
Lecture 4:

Game models and sequential computability

John Longley

University of Edinburgh

Semantically inspired language design

In denotational semantics, we establish connections:

programming language L ←→ model M
E.g. full abstraction, definability.

Can start from L and look for M to match,
or start from M and look for L to match.

The latter approach might lead to:

• interesting new language constructs,

• languages amenable to reasoning.

Moreover, definability ensures we’re getting ‘value for money’
from our chosen M.

1

Where should we look for models?

Even natural models may lead to unnatural languages!

(Consider PCF+por+exists, or even worse, PCF+H.)

But things are more hopeful for models that can represent a more

realistic range of computational phenomena, e.g. game models.

In much work on game semantics to date, the language-driven

approach has been dominant. Here we supplement this with

some contributions from a model-driven perspective.

Idea: Look at some simple and natural (but structurally rich)

game models, and identify the corresponding languages.

2

Overview, part 1

• Describe the category G of sequential data structures: models
⊗, -o ,&.
• Describe three (known) ‘!’ comonads on G, each yielding a

model of Intuitionistic Linear Logic. Informally, these em-
body different notions of ‘reusability’.

• This gives us 7 ‘models’:

G (G, !1) (G, !2) (G, !3) G!1 G!2 G!3
which we view as models for (an affine version of) Plotkin’s
FPC, e.g. with types

τ ::= α | τ*τ | τ+τ | τ-oτ | !τ | rectypeα=>τ

(Actually, we use the corresponding ‘Fam’ categories for call-
by-value, as in Abramsky/McCusker 1998.)

3

Overview, part 2

For each model, we identify an extension of (affine) FPC that

defines all computable strategies of suitable type. This leads to:

• a more operational insight into the computational power of

each model;

• a selection of language primitives for state encapsulation ,

coroutining, and backtracking. These are closely related to,

but somewhat different from, familiar language constructs.

We give an example to suggest that these primitives may have

some practical interest as programming language constructs.

(This is currently being explored as part of the Eriskay project.)

4

Discovering suitable languages

We note that the type

υ ≡ rectype t => nat -o (nat * t)

denotes a universal object in G, and that all computable strategies

of [[υ]] are affine FPC definable.

So it suffices that a handful of types be programmable retracts

of υ, e.g.

υ * υ υ + υ υ -o υ !υ

The attempt to program these retractions led us, fairly naturally,

to our selection of language primitives.

(Here we just present the results of this investigation.)

5

The category G (Lamarche 1992, Curien 1993,
Abramsky/Jagadeesan 1992)

Write Alt(X, Y) for the set of finite sequences z0 . . . zn where
zi ∈ X for i even, zi ∈ Y for i odd.

• A game G consists of countable sets OG, PG, plus a non-
empty prefix-closed set LG ⊆ Alt(OG, PG) of legal positions.

• A strategy for G is a partial function f : Lodd
G ⇀ PG such that

f(s) = y implies sy ∈ LG, and syx ∈ dom f implies f(s) = y.

Games G⊗H, G -oH are defined as usual in game semantics.
Objects of G are games; morphisms G → H are strategies for
G -oH.

6

Exponential 1: non-repetitive backtracking
(Lamarche 1992, Curien 1993, Abramsky/Jagadeesan 1992)

Define !1G as follows. Move sets are:

O!1G = Leven
G ×OG P!1G = PG

Legal positions are sequences s ∈ Alt(O!1G, P!1G) such that

• if an O-move (t, x) appears in s then tx ∈ LG, and if (t, x) is
immediately followed by y then txy ∈ LG;

• if (txy, z) appears in s, then (t, x)y appears earlier in s;

• no O-move (t, x) appears more than once in s.

Intuition: Each O-move backtracks to a previously encountered
position in G and explores a new part of the game tree for G.

The co-Kleisli model G!1 is the world of sequential algorithms.

7

Exponential 2: repetitive non-backtracking (Hyland 1997)

Define !2G as follows. Move sets are:

O!2G = N×OG P!2G = N× PG

Legal positions are sequences s ∈ Alt(O!2G, P!2G) such that

• for each i ∈ N, the evident ‘subsequence’ si ∈ LG;

• if (i + 1, z) appears in s, some (i, x) appears earlier in s.

Intuition: Here O can restart a play of G in a fresh ‘copy’.

A strategy for !2G may behave quite differently in different copies

of G (so we get stateful behaviour).

