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@ In 1990 Griffin discovered that call/cc could be given the
type corresponding to Peirce's Law:

(A=B)=A) = A
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Krivine's Classical Realizability (recall) Classical Realizability

Peirce's Law and Classical Realizability

@ In 1990 Griffin discovered that call/cc could be given the
type corresponding to Peirce's Law:

(A=B)=A) = A

@ This discovery gave a direct computational interpretation of
classical reasoning (as opposed to negative translations)

@ Some classical A-calculi:

Parigot's Ap-calculus.

Barbanera & Berardi's Symmetric \ calculus.
Curien & Herbelin’s A\ calculus.

Krivine's A\. calculus.
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Krivine's Classical Realizability (recall) C ca a
The language Ac
T

bility semantics

The language of classical realizers

The Ac-calculus

Terms: A)

Evaluation rules
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The language Ac
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bility semantics

The language of classical realizers

The Ac-calculus
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Krivine's Classical Realizability (recall)

The language of classical realizers

The Ac-calculus

Terms: A) t,u == x | Axt | tu | cc

Evaluation rules
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Krivine's Classical Realizability (recall)

The Ac-calculus

Terms: A)  t,u == x | Axt | tu | cc | kg
Stacks: ) T = a | tw

Evaluation rules
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Krivine's Classical Realizability (recall)

The Ac-calculus

Terms: A)  t,u == x | Axt | tu | cc | kg
Stacks: ) T = a | tw
AxN) p,p == txm

Evaluation rules
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The Ac-calculus

tbu = x | Axt | tu | cc | ke
T = a | tw
p,pl = txmw

Terms:  A)
Stacks: M)
A% 1)

Evaluation rules

(PusH)
(GRAB)

tu *
Axt x  u.Tw

-~ t x um
- t{x=u} * 7
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The language Ac
The types

ity semantics

The Ac-calculus

Terms:  A)
Stacks: M)
A% 1)

t,u
T
p, P

x | Axt | tu | cc | kr
a | tm
txm

Evaluation rules

(PusH)
(GRAB)

(SAVE)

tu x T = t *x um
Axt x um > t{x:=u} * 7
cc x tam > t *x kpm
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The language Ac
The types

ity semantics

The Ac-calculus

Terms: A)  t,u == x | Axt | tu | cc | kg
Stacks: ) T = a | tw
AxN) p,p == txm
(PusH) tu x - t x uw
(GRAB) Axt x um > t{x:=u} * 7
(SAVE) cc x tm > t * ke
(RESTORE) k: * tp > t *
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The Ac-calculus

Terms:  A)
Stacks: M)
A1)

t,u
T
/
P, P

x | Axt | tu
a | tm
txm

| e | kx|

Evaluation rules

(PusH)
(GRAB)

(SAVE)
(RESTORE)

tu
Axt

cc
ke

s
u.m

t.m
t.p

—

t
t{x = u}

%
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Krivine's Classical Realizability (recall)

The language of classical realizers

The Ac-calculus

Terms: A) t,u == x | At | tu | cc | ks | quote
Stacks: ) T = a | tw

AxN) p,p == txm
(Pusn) tu * T - t x umw
(GRAB) Axt x um > t{x:=u} * 7
(SAVE) cc * tam > *x ke
(RESTORE) ke * tp > x T
(QUOTE) quote * tor > t x Apw
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Krivine's Classical Realizability (recall) e
The language Ac

The tyy
semantics

The language of classical realizers (cont.)

Some extra instructions

uxmt Iftg =t
(EQ) eq * ti.bruvaw > ' _2
vxm Otherwise
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Krivine's Classical Realizability (recall)

lizability semantics

The language of classical realizers (cont.)

