Krivine's Classical Realizability from a Categorical Prespective

Thomas Streicher (TU Darmstadt)

July 2010

The Scenario

In Krivine's work on **Classical Realizability** he emphasizes that his notion of realizability is a **generalization of forcing** as known from set theory.

Thus Krivine's classical realizability is not captured by partial combinatory algebras (pca's) as known from realizability (toposes) since

RT(A) Groth. topos \Rightarrow A trivial pca

But the **order pca**'s of J. van Oosten and P. Hofstra provide a common generalization of realizability and Heyting valued models.

Classical Realizability (1)

The collection of (possibly open) terms is given by the grammar

$$t ::= x \mid \lambda x.t \mid ts \mid \mathsf{cc}\,t \mid \mathsf{k}_{\pi}$$

where π ranges over stacks (i.e. lists) of closed terms. We write Λ for the set of closed terms and Π for the set of stacks of closed terms. A *process* is a pair $t*\pi$ with $t\in \Lambda$ and $\pi\in \Pi$.

The operational semantics of Λ is given by the relation \succeq (head reduction) on processes defined inductively by the clauses

$$\begin{array}{lll} \text{(pop)} & \lambda x.t*s.\pi &\succeq & t[s/x]*\pi \\ \text{(push)} & ts*\pi &\succeq & t*s.\pi \\ \text{(store)} & \cot *\pi &\succeq & t*k_\pi.\pi \\ \text{(restore)} & \mathsf{k}_\pi*t.\pi' &\succeq & t*\pi \end{array}$$

Classical Realizability (2)

This language has a natural interpretation within the bifree solution of

$$D \cong \mathbf{\Sigma}^{\mathsf{List}(D)} \cong \prod_{n \in \omega} \mathbf{\Sigma}^{D^n}$$

NB We have $D \cong \Sigma \times D^D$. Thus D^D is a retract of D and, accordingly, D is a model for λ_{β} -calculus.

The interpretation of Λ is given by

$$\begin{aligned}
& \begin{bmatrix} \lambda x.t \end{bmatrix} \varrho \langle \rangle = \top \\
& \begin{bmatrix} \lambda x.t \end{bmatrix} \varrho \langle d, k \rangle = \begin{bmatrix} t \end{bmatrix} \varrho [d/x] k \\
& \begin{bmatrix} ts \end{bmatrix} \varrho k = \begin{bmatrix} t \end{bmatrix} \varrho \langle \llbracket s \rrbracket \varrho, k \rangle \\
& \begin{bmatrix} \operatorname{cc} t \rrbracket \varrho k = \llbracket t \rrbracket \varrho \langle \operatorname{ret}(k), k \rangle \\
& \begin{bmatrix} k_{\pi} \rrbracket \varrho = \operatorname{ret}(\llbracket \pi \rrbracket \varrho) \end{aligned}$$

where

$$\operatorname{ret}(k)\langle\rangle=\top$$
 $\operatorname{ret}(k)\langle d,k'\rangle=d(k)$

and

Classical Realizability (3)

A set $\bot\!\!\!\!\bot$ of processes is called *saturated* iff $q \in \bot\!\!\!\!\bot$ whenever $q \succeq p \in \bot\!\!\!\!\bot$. We write $t \perp \pi$ for $t*\pi \in \bot\!\!\!\!\bot$. (In the model D one may choose $\bot\!\!\!\!\!\bot$ as an arbitrary subset of $D \times \text{List}(D)$, *e.g.* $\bot\!\!\!\!\!\!\bot = \{t*\pi \mid t(\pi) = \top\}$.)

For $X \subseteq \Pi$ and $Y \subseteq \Lambda$ we put

$$X^{\perp} = \{ t \in \Lambda \mid \forall \pi \in X. \ t \perp \pi \}$$
$$Y^{\perp} = \{ \pi \in \Pi \mid \forall t \in Y. \ t \perp \pi \}$$

Obviously $(-)^{\perp}$ is antitonic and $Z \subseteq Z^{\perp \perp}$ and thus $Z^{\perp} = Z^{\perp \perp \perp}$.

