Reasoning on a semantics of higher-order states using guarded recursion and forcing

Guilhem Jaber and Nicolas Tabareau

Ecole des Mines de Nantes LINA - Ascola

Réalisabilité à Chambéry 16th of June 2011

G. Jaber (EMN - Ascola) Rea

Realizability, Forcing and Guarded Recursion

June 21, 2011 1 / 27

• How to define a syntactic model of $\lambda\text{-calculus}$ with :

- higher-order states with pointers,
- impredicative polymorphism,
- and recursive types ?

 \leadsto Works from the last 10 years (Pitts, Appel, Ahmed, Dreyer, Birkedal, ...)

- How to prove its coherence ? ~ Using forcing !

2 A Logic to Reason about the Semantics

3 Forcing Transformation and Coherence of the Logic

A Model of our Logic : Presheaves of Trees

The Language

$$\begin{array}{lll} \tau, \sigma & \stackrel{def}{=} & \operatorname{Nat} \mid \tau \to \sigma \mid \forall \alpha. \tau \mid \mu \alpha. \tau \mid \operatorname{ref} \tau \\ v & \stackrel{def}{=} & \hat{n} \mid I \mid \lambda x. M \mid \dots \\ M, N & \stackrel{def}{=} & v \mid x \mid \tau \mid MN \mid \operatorname{ref} M \mid !M \mid M := N \mid \dots \end{array}$$

$$((\lambda x.M)v,h) \mapsto (M \{v/x\},h)$$

$$(!I,h) \mapsto (v,h) \text{ when } h(I) = v$$

$$(\text{ref } v,h) \mapsto (I,h \bullet [I \mapsto v]) \text{ with } I \notin dom(h)$$

$$(I := v,h) \mapsto ((),h[I \mapsto v]) \text{ when } I \in dom(h)$$

$$\frac{(M_1,h_1) \mapsto (M_1,h_2)}{(K[M_1],h_1) \mapsto (K[M_2],h_2)}$$

G. Jaber (EMN - Ascola) Realizability, Forcing and Guarded Recursion

Image: A match a ma

A first glance of our realizability semantics

• Associate to a type τ a set of values $[\![\tau]\!]$:

$$\llbracket \operatorname{Nat} \rrbracket \stackrel{\text{def}}{=} \{ \hat{n} \mid n \in \mathbb{N} \}$$
$$\llbracket \sigma \to \tau \rrbracket \stackrel{\text{def}}{=} \{ f \mid \forall u \in \llbracket \sigma \rrbracket, fu \in \mathcal{E} \llbracket \tau \rrbracket \}$$

$$\mathcal{K}\llbracket \tau \rrbracket = \{ K \mid \forall v \in \llbracket \tau \rrbracket, K[v] \Uparrow \}$$

$$\mathcal{E}\llbracket \tau \rrbracket = \{ M \mid \forall K \in \mathcal{K} \llbracket \tau \rrbracket, K[M] \Uparrow \}$$

In this talk : predicate semantics

→ But extension to relational semantics is straightforward using logical relations.

- What should $\llbracket \operatorname{ref} \tau \rrbracket$ be ?
 - \leadsto Locations which contain values in $[\![\tau]\!]$
 - \rightsquigarrow But this depends on the heap !
 - \rightsquigarrow Need to abstract the heap : notion of worlds.
- Worlds should map location to set of values :
 → World ^{def} = Loc →_{fin} P(Val).
- What about locations which can contains themselves locations ? ~ It depends on worlds too !

6 / 27

World = Loc \rightarrow_{fin} SemType SemType = World $\rightarrow \mathcal{P}(Val)$

How to solve it ?

 → Impose a stratification :

World_n = Loc
$$\rightarrow_{fin}$$
 SemType_{n-1}
SemType_n = World_n $\rightarrow \mathcal{P}(Val)$

- So need to define $[\![\tau]\!]_n$.
- Can this stratification be completely artificial ?
 No, because of impredicative polymorphism.

- Need to give a meaning of n in $[[\tau]]_n$.
- An idea : $\llbracket \tau \rrbracket_n$ is an approximation of $\llbracket \tau \rrbracket$.
- $t \in \mathcal{E} \llbracket \tau \rrbracket_n$ is true for *n*-th steps of reductions of *t*.
- Once t has been reduce n-th times, $t \in \mathcal{E} \llbracket \tau \rrbracket_n$ gives no information anymore.

