
Realizability: a short course

Lecture 2

John Longley

Laboratory for Foundations of Computer Science

University of Edinburgh

Relating models of computation

We’ve seen how a model of computation (e.g. a typed PCA) can

be used for realizability interpretations of logics, type systems,

programming languages . . .

So far, we’ve regarded each model as a separate ‘world of com-

putation’. Now we’ll use the ideas of realizability to investigate

the relationships between different models.

Motivation: Study the notions of computability represented by

various models, and the relationships between them.

1

Example: Those two PCAs again

Elements of K1 (natural numbers) can be ‘realized’ by elements

of Λ0/β (via Church numerals). Moreover, the application oper-

ation in K1 is computable in Λ0/β relative to this encoding. So

we get a ‘simulation’ or ‘realization’ γ : K1 −−B Λ0/β.

Conversely, λ-terms can be ‘realized’ by elements of K1 via Gödel

numbering. So we also get a simulation δ : Λ0/β −−B K1.

Are these ‘mutually inverse’ in any sense? The composition δ ◦γ

isn’t equal to idK1
, but it’s ‘equivalent’ to it: within K1, we can

effectively translate between n and dn̄e.
What about γ◦δ? Within Λ0/β, we can effectively pass from ¯dMe
to M (using Plotkin enumeration). But not conversely: within

Λ0/β, we can’t ‘see inside’ a term M to extract its Gödel number.

This sheds some light on the difference between K1 and Λ0/β.

2

Overview

Idea: Develop a general theory of ‘simulations’ between models,

as a general framework for investigating notions of computability

and their interrelationships.

This theory has developed through (at least) three incarnations:

(1) In 1992 (PSSL 50), I introduced a theory of PCAs and

applicative morphisms. Mathematically pleasing, but . . .

• most ‘models of computation’ aren’t (naturally) PCAs,

• the category of PCAs doesn’t have much good structure.

(2) In 1999 (FLoC), I gave a generalization to typed PCAs.

Admitted a lot more examples, but still excluded many important

‘models’ (e.g. process calculi, labelled transition systems).

3

Overview (continued)

(3) In 2010 (FLoC), I gave a further generalization such that

• the nice mathematical theory still goes through,

• a wide range of models from across CS are admitted,

• the class of models has better structure / closure properties

Key idea: PCAs and TPCAs naturally model higher order flavours

of computation. Here we ‘flatten’ everything out to first order,

and later show how higher order models fit in.

In this lecture, I’ll briefly sketch (1) and (2) for orientation, then

develop (3) in some detail.

4

(1) The original theory for PCAs (quick review)

A PCA (again) is a partial applicative structure (A, · : A×A ⇀ A)

containing elements k, s such that

k · x · y = x s · x · y ↓ s · x · y · z � x · z · (y · z)

An applicative morphism γ : A−−BB is a total relation such that

for some r ∈ B we have

γ(a, b) ∧ γ(a′, b′) ∧ a · a′ ↓ ⇒ γ(a · a′, r · b · b′)

Given γ, δ : A−−BB, we write γ � δ if for some t ∈ B we have

γ(a, b) ⇒ δ(a, t · b)

All this defines a preorder-enriched category PCA.

5

Realizability models over PCAs (today’s version)

For any PCA A, we can build a category of assemblies Asm(A).

• Objects X are pairs (|X|, X ⊆ A×|X|) where ∀x.∃a. a X x.

• Morphisms f : X → Y are functions f : |X| → |Y | that are

tracked by some r ∈ A (that is, a X x implies r · a X f(x)).

An assembly X is called modest if a x ∧ a x′ ⇒ x = x′.
The full subcategory of modest assemblies on A is equivalent to

PER(A).

6

Applicative morphisms ‘lift’ to realizability models

An applicative morphism γ : A−−BB then induces a functor

Asm(γ) : Asm(A) → Asm(B).

Theorem: The functors so arising are (up to isomorphism) pre-

cisely the regular functors Asm(A) → Asm(B) that commute

with the forgetful functors ΓA,ΓB to Set and the inclusions

∇A,∇B from Set.

In fact, the Asm construction extends to a 2-functor

PCA → Γ∇REG which is locally an equivalence.

Corollary: Asm(A) ' Asm(B) (as categories) iff A ' B (in PCA).

7

(2) Typed PCAs (brief sketch)

Instead of a single carrier set A, we may allow a whole family of

carrier sets corresponding to different ‘datatypes’.

By definition, typed PCAs are higher order: for any types A, B,

there’s a type [A ⇒ B] with an application · : [A ⇒ B]×A → B.

Ordinary ‘untyped’ PCAs arise as a special case: [A ⇒ A] = A.