8

Exponential 3: repetitive backtracking
(Harmer/Hyland/Melliès 2007; cf. Longley 2002)

Define !3G as follows. Move sets are:

O!3G = N×OG P!3G = N1 × PG

Legal positions are sequences

s = (a1, x1)(b1, y1)(a2, x2)(b2, y2) . . . ∈ Alt(O!3G, P!3G)

such that

• Each ai < i and each bi = i. Hence each O-move is either
initial (tagged with 0) or points to an earlier P-move.

• For each prefix s′ of s, the thread (a.k.a. justification se-
quence) extracted from s′ by “chasing pointers” is in LG.

9

State encapsulation (cf. Wolverson’s thesis)

In (G, !2), we can naturally model a language primitive:

encaps : (σ * !(σ*τ -o σ*τ ′)) -o !(τ -o τ ′) (τ ground)

This is intermediate in expressive power between first-order and
full higher-order store.

If σ is reusable, can also allow non-ground τ , but we then need
a syntactic restriction on the “method implementation”.

For !3, we should replace σ*τ ′ by σ*!τ ′. Also, !3 supports encap-
sulators for more general imperative style methods, e.g.

imp-encaps : (σ * !(RW(σ) -o τ -o !τ ′)) -o !(τ -o τ ′)

where RW(σ) = !(unit -o σ) * !(σ -o unit).

10

Coroutining operations (cf. Laird 2007)

The bare model G supports a “resumable exception” operator

lincatchcont : ((ρ-oσ) -o (τ*τ ′)) -o

(τ * ((ρ-oσ)-oτ ′) + ρ * (σ-o(τ*τ ′)))

where ρ and τ are ground.
In (G, !2), for instance, we can improve this to

catchcont : (!(ρ-oσ) -o (τ*τ ′)) -o

(τ * (!(ρ-oσ)-oτ ′) + ρ * (σ-o!(ρ-oσ)-o(τ*τ ′)))

whence in G!2 we have an operator

coroutine : ((ρ->σ) -> ρ′) -> (ρ -> (σ->ρ) ->σ′) -> ρ′+σ′

where ρ, σ, ρ′, σ′ are ground.

(Remark: it seems coroutine isn’t definable from callcc.)

11

A ‘backtracking’ operator

With !1 or !3 (but not !2), we can model an operator

force : !(unit -o τ) -o !τ

Intuitively, this lets us run some initial phase of a computation

once only, and then re-use the results of this phase many times.

(Note: the same strategy is also needed to “lift” ⊥ to G!.)

For !3, combining force with catchcont, we get

catchcopy : (!(ρ-oσ) -o (τ*τ ′)) -o

(τ * (!(ρ-oσ)-oτ ′) + ρ * ! (σ-o!(ρ-oσ)-o(τ*τ ′)))

For !1, we have a “memoizing” variant of this.

12

The results, part 1

Write AFPC and AEFPC for the affine and affine-exponential

variants of FPC. The operators share and switch do (relatively)

boring things.

• AFPC+lincatchcont+share is complete for G.

• AEFPC+lincatchcont+share+force+switch is complete for

(G, !1).

• AEFPC+lincatchcont+encaps is complete for (G, !2).

• AEFPC+lincatchcont+encaps+force is complete for (G, !3).

13

The results, part 2

For the co-Kleisli models, we have:

• FPC+memocatchcopy is complete for G!1.
(By Cartwright/Curien/Felleisen 1992 , so is FPC+catch ,

but our language seems to promise a tighter “intensional”

correspondence.)

• FPC+coroutine (with CBN interpretation) is complete for

G!2 (cf. Laird 2007).

• FPC+catchcopy is complete for G!3.

14

A programming application: ‘generic search’

Fix n ∈ N, and consider the problem of counting the vectors
x ∈ {0,1}n satisfying a certain property P . Let’s try to do this
uniformly in P .

Represent vectors x using nat -> bool, and properties P using
(nat -> bool) -> bool.

Use catchcopy to jump out whenever P requests a new com-
ponent xi of x, and then (recursively) resume with xi = 0 and
xi = 1 in turn, without having to repeat the computation of P (x)
up to this point.

(Also, if P completes having only requested r components, we
take care of 2n−r vectors at once.)

15

Conclusions and further work

Our semantic approach highlights:

• a selection of programming primitives related to, but not the
same as, those usually found in existing typed languages;

• certain combinations of these primitives that may coexist
without losing runtime safety.

Other issues:

• Connections with op sem: studied in Wolverson’s thesis for
encaps; more to do for coroutining and backtracking.

• Mathematical relationships between !1, !2, !3 are of interest.

• Carry out similar work e.g. for locally non-alternating games.

16