For a saturated set $\bot\bot$ of processes second order logic over a set M of individuals is interpreted as follows: n-ary predicate variables range over functions $M^n \to \mathcal{P}(\Pi)$ and formulas A are interpreted as $||A|| \subseteq \Pi$

$$||X(t_{1},...,t_{n})||_{\varrho} = \varrho(X)([[t_{1}]]_{\varrho},...,[[t_{1}]]_{\varrho})$$

$$||A \rightarrow B||_{\varrho} = |A|_{\varrho}.||B||_{\varrho}$$

$$||\forall x A(x)|| = \bigcup_{a \in M} ||A(a)||$$

$$||\forall X A[X]||_{\varrho} = \bigcup_{R \in \mathcal{P}(\Pi)^{M^{n}}} ||A||_{\varrho[R/X]}$$
where $|A|_{\varrho} = ||A||_{\varrho}^{\perp}$.

Classical Realizability (4)

We have $|\forall XA| = \bigcap_{R \in \mathcal{P}(\Pi)^{M^n}} |A[R/X]|$.

In general $|A \rightarrow B|$ is a **proper** subset of

$$|A| \rightarrow |B| = \{t \in \Lambda \mid \forall s \in |A| \ ts \in |B|\}$$

since in general

$$ts * \pi \in \bot \bot \not\Rightarrow t * s.\pi \in \bot \bot$$

But for every $t \in |A| \rightarrow |B|$ its η -expansion $\lambda x.tx \in |A \rightarrow B|$.

But, of course, we have $|A \rightarrow B| = |A| \rightarrow |B|$ whenever $\bot\!\!\!\bot$ is also *closed under head reduction*, i.e. $\bot\!\!\!\!\bot \ni p \succeq q$ implies $q \in \bot\!\!\!\!\bot$.

One may even assume that $\bot\bot$ is stable w.r.t. the semantic equality $=_D$ induced by the model D. In particular $\Lambda_{/=_D}$ is a pca.

Classical Realizability (5)

However, there are interesting situations where one has to go beyond such a framework. For realizing the countable choice axiom CAC Krivine introduced a new language construct χ^* with the reduction rule

$$\chi^* * t.\pi \succeq t * n_t.\pi$$

where n_t is the Church numeral representation of a Gödel number for t, c.f. quote(t) of LISP.

NB quote is in conflict with β -reduction!

NB The term χ^* realizes *Krivine's Axiom* $\exists S \forall x \Big(\forall n^{\text{Int}} Z(x, S_{x,n}) \to \forall X Z(x, X) \Big)$ which entails CAC.

Axiomatic Class. Realiz. (1)

Instead of the usual pca's one may consider the following axiomatic framework which we call **Abstract Krivine Structure** (AKS):

- a set Λ of "terms" together with a binary application operation (written as juxtaposition) and distinguished elements K, $S, cc \in \Lambda$
- a set Π of "stacks" together with a push operation (push) from $\Lambda \times \Pi$ to Π (written $t.\pi$) and a unary operation $k:\Pi \to \Lambda$
- a saturated subset $\perp \!\!\! \perp$ of $\Lambda \times \Pi$

where saturated means that $\bot\!\!\!\bot^c = \Lambda \times \Pi \setminus \bot\!\!\!\!\bot$ satisfies the closure conditions

- (S1) $ts \star \pi$ in $\perp \!\!\! \perp^c$ implies $t \star s.\pi$ in $\perp \!\!\! \perp^c$
- (S2) $\mathsf{K} \star t.s.\pi$ in $\perp \!\!\! \perp^c$ implies $t \star \pi$ in $\perp \!\!\! \perp^c$
- (S3) $S \star t.s.u.\pi$ in $\perp \!\!\! \perp^c$ implies $tu(su) \star \pi$ in $\perp \!\!\! \perp^c$
- (S4) $\operatorname{cc} \star t.\pi$ in \coprod^c implies $t \star \mathsf{k}_{\pi}.\pi$ in \coprod^c
- (S5) $k_{\pi} \star t.\pi'$ in $\perp \!\!\! \perp^c$ implies $t \star \pi$ in $\perp \!\!\! \perp^c$.

Axiomatic Class. Realiz. (2)

A proposition A is given by a subset $||A|| \subseteq \Pi$. The set of realizers for A is given by

$$|A| = ||A||^{\perp} = \{ t \in \Lambda \mid \forall \pi \in ||A|| \ t \star \pi \in \bot \}$$

Logic is interpreted as follows

$$||R(\vec{t})|| = R([\vec{t}])$$

$$||A \rightarrow B|| = |A|.||B|| = \{t.\pi \mid t \in |A|, \pi \in ||B||\}$$

$$||\forall x A(x)|| = \bigcup_{a \in M} ||A(a)||$$

$$||\forall X A(X)|| = \bigcup_{R \in \mathcal{P}(\Pi)^{M^n}} ||A(R)||$$

where ${\cal M}$ is the underlying set of the model.