Modulo a few type decorations, everything on the last two slides

still works.

8

Sample results and applications (taster for next lecture)

1. Any PCA A admits a boolean-respecting applicative mor-
phism K1−−BA, unique up to ��.

2. Let C be the typed PCA of (Kleene-Kreisel) total continu-
ous functionals over N , and P that of (Scott-Ershov) par-
tial continuous functionals. There is essentially just one
N-respecting applicative morphism C−−BK2. Similarly for
P−−BK2, though not e.g. for C−−BP.

3. The total extensional collapses of P and K2 are isomorphic
(both yield C). Quite hard to prove ‘directly’, but routine
by induction on types if we strengthen claim to ‘isomorphic
realizably over K2’.

Can one obtain results in this spirit for a wider range of
‘models of computation’?

9

(3) Computability structures

A C-structure C consists of:

• a family |C| of inhabited sets (think datatypes)

• for each A, B ∈ |C|, a set C[A, B] of relations from A to B

(think computable operations, which may be partial and/or
non-deterministic)

such that

• for each A ∈ |C| we have idA ∈ C[A, A]

• for any r ∈ C[A, B], s ∈ C[B, C] there exists t ∈ C[A, C] such
that r(a, b)∧s(b, c) ⇒ t(a, c) (call any such t a supercomposite
of r and s).

10

Examples of C-structures (sketch)

1. Any typed PCA: let |C| be its collection of types, and C[A, B]
the set of partial functions represented by an element of
[A ⇒ B].

2. Let L be your favourite programming language or process
calculus. Let |C| be some class of ‘values’ in L (e.g. whnf’s)
sorted by type. For any ’evaluation context’ K[−] of L, let
rK be the relation {(t, u) | K[t] ∗ u} on |C|-terms, and let
C[A, B] be the set of rK for suitably typed K.

3. Given any labelled transition system, let |C| = {S} where S

is the set of states. For w any finite sequence of labels, let
rw be the relation {(x, y) | x

w→ y} on S, and let C[S, S] be
the set of such rw.

11

Realizations between C-structures

Let C,D be C-structures. A realization γ : C−−BD consists of:

• a function γ : |C| → |D|,

• for each A ∈ |C|, a total relation γA from A to γA

such that every r ∈ C[A, B] is tracked by some r′ ∈ D[γA, γB]:

r(a, b) ∧ γA(a, a′) ⇒ ∃b′. r′(a′, b′) ∧ γB(b, b′)

(Choice here re non-determinism: will revisit later.)

If γ, δ : C−−BD are realizations, we say γ is transformable to δ
(γ � δ) if for each A ∈ |C| there exists t ∈ D[γA, δA] such that

γA(a, a′) ⇒ ∃a′′. t(a′, a′′) ∧ δA(a, a′′)

Fact: All this defines a preorder-enriched category CST RUCT .

12

The Asm construction on C-structures

Given a C-structure C, define a category Asm(C) as follows.

• Objects X are triples (|X|, AX ,X), where |X| is a set,

AX ∈ |C|, and X⊆ AX × |X| satisfies ∀x.∃a. a X x.

• Morphisms f : X → Y are functions f : |X| → |Y | that are

‘tracked’ by some r ∈ C[AX , AY] (again, choice here):

a X x ∧ f(x) = y ⇒ ∃b. b Y y ∧ r(a, b)

N.B. By the realizability model on C, we shall mean Asm(C)

equipped with its forgetful functor ΓC : Asm(C) → Set.

13

Structure in (Asm(C),ΓC)

• Subobjects: given X ∈ Asm(C), any subset of Γ(X) lifts to

a subobject of X with the expected universal property.

• Quotients: given X ∈ Asm(C), any quotient of Γ(X) lifts to

a quotient of X with the expected universal property.

• ’Copies’: given X ∈ Asm(C) and S ∈ Set, there is an object

X ∝ S ∈ Asm(C) equipped with morphisms

π : X ∝ S → X ρ : Γ(X ∝ S) → S

satisfying an obvious universal property.

In general, we say (C, Γ : C → Set) is a quasi-regular Γ-category

if it possesses this structure.

14

Extending Asm to realizations

A realization γ : C−−BD induces a quasi-regular Γ-functor

Asm(γ) : Asm(C) → Asm(D)

Indeed, up to iso, every such functor arises in this way.

Theorem: Asm extends to a 2-functor CST RUCT → ΓQREG
which is locally an equivalence.

Corollary: Asm(C) ' Asm(D) as Γ-categories iff C ' D

as C-structures.

This validates the definition of CST RUCT to some extent.

15

Subcategories of CST RUCT

Many interesting classes of C-structures and/or realizations can
be identified.

