
Realizability: a short course
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Outline of the course

I will structure the course as four ‘lectures’ of 1.5 hours each.

The first lecture will be a broad introduction and overview of the

field. The other three will be rather more specialized, reflecting

my personal interest in ‘notions of computability’.

1. The many faces of realizability.

2. A realizability framework for models of computation.

3. Realizability and higher type computability.

4. Models of sequential computation.
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Lecture 1: The many faces of realizability

There’s no general definition of what realizability is. Rather,
there are a bunch of things known as ‘realizability interpretations’
with a common flavour. One understands the general (informal)
concept of realizability by seeing some examples.

In this lecture, we’ll look at realizability interpretations for . . .

• logics such as Heyting Arithmetic (where it all began),

• type systems such as Girard’s System F,

• programming languages such as Plotkin’s PCF.

In the remaining lectures, I’ll develop a fourth strand, applying
realizability to the study of ‘models of computation’ in general.
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Origins of realizability: Clarifying intuitionistic meaning

In the 1920s, L.E.J. Brouwer expounded his intuitionistic philos-

ophy of mathematics. According to Brouwer, the ‘meaning’ of

mathematical statements resided in mental constructions, rather

than in their reference to a supposed platonic reality.

Many found Brouwer’s exposition of his ideas obscure and lacking

in the clear definitions one is used to in mathematics.

The idea of realizability was first introduced by Kleene in a paper

of 1945. One can see Kleene’s work as an attempt to recast

(some aspects of) Brouwer’s thought in more accessible terms.

(Though Kleene never mentions Brouwer in the paper!)
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The Brouwer-Heyting-Kolmogorov ‘interpretation’

Consider the language of first order logic (say for the theory of

natural numbers, with 0, S,+, ∗,=). In intuitionism, to say what

a (closed) formula ‘means’ is to say what counts as a ‘proof’ of

it. Somewhat informally, we can say:

• An atomic formula has a trivial ‘proof’ iff it’s (verifiably) true.

• If p, q are proofs of P, Q respectively, the pair (p, q) is a proof of P ∧Q.

• If p is a proof of P then (0, p) is a proof of P ∨Q. Likewise for (1, q).

• A proof of P ⇒ Q is a constructive operation that transforms any proof
of P into a proof of Q (. . . ).

• A proof of ∃x.P is a pair (n, p) where p is a proof of P [n/x].

• A proof of ∀x.P is a constructive operation that transforms a value n into
a proof of P [n/x] (. . . ).

• There’s no proof of ⊥ (falsity).
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Kleene ‘1945’ realizability

With a little hindsight, we can see Kleene’s definition as one way
of making the BHK interpretation precise.

The informal notion of an constructive operation is replaced by
the precise notion of a Church-Turing computable function.

To make this idea work, proofs are replaced by natural numbers.
(N.B. Kleene hadn’t invented higher type computability yet!)

So fundamentally, Kleene is defines a relation:

n  P (the number n realizes the formula P )

Kleene exploits the existence of pairing and application opera-
tions on N. E.g.

〈n, m〉 = 2n.3m

n •m = result (if any) of running nth Turing machine on m.
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Kleene’s definition

• For P atomic, 0  P iff P is true.

• n  P ∧Q iff n = 〈p, q〉 where p  P , q  Q.

• n  P ∨Q iff n =〈0, p〉 where p P or n =〈1, q〉 where q Q.

• n  P ⇒ Q iff for all m  P , n •m is defined and n •m  Q.

• n  ∃x.P iff n = 〈m, p〉 where p  P [m/x].

• n  ∀x.P iff for all m, n •m is defined and n •m  P [m/x].

• n  ⊥ never.

We say P is realizable if some n  P .
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Realizability and intuitionism

Kleene realizability doesn’t buy us anything philosophically as
an explication of intuitionistic ‘meaning’: how are we meant to
‘understand’ the definition of  ?

Rather, realizability is a technical tool that’s useful for investi-
gating questions of intuitionistic provability.

Any sentence provable in Heyting Arithmetic (say) is realizable
(easy induction on structure of HA proofs).

But not conversely. E.g. consider

∀n. H(n) ∨ ¬H(n)

where H(n) expresses ‘n • n is defined’, and ¬P means P ⇒ ⊥.

This is unrealizable, because the halting problem is undecidable.
So the negation of the above formula is realizable, though it’s
clearly unprovable even in Peano Arithmetic.