NB On could define propositions more restrictively as

$$\mathcal{P}_{||}(\Pi) = \{ X \in \mathcal{P}(\Pi) \mid X = X^{\perp \perp} \}$$

and this would not change the meaning of |A| for closed formulas (though it would change the meaning of |A|).

Axiomatic Class Realiz. (3)

Notice that $\mathcal{P}_{\parallel}(\Pi)$ is in 1-1-correspond. with

$$\mathcal{P}_{\perp \perp}(\Lambda) = \{ X \in \mathcal{P}(\Lambda) \mid X = X^{\perp \perp} \}$$

via $(-)^{\perp}$. Then in case (S1) holds as an equivalence, i.e. we have

(SS1)
$$ts \star \pi$$
 in $\bot\!\!\!\bot^c$ iff $t \star s.\pi$ in $\bot\!\!\!\!\bot^c$ then one may define $|\cdot|$ directly as

$$|R(\vec{t})| = R([\![\vec{t}]\!])$$

$$|A \rightarrow B| = |A| \rightarrow |B| = \{t \in L \mid \forall s \in |A| \ ts \in |B|\}$$

$$|\forall x A(x)| = \bigcap_{a \in M} |A(a)|$$

$$|\forall X A(X)| = \bigcap_{R \in \mathcal{P}_{\perp}(\Lambda)^{M^n}} |A(R)|$$

and it coincides with the previous definition for closed formulas.

Abstract Krivine structures validating the reasonable assumption (SS1) are called **strong abstract Krivine structures** (SAKSs).

Axiomatic Class Realiz. (4)

Obviously, for $A, B \in \mathcal{P}_{||}(\Lambda)$ we have

$$|A \rightarrow B| \subseteq |A| \rightarrow |B| = \{t \in \Lambda \forall s \in |A| \ ts \in |B|\}$$

But for any $t \in |A| \to |B|$ we have

$$\mathsf{E} t \in |A {\rightarrow} B|$$

where E = S(KI) with I = SKK.

One easily checks that

$$1 * t.\pi \in \perp \perp^c \Rightarrow t * \pi \in \perp \perp^c$$

and thus we have

$$\mathsf{E} t * s.\pi \in \perp \!\!\!\perp^c \implies ts * \pi \in \perp \!\!\!\!\perp^c$$

because

$$\mathsf{E}t * s.\pi \in \bot^c \Rightarrow \mathsf{K}\mathsf{I}s(ts) \in \bot^c \Rightarrow \mathsf{I}* ts.\pi \in \bot^c \Rightarrow ts*\pi \in \bot^c$$

Then for $s \in |A|$, $\pi \in |B|$ we have $\mathrm{E} t * s. \pi \in \bot \bot$ because $ts * \pi \in \bot \bot$ since $t \in |A| \to |B|$. Thus $\mathrm{E} t \in |A \to B|$ as desired.

Forcing as an Instance (1)

Let \mathbb{P} a \wedge -semilattice (with top element 1) and \mathcal{D} a downward closed subset of \mathbb{P} .

Such a situation gives rise to a SAKS where

- $\Lambda = \Pi = \mathbb{P}$
- application and the push operation are interpreted as \wedge in $\mathbb P$
- k is the identity on $\mathbb P$
- the constants K, S and cc are interpreted as 1
- $\perp \perp = \{(p,q) \in \mathbb{P}^2 \mid p \land q \in \mathcal{D}\}.$

We write $p \perp q$ for $p * q \in \bot\bot$, i.e. $p \land q \in \mathcal{D}$.

NB This is **not** a pca since application \wedge is commutative and associative and thus a = kab = kba = b.

