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T he Scenario

In Krivine's work on Classical Realizability
he emphasizes that his notion of realizability
IS a generalization of forcing as known from
set theory.

T hus Krivine's classical realizability is not cap-
tured by partial combinatory algebras (pca’s)
as known from realizability (toposes) since

RT(A) Groth. topos = A trivial pca

But the order pca’'s of J. van Oosten and
P. Hofstra provide a common generalization
of realizability and Heyting valued models.




Classical Realizability (1)

The collection of (possibly open) terms is
given by the grammar

tii=x|Ax.t|ts|cct|kx

where 7w ranges over stacks (i.e. lists) of closed
terms. We write A for the set of closed terms
and [1 for the set of stacks of closed terms.

A process is a pair txm with t € A and =« € .

The operational semantics of A is given by
the relation > (head reduction) on processes
defined inductively by the clauses

(pop) Ar.tx s =  tls/x]xw
(push) ts = txs.m
(store) cctx = tx kg
(restore) krxt.w’ > txmw




Classical Realizability (2)

This language has a natural interpretation
within the bifree solution of

ncw

NB We have D &£ ¥~ x DP. Thus DP is a
retract of D and, accordingly, D is a model
for Ag-calculus.
The interpretation of A is given by
Az.t]o() =T
[Az.t] o(d, k) = [t] old/x]k
[ts] ok = [t] o([s] o, k)
cct] ok = [t] ofret(k), k)
[krx] 0 = ret([x] o)
where

ret(k){) =T

ret(k)(d, k") = d(k)

and

[0 e = ()
[t-7] o = ([t] o, [7] )




Classical Realizability (3)

A set 1l of processes is called saturated iff
q € 1l whenever g-p ell. We writet L «
for txm € 1. (In the model D one may choose
1l as an arbitrary subset of D x List(D), e.g.
U =Atxw|t(wr)=T}.)

For X C Il and Y C A we put

Xt={teAN|VreX. tLnr}
Yt={ren|VteY.t L}

Obviously (=) is antitonic and Z € Zz++ and
thus z1+ = z1+++.

For a saturated set 1l of processes second
order logic over a set M of individuals is in-
terpreted as follows: n-ary predicate variables
range over functions M™ — P(IN) and formu-
las A are interpreted as ||A|| C I
X(t1, -5 tn)lle = o(X) (L1l - - -, [E11p)
A—Bl|[p = |Ale-||Blle

Ve A(z)|| = Uaenm [|ACa)]]

VXA[X]||p = UREp(n)M” ||A||Q[R/X]

where |A|p, = ||A||$.




Classical Realizability (4)

We have [VXA| = Nrep(nyM™ |A[R/X]]|.

In general |[A—Bj| is a proper subset of
|A|—|B| = {teN | Vs€|A| ts € |B|}
since in general

tsxme 1l Atxsme 1L

But for every t € |A|—|B| its n-expansion
Ax.tr € |[A—DB|.

But, of course, we have |[A—B| = |A|—|B|
whenever 1l is also closed under head reduc-
tion, i.e. 1L > p>q implies q € 1l.

One may even assume that 1L is stable w.r.t.
the semantic equality =p induced by the model
D. In particular /\/:D IS a pca.




Classical Realizability (5)

However, there are interesting situations where
one has to go beyond such a framework. For
realizing the countable choice axiom CAC
Krivine introduced a new language construct
x* with the reduction rule

X okt = txngT

where n; is the Church numeral representa-
tion of a Godel number for ¢, c.f. quote(t) of
LISP.

NB quote is in conflict with g-reduction!

NB The term x* realizes Krivine’s Axiom
SV (vn'"tZ(a;, Sen) — VX Z(x, X))
which entails CAC.




Axiomatic Class. Realiz. (1)

Instead of the usual pca’s one may consider
the following axiomatic framework which we
call Abstract Krivine Structure (AKS) :

e a set A of “terms”’ together with a binary
application operation (written as juxta-
position) and distinguished elements K,
S,cce N

e a set Il of “stacks” together with a push
operation (push) from A x T to N (written
t.w) and a unary operation k: M — A

e a saturated subset 1l of A x I1

where saturated means that 11¢= AxI\ 1L
satisfies the closure conditions

(S1)
(52)
(S3)
(S4)
(S5)

tsxm in 1L¢ implies t x s.m in L€
Kxt.s.r in L€ implies t 7 in 1L¢
Sxt.sumin 1LC implies tu(su) x 7 in 1LC
ccxt.m in 1L¢ implies t x ky.m in L€

ke xt.7/ in 1L¢ implies tx 7 in 1LC.