E.g. C-structures can be deterministic, be total, have booleans,
have natural numbers, . . .

Realizations can be discrete, be projective, respect booleans,
respect natural numbers, . . .

Several of these properties are reflected in properties of the cor-
responding categories/functors (much as in PCA setting).

Let’s look at a less familiar property (recall the choice re non-
determinism).

16

Tight C-structures and realizations

Call a C-structure tight if for all r ∈ C[A, B], s ∈ C[B, C] there
exists t ∈ C[A, C] such that

r(a, b) ∧ s(b, c) ∧ t(a, c′) ⇒ ∃b′. r(a, b′) ∧ s(b′, c′)

Call a realization γ tight if every r ∈ C[A, B] is ’tightly tracked’
by some r′ ∈ D[γA, γB]: that is, r′ tracks r, and

r(a, b) ∧ γ(a, a′) ∧ r′(a′, b′) ⇒ γ(b, b′)

Similarly define a tight morphism in Asm(C).

If C is tight, the tight morphisms form a subcategory Asmt(C)
of Asm(C). Moreover, the quasi-regular Γ-functors Asm(C) →
Asm(D) corresponding to tight realizations are precisely those
that restrict to Asmt(C) → Asmt(D).

17

Another subclass: C-structures with products

Say C has finite (monoidal) products if |C| contains 1 and is

closed under binary products, pairings of computable relations

exist, and moreover the associativity and left/right unit mappings

are present in C (in both directions).

This makes Asm(C) a monoidal category.

Say γ : C−−BD is monoidal if suitable relations are present in

D[γA× γB, γ(A×B)] and D[1, γ1].

Then Asm(γ) is a monoidal functor iff γ is monoidal.

18

Higher order C-structures

Assume C has finite products.
Say C is higher order if for any A, B ∈ |C| there exist [A ⇒ B] ∈ |C|
and evA,B ∈ C[[A ⇒ B]×A, B] such that

∀r ∈ C[C ×A, B]. ∃r̃ ∈ C[C, [A ⇒ B]]. r = (r̃ × idA); ev

(Uniqueness not required.)

Now, a realization γ : C−−BD is precisely a family of relations
such that pairing and application in C are tracked in D. So PCA-
style applicative morphisms are simply monoidal realizations.

Philosophical point: ‘Equivalence’ for notions of higher order
computation is nothing more than their equivalence as first order
notions.

19

Structure in CST RUCT

Early indications suggest that CST RUCT has a respectable amount
of categorical structure. E.g.

• Products (no surprise)

• Sums via disjoint union (not available in PCA).

• Curiosity: CST RUCT is almost cartesian closed!

Specifically, given C and D, there exists a realization
eval : DC×C−−BD such that for any α : E×C−−BD there’s
an α̃ : E−−BDC making the usual diagram commute,
and moreover α̃ is unique up to �� among single-valued
realizations with this property.

This is enough to characterize DC up to equivalence in CST RUCT .

No idea what this ’means’, but it’s an encouraging sign!

20

Construction of DC (sketch)

A family F of realizations C−−BD is uniformly tracked if

• all members of F agree at the level of types:
γA = γ′A for all γ, γ′ ∈ F, A ∈ |C|

• for all A, B ∈ |C| and r ∈ C[A, B] there exists some r′ in D
that tracks r w.r.t. every γ ∈ F.

If F ,G are uniformly tracked families, a relation R ⊆ F × G is
uniformly transformable if for all A ∈ |C| there exists t in D such
that for all (γ, δ) ∈ R, t witnesses γ � δ at A.

The C-structure DC is now defined as follows:

• |DC| is the set of inhabited, uniformly tracked families

• DC[F ,G] is the set of uniformly transformable R ⊆ F × G.

21

Some scattered remarks

K
K1
1 is vast and complicated (probably worse than the lattice of

Turing degrees).

However, the analogue for boolean-respecting realizations is just

the one-element C-structure.

Let L = Λ0/β. It’s amusing to see how many inequivalent

boolean-respecting realizations L−−BL one can find. So the

boolean-respecting analogue of LL might be interesting.

Crazy idea: ‘homotopy theory’ for notions of computability?

22

Conclusions and further work

C-structures give us a much larger and more ’rounded’ class

of models of computation than typed PCAs. The switch from

higher order to first order seems crucial.

(Moral: perhaps classifying higher order computability notions is

somehow a less ’natural’ goal than I thought?)

It would be nice to have some examples of interesting results

involving realizations for process calculi etc. (E.g. that two ex-

isting process calculi are non-trivially equivalent in CST RUCT ?)

Could also be interesting to think about examples arising from

physical systems, where ‘computable’ could mean ‘physically re-

alizable’ in some sense.
23