Forcing as an Instance (2)

For $X \subseteq \mathbb{P}$ we put

$$X^{\perp} = \{ p \in \mathbb{P} \mid \forall q \in X \ p \land q \in \mathcal{D} \}$$

which is downward closed and contains \mathcal{D} as a subset. For downward closed $X\subseteq \mathbb{P}$ with $\mathcal{D}\subseteq X$ we have

$$X^{\perp} = \{ p \in \mathbb{P} \mid \forall q \le p \ (q \in X \Rightarrow q \in \mathcal{D}) \}$$

Thus, for arbitrary $X \subseteq \mathbb{P}$ we have

$$X^{\perp \perp} = \{ p \in \mathbb{P} \mid \forall q \le p \ (q \in X^{\perp} \Rightarrow q \in \mathcal{D}) \}$$

$$= \{ p \in \mathbb{P} \mid \forall q \le p \ (q \not\in \mathcal{D} \Rightarrow q \not\in X^{\perp}) \}$$

$$= \{ p \in \mathbb{P} \mid \forall q \le p \ (q \not\in \mathcal{D} \Rightarrow$$

$$\exists r < q \ (q \not\in \mathcal{D} \land q \in X) \}$$

as familiar from Cohen forcing.

Further for downward closed $X,Y\subseteq \mathbb{P}$ with $\mathcal{D}\subseteq X,Y$ one can show that

$$X \to Y := \{ p \in \mathbb{P} \mid \forall q \in X \ p \land q \in Y \}$$
$$= \{ p \in \mathbb{P} \mid \forall q \leq p \ (q \in X \Rightarrow q \in Y) \}$$

and thus

$$Z \subseteq X \to Y$$
 iff $Z \cap X \subseteq Y$

Forcing as an Instance (3)

Propositions are $A \subseteq \mathbb{P}$ with $A = A^{\perp \perp}$ (as in Girard's *phase semantics*). Thus, propositions are in particular downward closed and contain \mathcal{D} as a subset.

We have $X = X^{\perp \perp}$ iff $\mathcal{D} \subseteq X$ and $p \in X \setminus \mathcal{D}$ whenever for all $q \leq p$ with $q \notin \mathcal{D}$ there exists $r \leq q$ with $r \in X \setminus \mathcal{D}$.

In case $\mathcal{D}=\{0\}$ then $\mathbb{P}^{\uparrow}=\mathbb{P}\setminus\{0\}$ is a conditional \land -semilattice and propositions are in 1-1-correspondence with regular subsets A of \mathbb{P}^{\uparrow} , i.e. $p\in A$ whenever $\forall q{\leq}p\ \exists r{\leq}q\ r\in A$, the propositions as considered in **Cohen forcing** over \mathbb{P}^{\uparrow} .

For propositions A, B we have

$$p \in A \rightarrow B$$
 iff $\forall q \in A \ p \land q \in B$ iff $\forall q \leq p \ (q \in A \Rightarrow q \in B)$ iff $p \in (A.B^{\perp})^{\perp}$

and for $\neg A \equiv A \rightarrow \bot$ (where \bot is \mathcal{D} , the least proposition representing *falsity*) we have

$$p\in \neg A$$
 iff $\forall q\in A\ p\wedge q\in \mathcal{D}$ iff $p\in A^{\perp}$ as in Cohen forcing.

Characterization of Forcing

One can show that a SAKS arises (up to iso) from a downward closed subset of a \land semilattice iff

- (1) $k: P \to L$ is a bijection
- (2) application is associative, commutative and idempotent and has a neutral element 1
- (3) application coincides with the push operation (when identifying L and P via k).

Remark

The downset $\mathcal{D} = \{t \in L \mid (t, 1) \in \bot \}$ (where 1 is considered as element of P via k).

It is in this sense that

forcing = **commutative realizability** as Krivine would put it.

AKS's as total OPCAs (1)

Hofstra and van Oosten's notion of **order partial combinatory algebra** (OPCA) generalizes both PCAs and complete Heyting algebras (cHa's). We will show how every AKS can be organised into a total OPCA.

A **total OPCA** is a triple $(\mathbb{A}, \leq, \bullet)$ where \leq is a partial order on \mathbb{A} and \bullet is a binary monotone operation on \mathbb{A} such that there exist $k, s \in \mathbb{A}$ with

$$k \bullet a \bullet b \le a$$
 $s \bullet a \bullet b \bullet c \le a \bullet c \bullet (b \bullet c)$

for all $a, b, c \in \mathbb{A}$.

With every AKS we may associate the total OPCA whose underlying set is $\mathcal{P}_{\perp \! \! \perp}(\Pi)$, where $a \leq b$ iff $a \supseteq b$ and application is defined as

$$a \bullet b = \{\pi \in P \mid \forall t \in |a|, s \in |b| \ t * s.\pi \in \bot\bot\}^{\bot\bot}$$
 where $|a| = a^{\bot}$.