Some extra instructions

uxmt Iftg =t
(EQ) eq * ti.bruvaw > ' _2
v+7m Otherwise
t1 x
(FORK) m % t.b.7 - !
to % T
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Krivine's Classical Realizability (recall)

The types

The language of 2nd order arithmetic (PA2)

@ Language of first order expressions and formulz:

e 1= x| fer...e

AB = Xe--ex | A=>B | VxA | VX A
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Krivine's Classical Realizability (recall)

The types

The language of 2nd order arithmetic (PA2)

@ Language of first order expressions and formulz:

e 1= x| fer...e

AB = Xe e | A=B | VxA | VXA
@ Language of parametrical formulz:
AB = - | Fei- e

for each falsity function F : N — P(I)
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Krivine's Classical Realizability (recall)

The types

Typing rules:
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Krivine's Classical Realizability (recall)

The types

Typing rules:

MNMx:AFx:A
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Krivine's Classical Realizability (recall)

The types

Typing rules:

MNMx:AFx:A
MNx:AFt:B lrNFt:A=B TTFu:A
lXxt: A= B ltu:B
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Krivine's Classical Realizability (recall)

The types

Typing rules:

MNMx:AFx:A
MNx:AFt:B lrNFt:A=B TTFu:A
l=XMxt: A= B +~tu:B
rE+:-A ME1t:VxA
—x ¢ FV(IN
M- t:VxA Net: A{x:=e}
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Krivine's Classical Realizability (recall)

The types

Typing rules:

MNMx:AFx:A
MNx:AFt:B lN-t:A=B lN~u:A
lXxt: A= B M-tu:B
Fr=t: A -1t VxA
—x ¢ FV(IN
MEt:VxA N=t: A{x:=e}
Mr-t: A M-t: VXA
— X ¢ FV(IN)
M-t: VXA MNEt: A{X == Axg ... AP}
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Krivine's Classical Realizability (recall)

The types

(Intuitionistic) Typing rules:

MNMx:AFx:A
MNx:AFt:B lN-t:A=B lN~u:A
lXxt: A= B M-tu:B
Fr=t: A -1t VxA
—x ¢ FV(IN
MEt:VxA N=t: A{x:=e}
Mr-t: A M-t: VXA
— X ¢ FV(IN)
M-t: VXA MNEt: A{X == Axg ... AP}
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Krivine's Classical Realizability (recall)

Classical realizability semantics

Peirce's Law

Krivine's Realizability semantics

@ Definition parameterized by a saturated set of processes I .
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Krivine's Classical Realizability (recall)

Krivine's Realizability semantics

@ Definition parameterized by a saturated set of processes I .

@ This set defines a contravariant function from sets of stacks
to sets of terms:
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Krivine's Classical Realizability (recall)

Krivine's Realizability semantics

@ Definition parameterized by a saturated set of processes I .

@ This set defines a contravariant function from sets of stacks
to sets of terms:

S St
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Krivine's Classical Realizability (recall)

Krivine's Realizability semantics

@ Definition parameterized by a saturated set of processes I .

@ This set defines a contravariant function from sets of stacks
to sets of terms:

S St

St ={teA|VreStrnel}
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Krivine's Classical Realizability (recall)

Krivine's Realizability semantics

@ Definition parameterized by a saturated set of processes I .

@ This set defines a contravariant function from sets of stacks
to sets of terms:

S St
()" (M) — P(A)

St={teAN|VreStxmell}
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Krivine's Classical Realizability (recall)

The S
Classical realizability semantics
Peirce's Law

Krivine's Realizability semantics (cont.)

There are two sets asociated to each closed parametrical
formula A:

e Truth value |A|
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Krivine's Classical Realizability (recall)

The S
Classical realizability semantics
Peirce's Law

Krivine's Realizability semantics (cont.)

There are two sets asociated to each closed parametrical
formula A:

e Truth value |A|
e Falsity value ||A||
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Krivine's Classical Realizability (recall)

Krivine's Realizability semantics (cont.)

There are two sets asociated to each closed parametrical
formula A:

e Truth value |A|
e Falsity value ||A||
Truth values and falsity values are related by: |A| = ||A||*-.
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Krivine's Classical Realizability (recall)

Peirce’s Law

Krivine's Realizability semantics (cont.)

There are two sets asociated to each closed parametrical
formula A:

e Truth value |A|
e Falsity value ||A||
Truth values and falsity values are related by: |A| = ||A||*-.

