

||A→B|| = |A|.||B|| = {t.π | t ∈ |A|, π ∈ ||B||}

||∀xA(x)|| =
⋃
a∈M

||A(a)||

||∀XA(X)|| =
⋃

R∈P(Π)Mn

||A(R)||

where M is the underlying set of the model.

NB On could define propositions more re-

strictively as

P⊥⊥(Π) = {X ∈ P(Π) | X = X⊥⊥}

and this would not change the meaning of |A|
for closed formulas (though it would change

the meaning of ||A||).
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Axiomatic Class Realiz. (3)

Notice that P⊥⊥(Π) is in 1-1-correspond. with

P⊥⊥(Λ) = {X ∈ P(Λ) | X = X⊥⊥}

via (−)⊥. Then in case (S1) holds as an

equivalence, i.e. we have

(SS1) ts ? π in ⊥⊥c iff t ? s.π in ⊥⊥c

then one may define | · | directly as

|R(~t)| = R
(q
~t
y)

|A→B| = |A|→|B| = {t ∈ L | ∀s ∈ |A| ts ∈ |B|}

|∀xA(x)| =
⋂
a∈M

|A(a)|

|∀XA(X)| =
⋂

R∈P⊥⊥(Λ)Mn

|A(R)|

and it coincides with the previous definition

for closed formulas.

Abstract Krivine structures validating the rea-

sonable assumption (SS1) are called strong

abstract Krivine structures (SAKSs).
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Axiomatic Class Realiz. (4)

Obviously, for A,B ∈ P⊥⊥(Λ) we have

|A→B| ⊆ |A|→|B| = {t ∈ Λ∀s ∈ |A| ts ∈ |B|}

But for any t ∈ |A| → |B| we have

Et ∈ |A→B|

where E = S(KI) with I = SKK.

One easily checks that

I ∗ t.π ∈ ⊥⊥c ⇒ t ∗ π ∈ ⊥⊥c

and thus we have

Et ∗ s.π ∈ ⊥⊥c ⇒ ts ∗ π ∈ ⊥⊥c

because

Et ∗ s.π ∈ ⊥⊥c ⇒ KIs(ts) ∈ ⊥⊥c ⇒
I ∗ ts.π ∈ ⊥⊥c ⇒ ts ∗ π ∈ ⊥⊥c

Then for s ∈ |A|, π ∈ ||B|| we have Et∗s.π ∈ ⊥⊥
because ts ∗ π ∈ ⊥⊥ since t ∈ |A| → |B|.
Thus Et ∈ |A→B| as desired.
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Forcing as an Instance (1)

Let P a ∧-semilattice (with top element 1)

and D a downward closed subset of P.

Such a situation gives rise to a SAKS where

- Λ = Π = P
- application and the push operation

are interpreted as ∧ in P
- k is the identity on P
- the constants K, S and cc

are interpreted as 1

- ⊥⊥ = {(p, q) ∈ P2 | p ∧ q ∈ D}.

We write p ⊥ q for p ∗ q ∈ ⊥⊥, i.e. p ∧ q ∈ D.

NB This is not a pca since application ∧ is

commutative and associative and thus a =

kab = kba = b.
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Forcing as an Instance (2)

For X ⊆ P we put

X⊥ = {p ∈ P | ∀q ∈ X p ∧ q ∈ D}

which is downward closed and contains D as

a subset. For downward closed X ⊆ P with

D ⊆ X we have

X⊥ = {p ∈ P | ∀q ≤ p (q ∈ X ⇒ q ∈ D)}

Thus, for arbitrary X ⊆ P we have

X⊥⊥ = {p ∈ P | ∀q ≤ p (q ∈ X⊥ ⇒ q ∈ D)}
= {p ∈ P | ∀q ≤ p (q 6∈ D ⇒ q 6∈ X⊥)}
= {p ∈ P | ∀q ≤ p (q 6∈ D ⇒

∃r ≤ q (q 6∈ D ∧ q ∈ X))}
as familiar from Cohen forcing.