NB In case of a SAKS we have

$$|a \bullet b| = \{ts \mid t \in |a|, s \in |b|\}^{\perp \perp}$$

AKS's as total OPCAs (2)

For proving our claim we need

Lemma 1

From $a \leq b \rightarrow c$ it follows that $a \bullet b \leq c$.

Lemma 2

If $t \in |a|$ and $s \in |b|$ then $ts \in |a \bullet b|$.

One easily shows that $\{K\}^{\perp \perp} ab \leq a$.

For showing that $\{S\}^{\perp \perp} \bullet a \bullet b \bullet z \leq a \bullet c \bullet (b \bullet c)$ it suffices by (multiple applications of) Lemma 1 to show that $s \leq a \to b \to c \to (a \bullet c \bullet (b \bullet c))$. It suffices to show that

$$S \in [a \to b \to c \to (a \bullet c \bullet (b \bullet c))]$$

For this purpose suppose $t \in |a|$, $s \in |b|$, $u \in |c|$ and $\pi \in a \bullet c \bullet (b \bullet c)$. Applying Lemma 2 iteratively we have $tu(su) \in |a \bullet c \bullet (b \bullet c)|$ and thus $tu(su) * \pi \in \bot$. Since \bot is closed under expansion it follows that $S * t.s.u.\pi \in \bot$ as desired.

AKS's as total OPCAs (3)

A **filter** in a total OPCA $(\mathbb{A}, \leq, \bullet)$ is a subset Φ of \mathbb{A} closed under \bullet and containing (some choice of) k and s (for \mathbb{A}).

Examples

- (1) If case of a SAKS induced by a down-closed set \mathcal{D} in a \land -semilattice \mathbb{P} a natural choice of a filter is $\{\mathbb{P}\}$.
- (2) $\Phi = \{a \in \mathcal{P}_{\perp \perp}(\Lambda) \mid |a| \neq \emptyset\}$ is a filter on the total opca $\mathcal{P}_{\perp \perp}(\Pi)$ by Lemma 2.

Given a total OPCA $\mathbb{A} = (\mathbb{A}, \leq, \bullet)$ and a filter Φ in \mathbb{A} one may associate with it a Setindexed preorder $[-, \mathbb{A}]_{\Phi}$ as follows

- $[I, \mathbb{A}]_{\Phi} = \mathbb{A}^I$ is the set of all functions from set I to \mathbb{A}
- endowed with the preorder

$$\varphi \vdash_I \psi \quad \text{iff} \quad \exists a \in \Phi \forall i \in I \ a \bullet \varphi_i \leq \psi_i$$

• for $u: J \to I$ the reindexing map $[u, \mathbb{A}]_{\Phi} = u^*: \mathbb{A}^I \to \mathbb{A}^J$ send φ to $u^*\varphi = (\varphi_{u(i)})_{i \in J}$.

Krivine Tripos (1)

In case \mathbb{A} arises from an AKS as given by $\bot\!\!\!\!\bot\subseteq \Lambda \times \Pi$ and $\Phi=\{a\in \mathcal{P}_{\bot\!\!\!\bot}(\Lambda)\mid |a|\neq\emptyset\}$ the indexed preorder $[-,\mathbb{A}]_{\Phi}$ is a **tripos**, i.e.

- all $[I, \mathbb{A}]_{\Phi}$ are pre-Heyting-algebras whose structure is preserved by reindexing
- for every $u:J\to I$ in Set the reindexing map u^* has a left adjoint \exists_u and a right adjoint \forall_u satisfying the (Beck-)Chevalley condition
- there is a generic predicate $T \in [\Sigma, \mathbb{A}]_{\Phi}$, namely $\Sigma = \mathbb{A}$ and $T = \mathrm{id}_{\mathbb{A}}$, of which all other predicates arise by reindexing since $\varphi = \varphi^* \mathrm{id}_{\mathbb{A}}$

This tripos coincides with Krivine's Classical Realizability since we have

 $\varphi \vdash_M \psi \quad \text{iff} \quad \exists t \in \Lambda \forall i \in M \ t \in |\varphi_i \to \psi_i|$ for all $\varphi, \psi \in [M, \mathbb{A}]_{\Phi}$.