Definition of the relation I:

th-A  iff  telA|
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Krivine's Classical Realizability (recall)

Classical realizability semantics
Peirce's N

Krivine's Realizability semantics (cont.)
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Krivine's Classical Realizability (recall)

The S
Classical realizability semantics
Peirce's Law

Krivine's Realizability semantics (cont.)

The falsity values:

@ Expressions are interpreted as natural numbers (as in model
theory).
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Krivine's Classical Realizability (recall)

Krivine's Realizability semantics (cont.)

The falsity values:

@ Expressions are interpreted as natural numbers (as in model
theory).

@ k-ary second-order variables are interpreted as k-ary
second-order parameters. Therefore atomic formulae are
interpreted as falsity values.
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Krivine's Classical Realizability (recall)

Classical reallzablllty semantics
Peirce's La

Krivine's Realizability semantics (cont.)

The falsity values:

@ Expressions are interpreted as natural numbers (as in model
theory).

@ k-ary second-order variables are interpreted as k-ary
second-order parameters. Therefore atomic formulae are
interpreted as falsity values.

@ First and second order V are interpreted as unions:
Vx A(x) = Unen [IA(n)]
WX AX) = Upepgpe [IAGE)]
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Krivine's Classical Realizability (recall)

Krivine's Realizability semantics (cont.)

The falsity values:

@ Expressions are interpreted as natural numbers (as in model
theory).

@ k-ary second-order variables are interpreted as k-ary
second-order parameters. Therefore atomic formulae are
interpreted as falsity values.

@ First and second order V are interpreted as unions:
Vx A(x) = Unen [IA(n)]
WX AX) = Upcppe IIAGE)]
e For implication we use ortogonality:
1A= Bl = |AL||BI|
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Krivine's Classical Realizability (recall)

Krivine's Realizability semantics (cont.)

Universal Realizers

A universal realizer for a parametrical formula A is a proof-like term
t (i.e.: a term without k) which realizes the formula A for all L.
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Krivine's Classical Realizability (recall)

Krivine's Realizability semantics (cont.)

Universal Realizers
A universal realizer for a parametrical formula A is a proof-like term
t (i.e.: a term without k) which realizes the formula A for all L.

We write t lIF A
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Krivine's Classical Realizability (recall)

Classical realizability semantics
Peirce's La

Krivine's Realizability semantics (cont.)

Universal Realizers

A universal realizer for a parametrical formula A is a proof-like term
t (i.e.: a term without k) which realizes the formula A for all L.

We write t lIF A

Lemma

Soundness
If =t : A is provable in the type system then t lIF A
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Krivine's Classical Realizability (recall)

pes
. al realizability semantics
Peirce’s Law

Krivine's Realizability semantics (cont.)

(LJ)+(Peirce's Law) iff (LK)
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Krivine's Classical Realizability (recall)

Krivine's Realizability semantics (cont.)

(LJ)+(Peirce's Law) iff (LK)

Proposition
ccllFVXVYY(X=Y)=X)= X
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Krivine's Classical Realizability (recall)

Krivine's Realizability semantics (cont.)

(LJ)+(Peirce's Law) iff (LK)

Proposition
ccllFVXVYY(X=Y)=X)= X

Consequence

Adding the following typing rule:

[Fcc: VXYY ((X = Y) = X) = X

the typing system obtained is the classical second order logic and it
satisfies the soundness lemma.
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Krivine's Classical Realizability (recall)

Peirce's Law

[IVXVY((X = Y)=X)= X||=|VX(X = 1) = X) = X]||
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The Specification Problem Definition

The Specification Problem

Main question

“Can we characterize the universal realizers of a given formula A
from their computational behavior?”

Such a computational behavior is called the Specification of A.
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The Specification Problem

Why specification?

Why (and where) the Specification problem is interesting?

In Intuitionistic Realizability, we can infer such a specification from
the Realizability definition...

A familiar example
Consider a ¥9-formula 3x (f(x) = 0)
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The Specification Problem

Why specification?

Why (and where) the Specification problem is interesting?

In Intuitionistic Realizability, we can infer such a specification from
the Realizability definition...

A familiar example
Consider a ¥9-formula 3x (f(x) = 0)

)
where N |= f(n) =0
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The Specification Problem

Why specification?