(There are even purely propositional examples — Rose 1953.)
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Unprovability and consistency results

Since HA-provable sentences
6=
⊂ Kleene-realizable sentences, we

can sometimes use realizability to show that a given sentence is

unprovable in HA. Example: ∀n. H(n) ∨ ¬H(n).

What’s more, we can turn the mismatch into advantage. certain

classically false principles are seen to be consistent with HA.

Example: the following sentence, known as Church’s Thesis

CT0.

(∀n.∃m. P (n, m)) ⇒ (∃k.∀n. ‘P (n, k • n)’)

Note that such principles were actually accepted by the Russian

school of constructive mathematics (Markov et al.)!

Unprovability/consistency results are typical proof-theoretic ap-

plications of realizability.
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More subtle view: Relative consistency and conservativity

Any consistency proof is ultimately a relative consistency proof.

Everything I’ve said so far can itself be formalized within HA. So

if HA+CT0 turned out to be inconsistent, then HA would be

inconsistent! Moreover, our argument yields an explicit effective

method ∆ for transforming proofs:

π proves ⊥ in HA+CT0 ⇒ ∆(π) proves ⊥ in HA

That can be proved in very weak systems (PRA or even less)!

With a bit more work, we can replace ⊥ here by e.g. any ∃-free
formula. So HA+CT0 is conservative over HA for this class of

formulae.
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Another proof-theoretic application

A typical feature of intuitionistic systems like HA is the existence

property: if ` ∃x.P , then there’s some m such that P [m/x].

Realizability gives a nice proof of this for HA. Let’s tweak the

definition of  slightly in the ⇒ case:

• n  P ⇒ Q iff for all m  P , n •m is defined and n •m  Q,

and P ⇒ Q is also true.

This ensures that (n  P ) ⇒ P (and HA can prove this). (*)

Suppose now HA ` ∃x.P . Then for some particular n, we have

n  ∃x.P (and HA proves this). So n = 〈m, p〉 where p  P [m/x]

(and HA proves this). So by (*), HA ` P [m/x].
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Realizability for logics: the general pattern

The definition and applications of Kleene ‘1945’ realizability are
the prototype for all other realizability interpretations of logic.
The general pattern is that one defines a relation p  P , where

• P is a formula in some logic (e.g. HA),

• n is an entity with some computational or algorithmic content
(e.g. a natural number),

•  is some relation of ‘providing constructive evidence for’
(e.g. Kleene’s  which closely parallels BHK).

Each of these three things is asking to be generalized/varied!
This gives a host of realizability interpretations for different
(typically constructive) systems, leading a wealth of unprovabil-
ity/consistency results and other proof-theoretic applications.
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Generalization 1: Extending the logic

We can extend HA to a ‘higher type’ version HAω, in which
variables have types generated by σ ::= ι | σ → τ . This lets us
formalize not just number theory but lots of analysis too.

What’s new here is the definition of when n ‘represents’ an object
of type σ. The key idea is to define a partial equivalence relation
(PER) ∼σ on N for each σ:

• n ∼ι n′ iff n = n′,

• n ∼σ→τ n′ if whenever m ∼σ m′, we have n •m ∼τ n′ •m′.

We can then say n ‘realizes’ a σ object if n ∼σ n.

The definition of  can now proceed as before, e.g.:

• n  ∃xσ.P iff n = 〈m, p〉 where m ∼σ m and p  P [m/x].
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Extending the logic (continued)

Our interpretation of HAω supports some interesting ‘counter-

classical’ principles (cf. Russian recursive analysis).

E.g. ‘all functions from (N → N) to itself (or from R to itself)

are continuous’. This is seen to be realizable via the Kreisel-

Lacombe-Shoenfield theorem (1959).

The system HAω is ‘predicative’ in spirit and doesn’t include e.g.

full comprehension principles.

However, it’s possible to give Kleene-style realizability interpre-

tations for systems all the way up to Intuitionistic ZF (even with

large cardinals). We can thus obtain a version of the existence

property, plus consistency with various counter-classical princi-

ples, even for these systems (Friedman-Scedrov 1984).
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Generalization 2: Other kinds of realizing object

What abstract features of N does Kleene realizability rely on?
All we really needed was the structure of a partial combinatory
algebra (PCA): that is, a set A equipped with an ‘application’
operation • : A×A ⇀ A, in which there are elements k, s satisfying

k • x • y = x s • x • y ↓ s • x • y • z � x • z • (y • z)

(N.B. Pairing is definable in this setting!) Other examples:

• The set of closed terms of pure untyped lambda calculus
modulo β-equality. Here e.g. CT0 isn’t realizable.