Krivine Tripos (2)

Proof:

Suppose $\varphi \vdash_M \psi$. Then there exists $a \in \Phi$ such that $\forall i \in M$ $a \bullet \varphi_i \leq \psi_i$. For all $i \in M$, $u \in |a|$ and $v \in |\varphi_i|$ we have $uv \in |a \bullet \varphi_i| \subseteq |\psi_i|$. Let $u \in |a|$. Then for all $i \in M$ we have $u \in |\varphi_i| \to |\psi_i|$ and thus $\mathrm{E} u \in |\varphi_i| \to |\psi_i|$. Thus $t = \mathrm{E} u$ does the job.

Suppose there exists a $t \in \Lambda$ such that

$$\forall i \in M \ t \in |\varphi_i \to \psi_i|$$

Then we have

$$\forall i \in M \ \{t\}^{\perp \perp} \subseteq |\varphi_i \to \psi_i|$$

Thus for $a = \{t\}^{\perp} \in \Phi$ we have

$$\forall i \in M \forall u \in |a| \forall v \in |\varphi_i| \forall \pi \in \psi_i \ u * v . \pi \in \bot$$

from which it follows that

$$\forall i \in M \ a \bullet \varphi_i < \psi_i$$

Thus $\varphi \vdash_M \psi$.

Forcing in Class. Real. (1)

Let P be a meet-semilattice. We write pq as a shorthand for $p \wedge q$.

Let C an upward closed subset of P. With every $X \subseteq P$ one associates*

$$|X| = \{ p \in P \mid \forall q \left(\mathsf{C}(pq) \to X(q) \right) \}$$

Such subsets of P are called propositions. We say

$$p$$
 forces X iff $p \in |X|$

and thus

$$p \text{ forces } X \to Y \quad \text{iff} \quad \forall q (|X|(q) \to |Y|(pq))$$
 $p \text{ forces } \forall i \in I.X_i \quad \text{iff} \quad \forall i \in I. \ p \text{ forces } X_i$

Apparently, we have

$$p \text{ forces } X \to Y \text{ iff}$$

-
$$\forall q (|X|(q) \rightarrow \forall r (\mathsf{C}(pqr) \rightarrow Y(r)))$$
 iff $\forall q, r (\mathsf{C}(pqr) \rightarrow |X|(q) \rightarrow Y(r))$ iff $p \in |\{qr \mid |X|(q) \rightarrow Y(r)\}|$

-
$$p$$
 forces $\forall i \in I.X_i$ iff $p \in \left| \bigcap_{i \in I} X_i \right|$

^{*}Traditionally, one would associate with X the set $X^{\perp} = \{ p \in P \mid \forall q \in X \neg C(pq) \}$. But, classically, we have $|X| = (P \setminus X)^{\perp}$.

Forcing in Class. Real. (2)

Actually, in most cases P is not a meet-semilattice **but** it is so "from point of view" of $C \subseteq P$. I.e. we have a binary operation on P and an element $1 \in P$ such that

$$\mathsf{C}(p(qr)) \leftrightarrow \mathsf{C}((pq)r)$$
 $\mathsf{C}(pq) \leftrightarrow \mathsf{C}(qp)$
 $\mathsf{C}(p) \leftrightarrow \mathsf{C}(pp)$
 $\mathsf{C}(1p) \leftrightarrow \mathsf{C}(p)$
 $\left(\mathsf{C}(p) \leftrightarrow \mathsf{C}(q)\right) \rightarrow \left(\mathsf{C}(pr) \leftrightarrow \mathsf{C}(qr)\right)$

together with

$$C(pq) \to C(p)$$

expressing that C is upward closed.

On P we may define a congruence

$$p \simeq q \equiv \forall r. \ (C(rp) \leftrightarrow C(rq))$$

w.r.t. which P is a commutative idempotent monoid, i.e. a meet-semilattice, of which C is an upward closed subset.