Why (and where) the Specification problem is interesting?

In Intuitionistic Realizability, we can infer such a specification from
the Realizability definition...

A familiar example

Consider a ¥9-formula 3x (f(x) = 0)

t IF INatx(f(x) = 0) iff

t I IN3tx(f(x) = 0) iff t = (n,1)
where N |= f(n) =0 t computes a winning strategy

for a game with backtracking.
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The Specification Problem

The identity type

The identity Type

The following statements are equivalent:
0 tlFvX(X = X)
@ ForallueNandm €Il txum>uxm
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The Specification Problem Definition
W

n?
The identity type

The identity Type

The following statements are equivalent:
0 tlFvX(X = X)
@ ForallueNandm €Il txum>uxm

]
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The Specification Problem

The identity Type

The following statements are equivalent:
0 tlFvX(X = X)
@ ForallueNandm €Il txum>uxm

M Consider X C I, a term u IF X and a stack 7 € X. Since
uxm € I, by antievaluation t x u.m € 1.
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The Specification Problem

The identity Type

The following statements are equivalent:
0 tlFvX(X = X)
@ ForallueNandm €Il txum>uxm

Proof.

M Consider X C I, a term u IF X and a stack 7 € X. Since

uxm € I, by antievaluation t x u.m € 1.

|l Consider L :={p | p > u*7}. Hence ulF {r} and we have the
result because t I- {7} = {7}. O
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Interaction constants

The substitutive case 5
The s| fication of Peirce's Law using interaction constants

Interaction Constants (def.)

A constant K is:
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Interaction constants

The substitutive case . -
The specification of Peirce's Law using interaction constants

Interaction Constants (def.)

A constant K is:

e inert iff for all stacks 1 K xm
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Interaction constants

The substitutive case 5 - ,
The specification of Peirce's Law using interaction constants

Interaction Constants (def.)

A constant K is:

e inert iff for all stacks 1 K xm

@ substitutive iff for all processes p, p’ and for all terms v,
p =1 p implies p{K := u} =1 p'{K := u}.
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T Interaction constants
he substitutive case e ) _ R I .
The specification of Peirce’s Law using interaction constants

Interaction Constants (def.)

A constant K is:
e inert iff for all stacks 1 K xm
@ substitutive iff for all processes p, p’ and for all terms v,
p =1 p' implies p{K := u} =1 p'{K := u}.
@ non generative iff whenever p =1 p’, the constant K does not
occur in p’ unless it already occurs in p.
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Interaction constants

The substitutive case . -
The specification of Peirce's Law using interaction constants

Interaction Constants (def.)

Definition
A constant K is:

e inert iff for all stacks 1 K xm

@ substitutive iff for all processes p, p’ and for all terms v,
p =1 p' implies p{K := u} =1 p'{K := u}.
@ non generative iff whenever p =1 p’, the constant K does not
occur in p’ unless it already occurs in p.
An interaction constant is an inert, substitutive and non generative
constant.

Mauricio GUILLERMO & Alexandre MIQUEL Specifying Peirce's Law in Classical Realizability



Interaction constants

The substitutive case . -
The specification of Peirce's Law using interaction constants

Interaction Constants (def.)

Definition
A constant K is:

e inert iff for all stacks 1 K xm

@ substitutive iff for all processes p, p’ and for all terms v,
p =1 p' implies p{K := u} =1 p'{K := u}.
@ non generative iff whenever p =1 p’, the constant K does not
occur in p’ unless it already occurs in p.
An interaction constant is an inert, substitutive and non generative
constant.
Similar definitions are given for substitutive and non generative
stack constants.
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Interaction constants

The substitutive case

@ Substitutive constants are compatible with the basic rules

(PUSH), (GRAB), (SAVE), (RESTORE)
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Interaction constants

The substitutive case

@ Substitutive constants are compatible with the basic rules

(PUSH), (GRAB), (SAVE), (RESTORE)