- $\llbracket \sigma \to \tau \rrbracket_n = \{ f \mid \forall k \leq n. \forall u \in \llbracket \sigma \rrbracket_k . fu \in \mathcal{E} \llbracket \tau \rrbracket_k \}$ \rightsquigarrow So we get monotonicity !
- Changing the notion of observation in K [[τ]] and E [[τ]]
 → From M ↑ (divergence) to M ↑_n : M can be reduced at least n steps.

$$\stackrel{\rightsquigarrow}{\longrightarrow} \mathcal{K} \llbracket \tau \rrbracket_n = \{ K \mid \forall i \le n. \forall v \in \llbracket \tau \rrbracket, K[v] \Uparrow_n \}. \\ \stackrel{\rightsquigarrow}{\longrightarrow} \mathcal{E} \llbracket \tau \rrbracket_n = \{ M \mid \forall i \le n. \forall K \in \mathcal{K} \llbracket \tau \rrbracket, K[M] \Uparrow_n \}.$$

Dereferencing a location takes at least one step.
 → This explains World_n = Loc →_{fin} SemType_{n-1}

•
$$\llbracket \operatorname{ref} \tau \rrbracket_n w \stackrel{def}{=} \{I \mid I \in \operatorname{dom}(w) \text{ and } w(I)(n) = \llbracket \tau \rrbracket_n\}$$

• $h:_k w \stackrel{\text{def}}{=} \operatorname{dom}(h) = \operatorname{dom}(w) \text{ and } \forall i < k. \forall l \in \operatorname{dom}(w)h(l) \in w(l)(i)(w)$

Theorem (Operational correctness)

If $t \in \mathcal{E}$ $[\![Nat]\!]$ then $t \Uparrow$ or there exists $n \in \mathbb{N}$ such that $t \mapsto^* \hat{n}$

Theorem (Adequacy)

if $\vdash t : \tau$ then for all $k \in \mathbb{N}, t \in [[\tau]]_k$.

The Semantics: Realizability, Step-indexing and Worlds

2 A Logic to Reason about the Semantics

3 Forcing Transformation and Coherence of the Logic

4 A Model of our Logic : Presheaves of Trees

- Build a logic like LCF or Plotkin-Abadi for parametric polymorphism.
- Want to reason on properties like $t \in \mathcal{E}\left[\!\left[au
 ight]\!\right]$
- ground elements of our logic : λ -terms.
- Need higher-order logic to define our semantics.
 - \rightsquigarrow Kinds : Term, Nat, Prop, $T \rightarrow U$.
 - \rightsquigarrow Constructions like (x : T).P and $a \in P$.
 - → Typing judgments :

$$\Gamma \vdash_{\mathcal{P}} P : T$$

→ Logical judgments :

$$\mathsf{\Gamma}; \mathcal{C} \vdash_{\mathcal{P}} \varphi$$

- Step-indexing is ugly !
- Introduce a modal operator "later" : ▷
- Useful to state that a property has to be true in the future.

$$\vdash \mathsf{Mono} \ \frac{\Gamma; \mathcal{C}_1, \mathcal{C}_2 \vdash_{\mathcal{P}} P}{\Gamma; \vdash \mathcal{C}_1, \mathcal{C}_2 \vdash_{\mathcal{P}} \vdash P} \qquad \mathsf{L\"ob} \ \frac{\Gamma; \mathcal{C}, \vdash P \vdash_{\mathcal{P}} P}{\Gamma; \mathcal{C} \vdash_{\mathcal{P}} P}$$
$$\frac{\Gamma; \mathcal{C} \vdash (M, h) \to (M', h) \qquad \Gamma; \mathcal{C} \vdash_{\mathcal{P}} \triangleright (M' \in \mathcal{E} \llbracket \tau \rrbracket)}{\Gamma; \mathcal{C} \vdash_{\mathcal{P}} M \in \mathcal{E} \llbracket \tau \rrbracket}$$

Recursive kinds, what for ?

- Want to define kinds $\mu T.U$.
- So that step-indexing is also abstract in the definition of worlds :

World
$$\stackrel{def}{=} \mu W.(\text{Loc} \to_{fin} W \to \text{Prop}),$$

• Need to introduce a modality on kinds ►*T* to guard recursion.

$$\frac{\Gamma \vdash_{\mathcal{P}} P : \blacktriangleright U \{\mu T.U/T\}}{\Gamma \vdash_{\mathcal{P}} P : \mu T.U}$$
$$\frac{\Gamma \vdash_{\mathcal{P}} P : \triangleright \operatorname{Prop}}{\Gamma \vdash_{\mathcal{P}} \triangleright P : \operatorname{Prop}}$$

2 A Logic to Reason about the Semantics

In the second second

16 / 27

- A syntactic transformation of formulas : from P to $p \Vdash P$.
- Links between the truth of P and of $p \Vdash P$.
- Use to give meaning of new connectives
 → ▷ and ▶here.
 - \rightsquigarrow In Cohen's Forcing, the generic ultrafilter G.
- Forcing for higher-order logic :
 ~> Need to define a translation of kinds too.

- ⊢_P is the judgment in the forcing layer.
 → We can in fact compose different forcing layers.
- Need to transform terms and kinds.
- A new kind for forcing conditions : \mathcal{P} .
- Translation of kinds needs to be stratified by forcing conditions :
 ~~ From T to [T]_p.