Axiomatic Class. Realiz. (2)

A proposition A is given by a subset ||A|| C IN.
The set of realizers for A is given by
Al =||A|[t ={teA|VrellA|| txme 1L}

Logic is interpreted as follows

IR = R([Z])

|1A=B|| = |Al||B|| = {t.7 | t € [A],® € || B[}

IVzA(@)l = U [A(a)]]

acM

VXA = U AR
Rep(nm)M"
where M is the underlying set of the model.

NB On could define propositions more re-
strictively as

Py(M={XeP(N)|X=Xx""}

and this would not change the meaning of |A]
for closed formulas (though it would change
the meaning of ||Al]).




Axiomatic Class Realiz. (3)

Notice that P (M) is in 1-1-correspond. with

PL(AN) ={XecPA)|X=x1
via (=)1. Then in case (S1) holds as an
equivalence, i.e. we have
(SS1) ts*xmin 1L¢ iff txs.mwin 1LC
then one may define |- | directly as

R = R([#])

A—B| = |A|—|B| = {t € L |Vs € |A| ts € |B|}

VeA(z) = () A(a)

aceM
VXAX) = (] AR
ReP  (NM"
and it coincides with the previous definition
for closed formulas.

Abstract Krivine structures validating the rea-
sonable assumption (SS1) are called strong
abstract Krivine structures (SAKSs).




Axiomatic Class Realiz. (4)

Obviously, for A, B € P (A) we have
|A—B| C |A|—|B| = {t € A\Vs € |A| ts € |B|}
But for any t € |A| — |B| we have

Et € |A—B|
where E = S(KI) with | = SKK.

One easily checks that

| xt.r e 11 = txme 1L°

and thus we have

Etxsmec 1l = tsxme 1LC

because

Et xs.m e 11L¢ = Kls(ts) € 1L.¢ =
| xts.m € 11¢ = tsxm e 1LC

Then for s € |A|, w € ||B|| we have Etxs.t € 1L
because tsx 7 € 1L since t € |A| — |B].
Thus Et € | A—B| as desired.
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Forcing as an Instance (1)

Let P a A-semilattice (with top element 1)
and D a downward closed subset of P.

Such a situation gives rise to a SAKS where

AN=IM=DP

application and the push operation
are interpreted as A in P

k is the identity on P

the constants K, S and cc

are interpreted as 1

1L ={(p,q) €P? | pAqeD}.

We write p L g forpxqg e 1L, i.e. pAqg € D.

NB This is not a pca since application A is
commutative and associative and thus a =
kab = kba = b.
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Forcing as an Instance (2)

For X C P we put

X+t ={peP|Vge X pAqeD}

which is downward closed and contains D as
a subset. For downward closed X C P with
D C X we have

X+={peP|Yg<p(¢€ X = q€ D)}

Thus, for arbitrary X C P we have
XH ={peP|Vg<p(ge X!t =qeD)}
={peP|Vg<p(@g€D=q¢gX")}
={peP|Vg<p(@g€D=
Ir<q(gg€DANge X))}
as familiar from Cohen forcing.

Further for downward closed X,Y C P with
D C X,Y one can show that

X—-Y :={peP|VgeXpAqeY}
={peP|Vg<p(ge X =qeY)}

and thus

ZCX Y iff ZNXCY
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Forcing as an Instance (3)

Propositions are A C P with A = A+l (as
in Girard's phase semantics). Thus, propo-
sitions are in particular downward closed and
contain D as a subset.

We have X = XL iff DC X and pe X\ D
whenever for all ¢ < p with g € D there exists
r <q with r € X\ D.

In case D = {0} then PT = P\ {0} is a con-
ditional A-semilattice and propositions are in
1-1-correspondence with regular subsets A of
PT, i.e. p € A whenever Vg<p Ir<qr € A, the
propositions as considered in Cohen forcing
over PT.

For propositions A, B we have
pe A—B iff Ve ApANgqe B
iff Vg<p(ge A= qge€ B)
iff pec (A.BLH)L
and for -A = A—_1 (where 1L is D, the least
proposition representing falsity) we have
peE—-A iff Yge ApAhgqeD iff pe AL
as in Cohen forcing.
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Characterization of Forcing

One can show that a SAKS arises (up to
iso) from a downward closed subset of a A-

semilattice iff
(1) k: P — L is a bijection

(2) application is associative, commutative
and idempotent and has a neutral ele-
ment 1

(3) application coincides with the push oper-
ation (when identifying L and P via k).