@ On the other hand, substitutive constants are incompatible
with the rules

(QUOTE), (EQ)
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A Interaction constan
The substitutive case BRIII0 RIS

eq is incompatible with substitutive constants

A process containing eq and an inert constant K
eq xK.1.0660.601. 7 = 6 x0.1.x

Applying {K := 1}, we obtain
eq x1.1.060.001. 7 = 06 %x0.0.7
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A Interaction constan
The substitutive case BRIII0 RIS

eq is incompatible with substitutive constants

A process containing eq and an inert constant K
eq xK.1.0660.601. 7 = 6 x0.1.x

Applying {K := 1}, we obtain

eq x1.1.060.001. 7 = 06 %x0.0.7

Consequence

quote is also incompatible with substitutive constants since eq can
be programed in terms of quote.
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The substitutive case The specification of Peirce's Law using interaction constants

The realizers C,
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The substitutive case The specification of Peirce's Law using interaction constants

The realizers C,

Consider n, p such that n > p > 1 and a A-term C, , with the
following behavior:
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The substitutive case The specification of Peirce's Law using interaction constants

The realizers C,

Consider n, p such that n > p > 1 and a A-term C, , with the
following behavior:
Given a stack wug.7g:
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The substitutive case The specification of Peirce's Law using interaction constants

The realizers C,

Consider n, p such that n > p > 1 and a A-term C, , with the
following behavior:

Given a stack wug.7g:

Cn_’p *  UQ.TQ - up x K,ip[Uo,ﬂ'o].?To

Mauricio GUILLERMO & Alexandre MIQUEL Specifying Peirce's Law in Classical Realizability



The substitutive case The specification of Peirce's Law using interaction constants

The realizers C,

Consider n, p such that n > p > 1 and a A-term C, , with the
following behavior:

Given a stack wug.7g:

Cn_’p * Ug.Tg > Uy * K,ip[Uo,ﬂ'o].?To

Where for all stack uq.71, K,}yp satisfies:
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The substitutive case The specification of Peirce's Law using interaction constants

The realizers C,

Consider n, p such that n > p > 1 and a A-term C, , with the
following behavior:

Given a stack wug.7g:

Cn_’p * Up.Tg »~ Up K K,ip[Uo,ﬂ'o].?To

Where for all stack uq.71, K,}yp satisfies:

1 2
Kip * wvrm = uo % K[ uo,mo,u1,m].mo

Mauricio GUILLERMO & Alexandre MIQUEL Specifying Peirce's Law in Classical Realizability



The substitutive case The specification of Peirce's Law using interaction constants

The realizers C,

Consider n, p such that n > p > 1 and a A-term C, , with the
following behavior:

Given a stack wug.7g:

Cn_’p * Up.Tg »~ Up K K,ip[Uo,ﬂ'o].?To

Where for all stack uq.71, K,}yp satisfies:

1 2
Kip * wvrm = uo % K[ uo,mo,u1,m].mo
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The substitutive case The specification of Peirce's Law using interaction constants

The realizers C,

Consider n, p such that n > p > 1 and a A-term C, , with the
following behavior:

Given a stack wug.7g:

Cn_’p * Ug.Tg > Uy * K,ip[Uo,ﬂ'o].?To

Where for all stack uq.71, K,}yp satisfies:

K,{p * U1 = Uy *x K,%‘p[ uo, 70, U1, T1].70

Where for all stack u,.mp, Ka p satisfies:

Mauricio GUILLERMO & Alexandre MIQUEL Specifying Peirce's Law in Classical Realizability



The substitutive case The specification of Peirce's Law using interaction constants

The realizers C,

Consider n, p such that n > p > 1 and a A-term C, , with the
following behavior:

Given a stack wug.7g:

Cn_’p * Ug.Tg > Uy * K,ip[Uo,ﬂ'o].?To

Where for all stack uq.71, K,{ satisfies:

p
1 2
Kip * wvrm = uo % K[ uo,mo,u1,m].mo

Where for all stack u,.mp, Ka p satisfies:
Kr?,p *  Up.Tp = U, *x T
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Interaction constants

The substitutive case The specification of Peirce's Law using interaction constants

The realizers C,

Consider n, p such that n > p > 1 and a A-term C, , with the
following behavior:

Given a stack wug.7g:

Cn_’p * Ug.Tg > Uy * K,ip[Uo,ﬂ'o].?To

Where for all stack uq.71, K,{ satisfies:

p
1 2
Kip * wvrm = uo % K[ uo,mo,u1,m].mo

Where for all stack u,.mp, Ka p satisfies:
Kr?,p *  Up.Tp = U, *x T

K}, puts the p-th u; in head position and restores the initial
stack 7.
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The substitutive case The specification of Peirce's Law using interaction constants

The realizers C,, (cont.)