Further for downward closed X,Y ⊆ P with

D ⊆ X,Y one can show that

X → Y : = {p ∈ P | ∀q ∈ X p ∧ q ∈ Y }
= {p ∈ P | ∀q ≤ p (q ∈ X ⇒ q ∈ Y )}

and thus

Z ⊆ X → Y iff Z ∩X ⊆ Y
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Forcing as an Instance (3)

Propositions are A ⊆ P with A = A⊥⊥ (as

in Girard’s phase semantics). Thus, propo-

sitions are in particular downward closed and

contain D as a subset.

We have X = X⊥⊥ iff D ⊆ X and p ∈ X \ D
whenever for all q ≤ p with q 6∈ D there exists

r ≤ q with r ∈ X \ D.

In case D = {0} then P↑ = P \ {0} is a con-

ditional ∧-semilattice and propositions are in

1-1-correspondence with regular subsets A of

P↑, i.e. p ∈ A whenever ∀q≤p ∃r≤q r ∈ A, the

propositions as considered in Cohen forcing

over P↑.
For propositions A,B we have

p ∈ A→B iff ∀q ∈ A p ∧ q ∈ B
iff ∀q ≤ p (q ∈ A⇒ q ∈ B)

iff p ∈ (A.B⊥)⊥

and for ¬A ≡ A→⊥ (where ⊥ is D, the least

proposition representing falsity) we have

p ∈ ¬A iff ∀q ∈ A p ∧ q ∈ D iff p ∈ A⊥

as in Cohen forcing.
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Characterization of Forcing

One can show that a SAKS arises (up to

iso) from a downward closed subset of a ∧-

semilattice iff

(1) k : P → L is a bijection

(2) application is associative, commutative

and idempotent and has a neutral ele-

ment 1

(3) application coincides with the push oper-

ation (when identifying L and P via k).

Remark

The downset D = {t ∈ L | (t,1) ∈ ⊥⊥} (where

1 is considered as element of P via k).

It is in this sense that

forcing = commutative realizability

as Krivine would put it.
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AKS’s as total OPCAs (1)

Hofstra and van Oosten’s notion of order

partial combinatory algebra (OPCA) gen-

eralizes both PCAs and complete Heyting al-

gebras (cHa’s). We will show how every AKS

can be organised into a total OPCA.

A total OPCA is a triple (A,≤, •) where ≤ is

a partial order on A and • is a binary mono-

tone operation on A such that there exist

k, s ∈ A with

k • a • b ≤ a s • a • b • c ≤ a • c • (b • c)

for all a, b, c ∈ A.

With every AKS we may associate the total

OPCA whose underlying set is P⊥⊥(Π), where

a ≤ b iff a ⊇ b and application is defined as

a • b = {π ∈ P | ∀t ∈ |a|, s ∈ |b| t ∗ s.π ∈⊥⊥}⊥⊥

where |a| = a⊥.

NB In case of a SAKS we have

|a • b| = {ts | t ∈ |a|, s ∈ |b|}⊥⊥
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AKS’s as total OPCAs (2)

For proving our claim we need

Lemma 1

From a ≤ b→ c it follows that a • b ≤ c.

Lemma 2

If t ∈ |a| and s ∈ |b| then ts ∈ |a • b|.

One easily shows that {K}⊥⊥ab ≤ a.

For showing that {S}⊥⊥•a•b•z ≤ a•c•(b•c) it

suffices by (multiple applications of) Lemma

1 to show that s ≤ a→ b→ c→ (a•c•(b•c)).
It suffices to show that

S ∈ |a→ b→ c→ (a • c • (b • c))|

For this purpose suppose t ∈ |a|, s ∈ |b|, u ∈ |c|
and π ∈ a • c • (b • c). Applying Lemma 2

iteratively we have tu(su) ∈ |a • c • (b • c)| and

thus tu(su) ∗π ∈ ⊥⊥. Since ⊥⊥ is closed under

expansion it follows that S ∗ t.s.u.π ∈ ⊥⊥ as

desired.
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AKS’s as total OPCAs (3)

A filter in a total OPCA (A,≤, •) is a subset

Φ of A closed under • and containing (some

choice of) k and s (for A).