18 / 27

Translating formulas

Definition

[t]	def =	$(p:\mathcal{P}).t$ for ground terms
[x]	def =	X
$[P \Rightarrow Q]$	def =	$(p:\mathcal{P}).orall q \leq p.(q \Vdash P) \Rightarrow (q \Vdash Q)$
$[\forall x : T.P]$	def =	$(p:\mathcal{P}).orall q \leq p.orall x: [T]_q.q \Vdash P$
[(x).P]	def =	(x).[P]
$[Q\in P]$	def ≡	$[Q] \in [P]$
$[\triangleright P]$	def =	$(p:\mathcal{P}).orall q < p.q \Vdash P$

Then $p \Vdash \varphi$ is defined as $p \in [\varphi]$

 $\Gamma \vdash_{\mathcal{P}; \overline{F}} P : T$

will be translated in the underlying layer as

 $p:\mathcal{P},[\Gamma]_p\vdash_{\bar{F}}[P]:[T]_p.$

G. Jaber (EMN - Ascola) Realizability, Forcing and Guarded Recursion Ju

Translating kinds

- Want monotonicity for $[T]_p$
- Need implicit dependent kinds to get it.

Definition

[Prop] _p	<i>def</i> ≝	$\mathcal{P}_{p} \to \operatorname{Prop}$
[Term] _p	<i>def</i> ≝	Term
$[T \rightarrow U]_p$	<i>def</i> ≝	$\forall p': \mathcal{P}_p.[T]_{p'} \rightarrow [U]_{p'}$
[► <i>T</i>] ₀	<i>def</i> ≝	Т
$[\blacktriangleright T]_{p+1}$	<i>def</i> ≝	$[T]_{\rho}$
$[\mu T.U]_0$	$\stackrel{def}{=}$	Т
$[\mu T.U]_{p+1}$	<i>def</i> ≝	$[U[\mu.T/T]]_p$

Theorem

$$\frac{\Gamma_1; \mathcal{C}_1 \vdash_{\mathcal{P}} \varphi_1 \quad \dots \quad \Gamma_n; \mathcal{C}_n \vdash_{\mathcal{P}} \varphi_n}{\Gamma; \mathcal{C} \vdash_{\mathcal{P}} \varphi}$$

will be valid if for all forcing condition p

$$\frac{[\Gamma_1]_p; p \Vdash C_1 \vdash p \Vdash \varphi_1 \qquad \dots \qquad [\Gamma_n]_p; p \Vdash C_n \vdash p \Vdash \varphi_n}{[\Gamma]_p; p \Vdash C \vdash p \Vdash \varphi}$$

G. Jaber (EMN - Ascola) Realizability, Forcing and Guarded Recursion

A Model of our Logic : Presheaves of Trees

- Use the restatement of forcing in terms of sheaves.
 Work in the category of sheaves over forcing conditions.
 Kripke-Joyal semantics gives a forcing relation.
- $\{p \mid p \Vdash P\}$ is a downward closed subset of forcing conditions. $\rightsquigarrow \widetilde{P} = \max\{p \mid p \Vdash P\}$
- Sheaves are needed to represents how forcing modify terms (and not only propositions).
- Use recent work of Birkedal et al. about topos of trees for synthetic guarded domain theory.

The Topos of presheaves of tree

- A presheaf X over ω :
 - \rightsquigarrow A collection of sets $X(1), \ldots, X(n), \ldots$
 - \rightsquigarrow Restrictions maps $r_n: X(n+1) \rightarrow X(n)$
 - → Morphisms between two presheaves X and Y : family of maps $f_n : X(n) \to Y(n)$ commuting with restriction maps.
- It's a Topos :

 \rightsquigarrow Subobject classifier : $\Omega(n) = \{0, \ldots, n\}.$

• A morphism $\triangleright : \Omega \to \Omega$ $\rightsquigarrow k \in \Omega(n) \mapsto min(k, n+1).$

•
$$\blacktriangleright X(1) \stackrel{\text{def}}{=} \{*\} \text{ and } \blacktriangleright X(n+1) \stackrel{\text{def}}{=} X(n).$$

Using presheaves to build a model

Interpret a kind T by a presheaf X
 → Prop is interpreted by Ω.
 → Ground kinds by constant presheafs.

- \rightsquigarrow [*T*]_{*p*} corresponds to *X*(*p*).
- [Prop]_p do not require downward closure contrary to Ω(p)
 → Because our forcing translation of propositions impose monotonicity.
- The monotonicity condition required by $[T \rightarrow U]_p$ corresponds to the commutation of morphisms with restrictions maps.

26 / 27

- Extend the logic with proof terms :

 — Using Miquel's interpretation of forcing.
- Formalize smarter worlds like STS.
- Define other layers to reason more abstractly about the heap.
- Formalization in Coq :

 ~ Using Parametric Higher Order Abstract Syntax.
- Proof of compiler correctness : realizers are assembly codes.