Proposition

The terms C, , are universal realizers of Peirce’s Law.
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The substitutive case The specification of Peirce's Law using interaction constants

The realizers C,, (cont.)

Proposition

The terms C, , are universal realizers of Peirce's Law.

Are there other universal realizers for Peirce's Law?
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The substitutive case The specification of Peirce's Law using interaction constants

The game Gy

¢ (¥ played moves) | I v

Mauricio GUILLERMO & Alexandre MIQUEL Specifying Peirce's Law in Classical Realizability



The substitutive case The specification of Peirce's Law using interaction constants

The game Gy

¢ (¥ played moves) | I v
to
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The substitutive case The specification of Peirce's Law using interaction constants

The game Gy

¢ (¥ played moves) | I v
to Up.7Q
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The substitutive case The specification of Peirce's Law using interaction constants

The game Gy

¢ (¥ played moves) | I v
(initialisation phase) 0 | to Uo7
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The substitutive case The specification of Peirce's Law using interaction constants

The game Gy

¢ (¥ played moves) | I v
(initialisation phase) 0 | oy * wp.mo

Mauricio GUILLERMO & Alexandre MIQUEL Specifying Peirce's Law in Classical Realizability



The substitutive case The specification of Peirce's Law using interaction constants

The game Gy

¢ (¥ played moves) | I v
(initialisation phase) 0 | tp * wp.mg >
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The substitutive case The specification of Peirce's Law using interaction constants

The game Gy

¢ (¥ played moves) | I v
(initialisation phase) 0 | to * wp.mg > o 0
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The substitutive case The specification of Peirce's Law using interaction constants

The game Gy

¢ (¥ played moves) | I v
(initialisation phase) 0 | to * wp.m = Uy * t. 7o
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The substitutive case The specification of Peirce's Law using interaction constants

The game Gy

¢ (¥ played moves) | I v
(initialisation phase) 0 | to * wp.m = Uy * t. 7o
t1
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The substitutive case The specification of Peirce's Law using interaction constants

The game Gy

¢ (¥ played moves) | I v
(initialisation phase) 0 | to * wp.m = Uy * t. 7o
t1 uy.m1
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The substitutive case The specification of Peirce's Law using interaction constants

The game Gy

¢ (¥ played moves) | I v
(initialisation phase) 0 | to * wp.m = Uy * t. 7o
{ny.m} | & uy.m
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The substitutive case The specification of Peirce's Law using interaction constants

The game Gy

¢ (¥ played moves) | I v
(initialisation phase) 0 | to * wp.m = Uy * t. 7o
{np.m} |1+ wm
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The substitutive case The specification of Peirce's Law using interaction constants

The game Gy

¢ (¥ played moves) | I v
(initialisation phase) 0 | to * wp.m = Uy * t. 7o
{npm} |t wm >

Mauricio GUILLERMO & Alexandre MIQUEL Specifying Peirce's Law in Classical Realizability



The substitutive case The specification of Peirce's Law using interaction constants

The game Gy

¢ (¥ played moves) | I v
(initialisation phase) 0 | to * wp.m = Uy * t. 7o
{ny.m} |t x wm > w 0
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The substitutive case The specification of Peirce's Law using interaction constants

The game Gy

¢ (¥ played moves) | I v
(initialisation phase) 0 | to * wp.m = Uy * t. 7o
{nym} |t x wm > uw * tr 7o
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The substitutive case The specification of Peirce's Law using interaction constants

The game Gy

¢ (¥ played moves) | I v
(initialisation phase) 0 | to * wp.m = Uy * t. 7o
{nym} |t x wm > uw * tr 7o

