
Realizability: a short course

Lecture 3: Realizability and higher type

computability

John Longley

Laboratory for Foundations of Computer Science

University of Edinburgh



Higher type computability

For (total or partial) functions N → N, all sensible definitions of
computability agree. But what should ‘computability’ mean e.g.
for operations acting on operations acting on . . . N?

(Motivations for this question include wanting realizability inter-
pretations for logics!)

Many choices, e.g.:
• Partial or total operations? Arguments partial or total?
• Arguments ‘computable’ or of some more general kind?
• How are operations ‘given’ to us? Oracles / infinite graphs

/ algorithms / programs?
• Style of computation, e.g. sequential or parallel.
• Are operations extensional (i.e. functions) or not?

Headline: There are different (good) notions of higher type com-
putability, but not that many.

1



Total type structures

In this lecture, we’ll restrict attention to hereditarily total func-

tionals over N.

Consider TPCAs over the simple types: σ ::= ι | σ → τ . An

N-TPCA is a TPCA A in which there are elements

0̂, 1̂, 2̂, . . . ∈ Aι

suc ∈ Aι→ι

recσ ∈ Aσ→(ι→σ→σ)→ι→σ (for each σ)

satisfying the obvious laws.

A total type structure (TTS) is a total, extensional N-TPCA A

((∀x.f • x = g • x) ⇒ f = g) in which every element of Aι is a

numeral n̂.

Question: What interesting TTSs of ‘computable functionals’

are there? 2



Extensional collapse

From any N-TPCA A (including untyped PCAs!), we can obtain

a TTS EC(A) ≡ A/ ∼, where

n̂ ∼ι n̂ and that’s all

f ∼σ→τ g iff ∀x, y. x ∼σ y ⇒ f • x ∼τ g • y

Note that EC(A) is the type structure over N in PER(A). Clearly

we have a canonical simulation εA : EC(A)−−B A.

[Warning: EC(−) is highly ‘non-functorial’. A ' B does imply

EC(A) ∼= EC(B), but e.g. A ⊆ B doesn’t imply EC(A) ↪→ A.]

So we seemingly have lots of ways of building TTSs. But how

many different TTSs do we get?

3



Total continuous functionals

We’ll start by looking at TTSs of ‘continuous’ functionals.

Intuition: ‘Computable’ functionals should be automatically ‘con-

tinuous’: any finite amount of output info is produced ‘within

finite time’, and so can only depend on finitely much input info.

Furthermore, ‘continuous’ often implies ‘computable relative to

some oracle N → N’.

In 1959, two definitions of a TTS were given:

• Kleene: countable functionals.

• Kreisel: continuous functionals.

These turn out to coincide (non-trivial fact). Call this TTS C.

Many other characterizations of C have since been found.

4



Kleene’s definition via associates

Idea: Any total continuous F : NN → N can be ‘coded’ by some

f : N → N, e.g.:

f〈n0, . . . , nr−1〉 =

{
m + 1 if F (g) = m for all g with ∀i < r. g(i) = ni
0 if there’s no such m

Reversing this idea, can define an ‘application’ |: NN × NN ⇀ N:

f | g ' f(g̃(r))− 1 where r = µr. f(g̃(r)) > 0

A small tweak gives • : NN × NN ⇀ NN:

f • g = Λn. f〈n, g̃(r)〉 − 1 where . . .

(NN, •) is Kleene’s second model K2.
In effect, Kleene defined C = EC(K2).

5



Kreisel’s definition via neighbourhoods (Ershov version)

Let P be the N-TPCA of Scott partial continuous functionals,
defined e.g. as the type structure over N⊥ in the category of
DCPOs.

Facts: Each x ∈ Pσ is a directed limits of the compact elements
below x. The compact elements can be described explicitly:

• In Pι = N⊥, every element is compact.

• In Pσ→τ , the compact elements are certain finite joins of step
functions: (a0⇒ b0) t · · · t (ar−1⇒ br−1), where the ai, bi are
compacts.

Compact elements can be coded by natural numbers. Can think
of compact elements v x as finite pieces of information about x.

We can now define C = EC(P).