Examples

(1) If case of a SAKS induced by a down-

closed set D in a ∧-semilattice P a natural

choice of a filter is {P}.
(2) Φ = {a ∈ P⊥⊥(Λ) | |a| 6= ∅} is a filter on

the total opca P⊥⊥(Π) by Lemma 2.

Given a total OPCA A = (A,≤, •) and a fil-

ter Φ in A one may asscoiate with it a Set-

indexed preorder [−,A]Φ as follows

• [I,A]Φ = AI is the set of all functions

from set I to A

• endowed with the preorder

ϕ `I ψ iff ∃a ∈ Φ∀i ∈ I a • ϕi ≤ ψi

• for u : J → I the reindexing map [u,A]Φ =

u∗ : AI → AJ send ϕ to u∗ϕ = (ϕu(j))j∈J.
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Krivine Tripos (1)

In case A arises from an AKS as given by

⊥⊥ ⊆ Λ × Π and Φ = {a ∈ P⊥⊥(Λ) | |a| 6= ∅}
the indexed preorder [−,A]Φ is a tripos, i.e.

• all [I,A]Φ are pre-Heyting-algebras whose

structure is preserved by reindexing

• for every u : J → I in Set the reindexing

map u∗ has a left adjoint ∃u and a right

adjoint ∀u satisfying the (Beck-)Chevalley

condition

• there is a generic predicate T ∈ [Σ,A]Φ,

namely Σ = A and T = idA, of which all

other predicates arise by reindexing since

ϕ = ϕ∗ idA

This tripos coincides with Krivine’s Classical

Realizability since we have

ϕ `M ψ iff ∃t ∈ Λ∀i ∈M t ∈ |ϕi → ψi|

for all ϕ,ψ ∈ [M,A]Φ.
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Krivine Tripos (2)

Proof :

Suppose ϕ `M ψ. Then there exists a ∈ Φ

such that ∀i ∈ M a • ϕi ≤ ψi. For all i ∈ M ,

u ∈ |a| and v ∈ |ϕi| we have uv ∈ |a•ϕi| ⊆ |ψi|.
Let u ∈ |a|. Then for all i ∈ M we have

u ∈ |ϕi| → |ψi| and thus Eu ∈ |ϕi → ψi|. Thus

t = Eu does the job.

Suppose there exists a t ∈ Λ such that

∀i ∈M t ∈ |ϕi → ψi|

Then we have

∀i ∈M {t}⊥⊥ ⊆ |ϕi → ψi|

Thus for a = {t}⊥ ∈ Φ we have

∀i ∈M∀u ∈ |a|∀v ∈ |ϕi|∀π ∈ ψi u ∗ v.π ∈⊥⊥

from which it follows that

∀i ∈M a • ϕi ≤ ψi

Thus ϕ `M ψ.
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Forcing in Class. Real. (1)
Let P be a meet-semilattice. We write pq as

a shorthand for p ∧ q.
Let C an upward closed subset of P . With

every X ⊆ P one associates∗

|X| = {p ∈ P | ∀q (C(pq) → X(q))}

Such subsets of P are called propositions.

We say

p forces X iff p ∈ |X|

and thus

p forces X → Y iff ∀q (|X|(q) → |Y |(pq))
p forces ∀i ∈ I.Xi iff ∀i ∈ I. p forces Xi

Apparently, we have

p forces X → Y iff

- ∀q (|X|(q) → ∀r(C(pqr) → Y (r))) iff

∀q, r (C(pqr) → |X|(q) → Y (r)) iff

p ∈
∣∣∣{qr | |X|(q) → Y (r)}

∣∣∣
- p forces ∀i ∈ I.Xi iff p ∈

∣∣∣⋂i∈I Xi∣∣∣
∗Traditionally, one would associate with X the set
X⊥ = {p ∈ P | ∀q ∈ X ¬C(pq)}. But, classically, we
have |X| = (P \X)⊥.
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Forcing in Class. Real. (2 )

Actually, in most cases P is not a meet-

semilattice but it is so “from point of view”

of C ⊆ P . I.e. we have a binary operation on

P and an element 1 ∈ P such that

C(p(qr)) ↔ C((pq)r)

C(pq) ↔ C(qp)

C(p) ↔ C(pp)

C(1p) ↔ C(p)(
C(p) ↔ C(q)

)
→

(
C(pr) ↔ C(qr)

)
together with

C(pq) → C(p)

expressing that C is upward closed.