{u1.71,. .., th
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The substitutive case The specification of Peirce's Law using interaction constants

The game Gy

¢ (¥ played moves) | I v
(initialisation phase) 0 | to * wp.m = Uy * t. 7o
{nym} |t x wm > uw * tr 7o

{U1.7T1,...7 ty Up.Tn
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The substitutive case The specification of Peirce's Law using interaction constants

The game Gy

¢ (¥ played moves) | I v
(initialisation phase) 0 | to * wp.m = Uy * t. 7o
{nym} |t x wm > uw * tr 7o

{u1.71,..., un.mn} | tn Up.Th
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The substitutive case The specification of Peirce's Law using interaction constants

The game Gy

¢ (¥ played moves) | I v
(initialisation phase) 0 | to * wp.m = Uy * t. 7o
{nym} |t x wm > uw * tr 7o

{u1.m1,..., up.mn} | th  *  UpTR
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The substitutive case The specification of Peirce's Law using interaction constants

The game Gy

¢ (¥ played moves) | I v
(initialisation phase) 0 | to * wp.m = Uy * t. 7o
{nym} |t x wm > uw * tr 7o

{ui.m1,.. ., up.mn} | th * UpTy -
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Interaction constants

The substitutive case The specification of Peirce’s Law using interaction constants

The game Gy

¢ (¥ played moves) | I v
(initialisation phase) 0 | to * wp.m = Uy * t. 7o
{nym} |t x wm > uw * tr 7o

{ui.m1,.. ., up.mn} | th * UpTy -

7 wins iff at any time, for some u,.7, previous move, the process
Up*TQ arrives on execution.
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Interaction constants

The substitutive case The specification of Peirce's Law using interaction constants

The game Gy

¢ (¥ played moves) | I v
(initialisation phase) 0 | to * wp.m = Uy * t. 7o
{nym} |t x wm > uw * tr 7o

{umim, ..., upmp} | th *x UpTy > U, K* T

7 wins iff at any time, for some u,.7, previous move, the process
Up*TQ arrives on execution.
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Interaction constants

The substitutive case The specification of Peirce's Law using interaction constants

The game Gy

¢ (¥ played moves) | I v
(initialisation phase) 0 | to * wp.m = Uy * t. 7o
{nym} |t x wm > uw * tr 7o

{umim, ..., upmp} | th *x UpTy > U, K* T

7 wins iff at any time, for some u,.7, previous move, the process
upxmo arrives on execution. Otherwise V wins.

Mauricio GUILLERMO & Alexandre MIQUEL Specifying Peirce's Law in Classical Realizability



Interaction constants
The specification of Peirce's Law using interaction constants

The substitutive case

The game G (cont.)

1
C";P * Up.T9g »~ Up X Kn’p[U(),ﬂ'o].ﬂ'o

1 2
K,,’p *x up.m1 o~  Up *x Kn_p[uO,ﬂ'o,ul,ﬂ'l].Tro

K,ﬁp *  UpTp = U, * T

The terms C, , are uniform winning strategies for Gg, in the sense
that all plays have the very same structure:
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Interaction constants
The specification of Peirce's Law using interaction constants

The substitutive case

The game G (cont.)

1
C";P * Up.mg > Uy * Kn’p[U(),ﬂ'o].ﬂ'o

1 2
K,,’p *x up.m1 o~  Up *x Kn_p[uO,ﬂ'o,ul,ﬂ'l].Tro

K,ﬁp *  UpTp = U, * T

The terms C, , are uniform winning strategies for Gg, in the sense
that all plays have the very same structure:

@ They all have the same length (2n+1 moves)
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Interaction ¢ ints
The speci of Peirce's Law using interaction constants

The substitutive case

The game G (cont.)

1
C";P * Up.mg > Uy * Kn’p[U(),ﬂ'o].ﬂ'o

1 2
K,,’p *x up.m1 o~  Up *x Kn_p[uO,ﬂ'o,ul,ﬂ'l].Tro

K,ﬁp *  UpTp = U, * T

The terms C, , are uniform winning strategies for Gg, in the sense
that all plays have the very same structure:

@ They all have the same length (2n+1 moves)
@ In all of they 3 wins using the p-th move of V.
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Interaction constants

The substitutive case The specification of Peirce's Law using interaction constants

The game G (cont.)
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Interaction constants

The substitutive case The specification of Peirce's Law using interaction constants

The game G (cont.)