6



An ‘effective’ substructure

Given an N-TPCA A and a sub-N-TPCA A] ↪→ A, can define

EC(A;A]) to consist of all equivalence classes in EC(A) that con-

tain an element of A].

(N.B. EC(A;A]) isn’t automatically extensional!)

E.g. both K2 and P have evident effective substructures K
]
2, P].

In fact, EC(K2;K
]
2) and EC(P;P]) also coincide: C] ↪→ C.

C] is extensional by the Kleene-Kreisel density theorem.

7



Proving equivalences

Traditional proofs of EC(K2)
∼= EC(P) are indirect, e.g. via the

category of limit spaces or filter spaces (Hyland 1979). More-

over, some of these proofs lose effectivity information.

However, a simple direct (and naturally effective) proof can be

given using TPCA simulations.

Idea: There’s a simulation θ : P−−B K2: any x ∈ Pσ is realized

by any function N → N that enumerates (codes for) compacts

v x. Application in P is obviously ‘continuous’, hence realizable

in K2.

We can show that EC(K2)−−B K2, EC(P)−−B P−−B K2 are iso-

morphic realizably in K2. (Routine induction on types.)

8



Mathematical credentials of C

Is C the canonical choice for a TTS of continuous functionals?

We might worry that there’s a lot of choice in how to define

such a TTS, e.g. via different choices of N-TPCA.

But does every decent ‘continuous N-TPCA’ lead to C? Like-

wise, is the ‘effective substructure’ always C]?

9



Continuous N-TPCAs

Say an N-TPCA A is continuous if it’s equipped with a simulation

θ : A−−B K2 that ‘respects numerals’ up to translation within K2.

Say (A, θ) is full continuous if (within K2) we can pass from any

f : N → N to some θ-realizer for f ∈ Aι→ι.

Ubiquity theorem for C (Longley 2007): If (A, θ) is any full con-

tinuous type structure with general recursors, satisfying some

mild but unsightly conditions, then

EC(K2)−−B K2 EC(A)−−B A−−B K2

are isomorphic realizably in K2.

Examples: Scott, stable, strongly stable domains; many game

models; Böhm tree models, . . .

10



Some history

Cook-Berger conjecture: In EC(P)−−B P, every equivalence class

contains a PCFΩ-definable element.

Proved by Dag Normann (1999). So we have

C−−BPCFΩ−−B P−−B K2

In effect, Normann gave such a simulation and showed that it is

realizably isomorphic to EC(P)−−B P−−B K2. [Not true if −−B K2

deleted!]

Generalized in (Longley 2007) to an arbitrary (suitable) A−−B K2

in place of P−−B K2. (Also PCF replaced by the combinatory

language of N-TPCAs with recursion: very slightly weaker.)

11



Normann’s argument

EC(P)
εP
−−B P

θ
−−B K2

Concentrate on pure types: 0 ≡ ι, k + 1 ≡ k → ι.

Main lemma: Suppose the simulations in question are realizably

isomorphic up to type level k − 1. There is a PCF program

N : 1 → k with the following property:

If Φ ∈ Ck, Φ̇ 
εP Φ, ν 
θ Φ̇ and ν̇ ∈ P1 represents ν, then

[[N ]](ν̇) 
εP Φ.

In other words, if Ġ 
εP G ∈ Ck−1, then [[N ]](ν̇)(Ġ) simulates the

computation of Φ(G).

12



Normann’s argument: further details

Very crudely, N searches through ν, testing each code c⇒ q to

see if G ‘satisfies’ the condition c — if so, we return q.

Problem: c will have form 〈a0⇒n0, . . . , ar−1⇒nr−1〉, where the

ai represent partial elements. But it seems Ġ can only safely be

applied to total elements.

Solution: Apply G to carefully chosen total extensions of the

ai. These are computed using a clever recursive invocation of N

itself on ‘later’ parts of ν.

Tricky bit: Showing the recursion bottoms out. Here we appeal

to continuity in P: at some level, the ai will approximate total

elements sufficiently well that the right thing will happen anyway.