On P we may define a congruence

p ' q ≡ ∀r. (C(rp) ↔ C(rq))

w.r.t. which P is a commutative idempotent

monoid, i.e. a meet-semilattice, of which C is

an upward closed subset.
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Forcing in Class. Real. (3 )

We have seen that p forces X → Y iff

∀q, r (C(pqr) → |X|(q) → Y (r))

Thus a term t realizes p forces X → Y iff

∀q, r∀u∈C(pqr)∀s∈|X|(q)∀π∈Y (r) t ∗ u.s.π ∈⊥⊥

Thus, one might want to define when a pair

(t, p) realizes X → Y . For this purpose one

has to find an AKS structure whose term part

is Λ×P . For this purpose Krivine has defined

application and push as follows

(t, p)(s, q) = (ts, pq) (t, p).(s, π) = (t ∗ s, pq)

Moreover, from ⊥⊥ he defines a new ⊥⊥⊥ as

(t, p) ∗ (π, q) ∈⊥⊥⊥ iff ∀u ∈ C(pq) t ∗ πu ∈⊥⊥

where πu is obtained from π by inserting u at

its bottom.

22



Forcing in Class. Real. (4)

Thus, we have

(t, p) ∈ |X → Y |
iff

∀(s, q) ∈ |X|∀(r, π) ∈ Y (t, p) ∗ (s, q).(π, r) ∈⊥⊥⊥
iff

∀(s, q) ∈ |X|∀(r, π) ∈ Y ∀u ∈ C(pqr) t ∗ s.πu ∈⊥⊥

in accordance with the above explication of

t realizes p forces X → Y .

In order to jump back and forth between

t realizes p forces A and (t′, p) ∈ |A|

one needs “read” and “write” constructs in

the original AKS, i.e. command χ and χ′ s.t.

(read) χ ∗ t.πs � t ∗ s.π
(write) χ′ ∗ t.s.π � t ∗ πs

Using these one can transform t into t′ and

vice versa.

Krivine concludes from this that for realizing

forcing one needs global memory.
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Generic Set and Ideal

In forcing one usually considers the generic

set G which is the predicate on P with G(p) =

{p}⊥⊥. Equivalently one my consider its com-

plement, the generic ideal J with |J (p)| =
{p}⊥, i.e.

J (p) = {q ∈ P | p 6= q}

as q ∈ |J (p)| iff ∀r (C(qr) → p 6= r) iff ¬C(qp).

Obviously p ' q iff ∀r (|J (p)|(r) ↔ |J (q)|(r)).
More generally, we can define

p � q ≡ ∀r
(
|J (q)|(r) → |J (p)|(r)

)
i.e. ∀r (C(rp) → C(rq)). This defines a pre-

order w.r.t. which P gets a meet-semilattice

P with greatest element 1 where pq picks a

binary infimum of p and q.

Equivalently, we may define

||J (p)|| = Π× {p}

since (t, q) ∈ |J (p)| iff ∀π (t, q) ∗ (π, p) ∈⊥⊥⊥ iff

∀u ∈ C(qp)∀π t ∗ πu ∈⊥⊥.
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P(P ) as a cBa

For X ∈ P(P ) define J (X) such that

|J (X)|(q) iff ∀p ∈ X ¬C(qp)

i.e. |J |(X) = X⊥.

We may extend � to P(P ) as follows

X � Y ≡ ∀r
(
|J (Y )|(r) → |J (X)|(r)

)
Thus X � Y iff Y ⊥ ⊆ X⊥ iff X⊥⊥ ⊆ Y ⊥⊥.

This endows P(P ) with the structure of a

complete boolean preorder denoted by B.

Writing E for the classical realizability topos

arising from the original AKS the classical

topos arising from the new AKS is (equiva-

lent to) the topos ShE(B).

NB

B is not an assembly in Sh(E) as it is uniform.

Thus the construction of ShE(B) from E is

not induced by an opca morphism.
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