Forcing in Class. Real. (3)

We have seen that p forces $X \to Y$ iff

$$\forall q, r \left(C(pqr) \to |X|(q) \to Y(r) \right)$$

Thus a term t realizes p forces $X \to Y$ iff

$$\forall q, r \forall u \in \mathsf{C}(pqr) \forall s \in |X|(q) \forall \pi \in Y(r) \ t * u.s.\pi \in \bot\!\!\!\!\bot$$

Thus, one might want to define when a pair (t,p) realizes $X \to Y$. For this purpose one has to find an AKS structure whose term part is $\Lambda \times P$. For this purpose Krivine has defined application and push as follows

$$(t,p)(s,q) = (ts,pq)$$
 $(t,p).(s,\pi) = (t*s,pq)$

Moreover, from ⊥⊥ he defines a new ⊥⊥⊥ as

$$(t,p)*(\pi,q)\in\coprod$$
 iff $\forall u\in\mathsf{C}(pq)\;t*\pi^u\in\coprod$

where π^u is obtained from π by inserting u at its bottom.

Forcing in Class. Real. (4)

Thus, we have

$$(t,p)\in |X\to Y|$$
 iff

$$\forall (s,q) \in |X| \forall (r,\pi) \in Y \ (t,p) * (s,q).(\pi,r) \in \bot \bot \bot$$
 iff

$$\forall (s,q) \in |X| \forall (r,\pi) \in Y \forall u \in \mathsf{C}(pqr) \ t * s.\pi^u \in \bot \bot$$

in accordance with the above explication of t realizes p forces $X \to Y$.

In order to jump back and forth between

t realizes p forces A and
$$(t',p) \in |A|$$

one needs "read" and "write" constructs in the original AKS, i.e. command χ and χ' s.t.

$$(\text{read}) \qquad \qquad \chi * t.\pi^s \quad \succeq \quad t * s.\pi$$

(write)
$$\chi' * t.s.\pi \succeq t * \pi^s$$

Using these one can transform t into t' and $vice\ versa$.

Krivine concludes from this that for **realizing forcing one needs global memory**.

Generic Set and Ideal

In forcing one usually considers the **generic** set \mathcal{G} which is the predicate on P with $\mathcal{G}(p) = \{p\}^{\perp \perp}$. Equivalently one my consider its complement, the **generic ideal** \mathcal{J} with $|\mathcal{J}(p)| = \{p\}^{\perp}$, i.e.

$$\mathcal{J}(p) = \{ q \in P \mid p \neq q \}$$

as $q \in |\mathcal{J}(p)|$ iff $\forall r (\mathsf{C}(qr) \to p \neq r)$ iff $\neg \mathsf{C}(qp)$. Obviously $p \simeq q$ iff $\forall r (|\mathcal{J}(p)|(r) \leftrightarrow |\mathcal{J}(q)|(r))$. More generally, we can define

$$p \leq q \equiv \forall r \left(|\mathcal{J}(q)|(r) \to |\mathcal{J}(p)|(r) \right)$$

i.e. $\forall r (C(rp) \rightarrow C(rq))$. This defines a preorder w.r.t. which P gets a meet-semilattice \mathbb{P} with greatest element 1 where pq picks a binary infimum of p and q.

Equivalently, we may define

$$||\mathcal{J}(p)|| = \Pi \times \{p\}$$

since $(t,q) \in |\mathcal{J}(p)|$ iff $\forall \pi (t,q) * (\pi,p) \in \bot \bot$ iff $\forall u \in \mathsf{C}(qp) \forall \pi \, t * \pi^u \in \bot \bot$.

$\mathcal{P}(P)$ as a cBa

For $X \in \mathcal{P}(P)$ define $\mathcal{J}(X)$ such that

$$|\mathcal{J}(X)|(q)$$
 iff $\forall p \in X \neg \mathsf{C}(qp)$

i.e.
$$|\mathcal{J}|(X) = X^{\perp}$$
.

We may extend \leq to $\mathcal{P}(P)$ as follows

$$X \leq Y \equiv \forall r \left(|\mathcal{J}(Y)|(r) \to |\mathcal{J}(X)|(r) \right)$$

Thus $X \preceq Y$ iff $Y^{\perp} \subseteq X^{\perp}$ iff $X^{\perp \perp} \subseteq Y^{\perp \perp}$.

This endows $\mathcal{P}(P)$ with the structure of a complete boolean preorder denoted by B.

Writing \mathcal{E} for the classical realizability topos arising from the original AKS the classical topos arising from the new AKS is (equivalent to) the topos $\mathsf{Sh}_{\mathcal{E}}(B)$.

NB

B is not an assembly in $Sh(\mathcal{E})$ as it is uniform. Thus the construction of $Sh_{\mathcal{E}}(B)$ from \mathcal{E} is **not** induced by an opea morphism.