13



Generalized version (JRL)

Basic proof strategy and construction of N are similar to Nor-

mann’s, but the proof of bottoming-out is much more subtle:

with an arbitrary continuous A in place of P, there’s no overt

notion of ‘approximation’.

However, we can show that simply by virtue of being realizable

over K2, A inherits enough ‘continuity’ that something similar

can be made to work.

Main point: Simulations play an essential role, both in the for-

mulation of the general result and in its proof.

14



Where we’ve got to . . .

• We’ve seen that for ‘continuous operations on continuous

data’, a large class of EC constructions all lead to C.

• Similarly for ‘effective operations on continuous data’: they

lead to C].

• What about ‘effective operations on effective data’? E.g.

the hereditarily effective operations, HEO ≡ EC(K1).

15



Critical example: Fan functional versus Kleene tree

In the C world, every functional F : (N → B) → B has a modulus
of uniform continuity m:

∀g, g′. (∀i < m. g(i) = g′(i)) ⇒ F (g) = F (g′)

There’s even a (PCF-definable) functional in C that computes
a suitable m given F (the fan functional).

By contrast, in HEO there are operations (N → B) → B that aren’t
uniformly continuous at all. E.g. the Kleene tree K is a com-
putable binary tree with arbitrarily long paths, but no computable
infinite path. Now consider FK : g 7→ µn. 〈g(0), . . . , g(n− 1)〉 6∈ K.

So C] and HEO are incompatible: indeed, the fan functional and
the Kleene tree can’t coexist in an ‘effective’ TTS.

However, we do have HEO ∼= EC(P]) (generalized Kreisel-Lacombe-
Shoenfield theorem).

16



Effective N-TPCAs

Say an N-TPCA A is effective if it’s equipped with a simulation

θ : A−−B K1 that respects numerals up to effective translation.

Ubiquity theorem for HEO: Suppose (A, θ) is an effective N-TPCA

with general recursion satisfying two mild technical conditions.

Then

EC(K1)−−B K1 EC(A)−−B A−−B K1

are realizably isomorphic in K1.

(Idea of proof: A inherits some sort of KLS-style continuity just

by being an effective N-TPCA.)

Examples: Effective analogues of all earlier examples. Also syn-

tactic models for prog. languages, e.g. PCF+blah / ≈obs.

17



Uniform programs for total functionals

We’ve shown that for any suitable [continuous or effective] A

and any F ∈ EC(A)σ, there’s a term MF in PCF (or similar) such

that [[MF ]] 
εA F .

With a little more care, we can get a uniform version of this: for

every F ∈ Cσ [resp. HEOσ] there’s a term MF such that for any

suitable A, [[MF ]] 
εA F ∈ EC(A)σ.

18



Modified extensional collapse

For any N-TPCA A, define Tot(A) ↪→ A as follows:

Tot(A)ι = {n̂ | n ∈ N}
Tot(A)σ→τ = {f ∈ Aσ→τ | ∀x ∈ Tot(A)σ. f • x ↓∈ Tot(A)τ}

Now define MEC(A) ≡ EC(Tot(A)).

Bezem (1985) showed MEC(K2)
∼= EC(K2) and MEC(K1)

∼= EC(K1).

The above ubiquity theorems don’t immediately give us MEC(A) ∼=
EC(A) in general, because Tot(A) won’t have general recursion.

However, by further refining our proofs we get analogues of both

ubiquity theorems for MEC.

19



Conclusion

A wide range of extensional collapse constructions leads to a

small handful of TTSs: C, C], HEO. So these are highly canonical

mathematical objects. [Rather a pity from the point of view of

dreaming up realizability interpretations!]

Moreover, only the continuous/effective dichotomy seems rele-

vant: a lot of other things you’d think might make a difference

(e.g. level of intensionality, style of computation) actually don’t.

This contrasts sharply with the picture for partial type structures:

as we’ll see, ‘effective vs. continuous’ plays only a minor role

there, but the other factors come to the fore.

Finally, we haven’t considered computability on non-continuous

data at all, e.g. Kleene (S1)-(S9) computability on the full set-

theoretic type structure. May be touched on in final lecture.

20