• Kleene’s ‘second model’ K2 (Kleene-Vesley 1965). This is a
certain PCA with underlying set NN, in which application is
‘continuous’ w.r.t. the usual Baire topology.
This gives a realizability interpretation closer to Brouwerian
flavours of intuitionism: e.g. it validates the fan theorem.
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Other kinds of realizing object (continued)

PCAs are untyped structures: elements of A serve as both ‘data’

and ‘operations’. But we can also generalize to typed structures.

Let T be a set of types, endowed with binary operations ×,→.

A typed PCA A over T is a family of sets (Aσ | σ ∈ T ) with

application operations •στ : Aσ→τ × Aσ ⇀ Aτ , and containing

elements kστ , sρστ , pairστ , fstστ , sndστ satisfying certain axioms.

Realizers for a formula P will then have a type determined by

the structure of P .

Typed PCAs are perhaps the ‘natural’ framework for realizability

in the spirit of BHK. If all the •στ are total operations, we get

what is known as modified realizability (Kreisel 1962).
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Generalization 3: Other realizability relations

There is a bewildering array of alternative ways of defining a
‘realizability’ relation ` or something similar. We’ve already seen
one: the concept of realizability-with-truth. Others include:

• Slash relations, q-realizability (Kleene, Aczel, Friedman)

• Dialectica interpretation (Gödel 1958)

• Lifschitz realizability (Lifschitz 1979)

• Extensional realizability (van Oosten 1990)

For more on these (and on everything else we’ve covered so far),
see the works of Troelstra and van Oosten. For now, standard
realizability over typed PCAs will be plenty to be going on with.

16



A recent development: Krivine realizability

In the past decade, J.-L. Krivine has shown how to give a real-

izability interpretation of classical logic — in fact, for all of ZF

set theory and beyond!

Idea: Krivine’s ‘realizers’ are terms in a λ-calculus with callcc.

In typed settings, callcc often has type ((A → B) → A) → A.

Read as a proposition, this is just Peirce’s law, which is valid

classically but not intuitionistically (Griffin 1990).

The operational rules of Krivine’s calculus involve not just terms

but stacks (lists of terms). Both terms and stacks play a role in

the realizability definition. See OL’s lecture for more!

Goal: Extend this to all of ZFC. Krivine’s philosophy is that

new programming concepts should be motivated by their need

to realize important axioms.
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Extracting programs from proofs

Another ‘face’ of realizability interpretations:

Suppose the intended behaviour of some program is specified by

a logical formula P (x, y), giving the desired relationship between

the ‘input’ x and the ‘output’ y.

Suppose too we have a proof of ∀x.∃y.P (x, y). This yields a

realizer for this formula, that is, a ‘program’ mapping any x to a

suitable pair 〈y, p〉. From this, we can extract a program mapping

x to a suitable y.

More on program extraction in SB’s lecture!
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The model-theoretic view (Hyland c. 1980)

An interpretation of a logic (‘P is satisfied if . . . ’) can often be

cast as a model: a mathematical structure given independently

of the logic in which formulae can be assigned denotations: P 7→
[[P ]].

Example: Interpreting formulae P with one free variable as pred-

icates on a set A.

Interpretation: Define a relation a |= P for a ∈ A.

Model: Define a mapping P 7→ [[P ]] ∈ P(A) (a Boolean algebra).

Hyland showed how to treat realizability in terms of categorical

models. This isolates a rich structure that can be studied in

advance of choosing a logic. It also turns out that this structure

provides a natural home for many other things besides logics . . .
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Realizability models

Let’s work with an arbitrary PCA (A, •).
Hyland defined a realizability topos RT(A), a universe for ‘intu-
itionistic set theory’. RT(K1) is known as the effective topos.

For now, we’ll work with a simpler category PER(A) ↪→ RT(A).

• Objects: PERs (i.e. symmetric transitive relations) on A.

• Morphisms R → S: define a PER SR by

a SRa′ ⇔ (∀b, b′. b R b ⇒ a • b S a′ • b′)

A morphism R → S is an equivalence class for SR.