Remark
The downset D={te L| (t,1) € 1L} (where
1 is considered as element of P via k).

It is in this sense that
forcing = commutative realizability

as Krivine would put it.
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AKS'’s as total OPCAs (1)

Hofstra and van Oosten’s notion of order
partial combinatory algebra (OPCA) gen-
eralizes both PCAs and complete Heyting al-
gebras (cHa's). We will show how every AKS
can be organised into a total OPCA.

A total OPCA is a triple (A, <,e) where < is
a partial order on A and e is a binary mono-
tone operation on A such that there exist
k,s € A with

keaeb<a seagebec<agece(bec)

for all a,b,c € A.

With every AKS we may associate the total
OPCA whose underlying set is P, (), where
a <biff a Db and application is defined as

aeb={mreP|Vt€El|al,se b t*smell}tt
where |a| = at.
NB In case of a SAKS we have

laeb| = {ts |t e la|,se|b}+
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AKS’s as total OPCAs (2)

For proving our claim we need

Lemma 1l
From a < b— c it follows that ae b < c.

Lemma 2
If t € |a] and s € |b] then ts € |a @ b|.

One easily shows that {K}+1ab < a.

For showing that {S}-1eaebez < aece(bec) it
suffices by (multiple applications of) Lemma
1 toshow that s<a—b—c— (aece(bec)).
It suffices to show that

Se€la—b—c— (aece(bec))]

For this purpose supposet € |a|, s € |b], u € ||
and m € aece (bec). Applying Lemma 2
iteratively we have tu(su) € [aece (bec)| and
thus tu(su) *m € 1L. Since 1L is closed under
expansion it follows that S x t.s.u.m € 1L as
desired.
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AKS'’s as total OPCAs (3)

A filter in a total OPCA (A, <,e) is a subset
® of A closed under e and containing (some
choice of) k and s (for A).

Examples

(1) If case of a SAKS induced by a down-
closed set D in a A-semilattice P a natural
choice of a filter is {PP}.

(2) @ ={a € Py(A) | |a] # 0} is a filter on
the total opca P (M) by Lemma 2.

Given a total OPCA A = (A, <,e) and a fil-
ter ® in A one may asscoiate with it a Set-
indexed preorder [—, Al as follows

e [[,Ale = Al is the set of all functions
from set I to A

e endowed with the preorder
oy iff daedViel aep; <y

o foru : J — I the reindexing map [u, Al =
w* : A — A7 send ¢ to utp = (gpu(j))jEJ.
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Krivine Tripos (1)

In case A arises from an AKS as given by
UL CAxNand & = {a € Py(A) | |a] # 0}
the indexed preorder [—,A]s is a tripos, i.e.

e all [I,A]q are pre-Heyting-algebras whose
structure is preserved by reindexing

e for every u : J — I in Set the reindexing
map u* has a left adjoint 3, and a right
adjoint V,, satisfying the (Beck-)Chevalley
condition

e there is a generic predicate T € [X,A],
namely > = A and T = id,, of which all
other predicates arise by reindexing since

p = @"idy

This tripos coincides with Krivine’'s Classical
Realizability since we have

ey Iff I eENVIie Mte |p; —
for all g,y € [M, Al .
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Krivine Tripos (2)

Proof :

Suppose ¢ k5 Y. Then there exists a € P
such that Vi e M ae p; <1;. For all 1 € M,
u € |a] and v € |p;| we have uv € |ae ;| C [Y;].
Let v € |a]. Then for all ¢ € M we have
u € |p;| — |¥;| and thus Eu € |p; — ;. Thus
t = Eu does the job.

Suppose there exists a t € A such that

Vie Mte |p; — 9
Then we have

Vi€ M {t}+ C lp; — vl
Thus for a = {t}+ € ® we have
Vi € MYu € |alVv € |p;|Vr € ¢; u*xv.w ell
from which it follows that
Vie M aep; <

Thus ¢ by 1.
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Forcing in Class. Real. (1)

Let P be a meet-semilattice. We write pq as
a shorthand for p A gq.