Intuition: PERs are ‘datatypes’ implementable on the ‘abstract
machine’ A. Elements a with aRa are ‘machine representations’
(‘realizers’) of data values. Elements a, b with aRb realize the
same data value. Morphisms are machine-computable functions.

20



Structure in PER(A)

Any PCA admits a representation of natural numbers: n 7→ n̄.

So in PER(A) we have a natural number object N : n̄Nn̄ for

every n and that’s all.

PER(A) is cartesian closed (exponentials SR as on previous slide).

The finite types over N are exactly those we saw earlier.

Actually, PER(A) is locally cartesian closed and regular. In any

such category, one can interpret first order logic over whatever

types are around, using standard ideas from categorical logic.

In the case of PER(A), this agrees precisely with the standard

realizability interpretation (e.g. for HAω).

A predicate P on type σ is modelled as a subobject [[P ]] of [[σ ]].

(For full higher order logic, we need the whole of RT(A).)
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PER(A) as a model for type systems
In fact, Girard (1972) had already used PERs to model his poly-
morphic typed lambda calculus (‘System F’):

σ ::= X | σ → τ | ∀X.σ

The impredicative polymorphism here can’t be modelled using
classical sets (Reynolds 1984). But in PER(A), it can:

[[X ]]ν = ν(X)

[[σ → τ ]]ν = [[ τ ]] [[σ ]]ν
ν

[[ ∀X.σ ]]ν =
⋂
R

[[σ ]]ν(X 7→R)

There’s also a nice interpretation of subtyping, as in System F<:.

σ <: τ ⇒ [[σ ]] ⊆ [[ τ ]]

In fact, PER(A) can model quite complex type systems that
can’t (at present) be modelled semantically in any other way.
(Conceptually nice; technical usefulness somewhat unclear.)
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Languages with recursion

Languages like System F can only express total functions (and

our PER semantics reflects this). However, most programming

languages allow partial functions to be defined using iteration

and/or general recursion.

Consider the simple types over ι, interpreted in PER(K1) by

setting [[ ι ]] = N⊥, [[σ → τ ]] = [[ τ ]][[σ ]], where

m N⊥ n ⇔ m • 0 ' n • 0

It turns out that every [[σ ]] admits a fixed point operator: a mor-

phism Yσ : [[σ ]][[σ ]] → [[σ ]]. (Cf. Myhill-Shepherdson theorem.)

This means we can interpret Plotkin’s language PCF (simply

typed λ-calculus with arithmetic and general recursion).
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Synthetic domain theory

In fact, for many A, there are quite rich subcategories of PER(A)

— hence of RT(A) — which enjoy these ‘fixed points for free’.

(Yet another counter-classical feature of realizability universes!)

Objects of these subcategories may be viewed as carrying an

intrinsic domain structure. This contrasts with extrinsic (e.g.

CPO) structure as in classical domain theory.

These ‘categories of domains’ are able to model extensions of

PCF with strong polymorphism, recursive types, subtyping, . . .

As with much other work in denotational semantics, a long-term

hope is that these models should assist with the design and val-

idation of useful program logics for such languages. In practice,

though, PERs are often hard to get a good mathematical handle

on.
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Differences between realizability models

Consider two PCAs:

• Kleene’s first model K1 = (N, •).

• Closed untyped λ-terms modulo β-equality: Λ0/β. (Here

natural numbers can be realized by Church numerals, and

⊥ by unsolvable terms.)

Both of these give PER models for PCF. However, PER(K1)

also contains parallel-or and exists operations, while PER(Λ0/β)

doesn’t (Berry sequentiality theorem).

Conjecture (Longley/Phoa): Every element of simple type in

PER(Λ0/β) is PCF-definable. (Hence the simple type structure

in PER(Λ0/β) coincides with PCF/ ≈obs.)
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‘Notions of computability’

This suggests that there is some difference in the ‘computa-

tional power’ of K1 and Λ0/β, even though they’re both Turing

complete.

Intuitively, a K1 realizer is like a program whose source code can

be inspected. A Λ0/β realizer is more like a ‘black box’.

In any case, at the level of functionals of simple type, we have

at least two notions of computability: ‘parallel’ and ‘sequential’.

All this suggests a general programme of mapping out interesting

computability notions and the relationships between them. In the

remaining lectures, we’ll see how realizability provides a useful

tool for doing this. (E.g. can K1 be ‘realized by’ Λ0/β and vice

versa?)
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