Let C an upward closed subset of P. W.ith
every X C P one associates™

(X|={pe P|VYq(Clpg) — X(q))}

Such subsets of P are called propositions.
We say

p forces X iff pe|X]

and thus

p forces X - Y iff Vq(|X|(q) — |Y|(pq))
p forces Vi € I.X; iff Vi€ I.p forces X;

Apparently, we have

p forces X — Y iff

- Vq (| X|(q) — Vr(C(pgr) — Y (r))) iff
Vgq,r (C(pgr) — [X|(q) — Y (r)) iff
p € [{ar | 1X|(q) = Y ()}

- pforces Vi e I.X; Iiff pe

Nier X;

*Traditionally, one would associate with X the set
X+ ={pe P|Vqgec X-C(pg)}. But, classically, we
have | X| = (P \ X)* .

20



Forcing in Class. Real. (2 )

Actually, in most cases P is not a meet-
semilattice but it is so ‘from point of view”
of C C P. I.e. we have a binary operation on
P and an element 1 € P such that

C(p(qr)) « C((pg)r)
C(pq) < C(qp)
C(p) < C(pp)
C(1p) < C(p)
(C(p) = C(9)) — (Clpr) < Clqr))
together with

C(pq) — C(p)

expressing that C is upward closed.

On P we may define a congruence

p~q=Vr. (C(rp) < C(rq))

w.r.t. which P is a commutative idempotent
monoid, i.e. a meet-semilattice, of which C is
an upward closed subset.
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Forcing in Class. Real. (3 )

We have seen that p forces X — Y iff

Vq,r (C(pgr) — [X[(qg) — Y (7))
Thus a term t realizes p forces X — Y iff
Vq, rVueC(pqr)Vse| X |(g)VreY (r) t x u.s.m € 1L

Thus, one might want to define when a pair
(t,p) realizes X — Y. For this purpose one
has to find an AKS structure whose term part
is Ax P. For this purpose Krivine has defined
application and push as follows

(t,p)(s,q) = (ts,pq) (t,p).(s,m) = (t*s,pq)

Moreover, from 1L he defines a new _1ll as

(t,p) * (m,q) €lll iff Vu € C(pg) t *x 7" €1l

where 7' is obtained from = by inserting u at
its bottom.
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Forcing in Class. Real. (4)

Thus, we have
(t,p) € | X = Y|
i
V(s,q) € | X|V(r,m) €Y (t,p) * (s,q).(m,7r) € LLL
iii
V(s,q) € | X|V(r,m) € YVu € C(pgr) t * s.7™ € 1L
in accordance with the above explication of
t realizes p forces X — Y.

In order to jump back and forth between

t realizes p forces A and (t,p) € |A]
one needs ‘read” and "write” constructs in
the original AKS, i.e. command x and x’ s.t.
(read) x xt.ws = txs.w
(write) X xt.s.m = txmS

Using these one can transform t into ¢’ and
vice versa.

Krivine concludes from this that for realizing
forcing one needs global memory.
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Generic Set and Ideal

In forcing one usually considers the generic
set G which is the predicate on P with G(p) =
{p}+L. Equivalently one my consider its com-
plement, the generic ideal J with |J7(p)| =

{p}+, i.e.

J() ={q<€P|p#*q}

as q € |J(p)| iff Vr (C(qr) — p # r) iff =C(gp).
Obviously p ~ q iff Vr (| T (p)|(r) < |T(@)|(r)).
More generally, we can define

p=q=Vr (l7@|0) = [T@)®))

i.e. Vr (C(rp) — C(rq)). This defines a pre-
order w.r.t. which P gets a meet-semilattice
P with greatest element 1 where pg picks a
binary infimum of p and gq.

Equivalently, we may define

1T (P)[| = T x {p}

since (t,q) € |J(p)| iff Vx (¢, q) = (7, p) € LLL iff
Vu € C(gp)Vmt* % € 1.
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P(P) as a cBa

For X € P(P) define 7(X) such that

|T(X)|(q) iff Vpe X —=C(qp)
ie. |T(X)= X"

We may extend < to P(P) as follows

X 2Y =Vr (JTMIr) — [T (X))

Thus X <Y iff Y+ C x+ iff x-+ Ccy+L,
This endows P(P) with the structure of a
complete boolean preorder denoted by B.
Writing £ for the classical realizability topos
arising from the original AKS the classical
topos arising from the new AKS is (equiva-
lent to) the topos She(B).

NB

B is not an assembly in Sh(&) as it is uniform.
Thus the construction of Shg(B) from £ is
not induced by an opca morphism.
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