Syntactic definition of Gg

We describe the states of Gg by pairs (p, /) where p € A x [T is the
head of the current thread and ¢ C I is the set of V-moves.
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Interaction constants

The substitutive case The specification of Peirce's Law using interaction constants

The game G (cont.)

Syntactic definition of Gg

We describe the states of Gg by pairs (p, /) where p € A x [T is the
head of the current thread and ¢ C I is the set of V-moves.

Given a stack ug.mg, we define the set W, , of winning states as
follows:
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Interaction constants

The substitutive case The specification of Peirce's Law using interaction constants

The game G (cont.)

Syntactic definition of Gg

We describe the states of Gg by pairs (p, /) where p € A x [T is the
head of the current thread and ¢ C I is the set of V-moves.

Given a stack ug.mg, we define the set W, , of winning states as
follows:

—— (if p > u m for some u.7 € {)
<p7€> € Wuo.ﬂ'o
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Interaction constants

The substitutive case The specification of Peirce's Law using interaction constants

The game G (cont.)
[ Syntactic definitionof &

Syntactic definition of Gg

We describe the states of Gg by pairs (p, /) where p € A x [T is the
head of the current thread and ¢ C I is the set of V-moves.

Given a stack ug.mg, we define the set W, , of winning states as
follows:

—— (if p > u m for some u.7 € {)
<p7€> € Wuo.ﬂ'o

(t*um, LU{ur}) € Wyyn, forall um el
(p,f) € Wi

(if p > uUp * l’.ﬂ'o)
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The substitutive case The specification of Peirce's Law using interaction constants

The game G (cont.)

Definition

A closed A-term tj is a winning strategy for G iff
<to*U0.7T0,@> € WU().TI’() for all stack ug.mg
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The substitutive case

The specification of Peirce's Law using interaction constants

Adequacy

Definition

A closed A-term tj is a winning strategy for G iff
<to*U0.7T0,@> € WU().TI’() for all stack ug.mg

Proposition: Adequacy of lIF w.r.t. Go
If 5 is a winning strategy for Gg then t; IIF VX(—X = X) = X.
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Interaction constants
The specification of Peirce's Law using interaction constants

The substitutive case

Adequacy

Definition
A closed A-term tj is a winning strategy for G iff
(to * ug.mo, ) € Wy, r, for all stack ug.mo

Proposition: Adequacy of IIF w.r.t. Gg
If 5 is a winning strategy for Gg then t; IIF VX(—X = X) = X.

Consider a pole 1l and a falsity value X. We must prove:

tolF ("X =X)=X
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Interaction constants

The substitutive case The specification of Peirce's Law using interaction constants

Adequacy (cont.)

... Take up.mo € ||(-X = X) = X||
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Interaction constants

The substitutive case The specification of Peirce's Law using interaction constants

Adequacy (cont.)

... Take up.mo € ||(-X = X) = X||

If (p,0) € Wyyr, and ¢ C —X then p € L.
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Interaction constants

The substitutive case The specification of Peirce's Law using interaction constants

Adequacy (cont.)

... Take up.mo € ||(-X = X) = X||

Lemma

If (p,0) € Wyyr, and ¢ C —X then p € L.

N

Proof.
Induction on the derivation of (p, ) € Wy, r,
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Interaction constants

The substitutive case The specification of Peirce's Law using interaction constants

Adequacy (cont.)

... Take up.mo € ||(-X = X) = X||

Lemma

If (p,0) € Wyyr, and ¢ C —X then p € L.

N

Proof.

Induction on the derivation of (p, ) € Wy, r,

Since (tg x ug.mo, ) € Wy, .z, we have the result.
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Interaction constants

The substitutive case The specification of Peirce's Law using interaction constants

Completeness

Proposition: Completeness of II- w.r.t. Gg

Suppose the calculus of realizers contains:
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Interaction constants

The substitutive case The specification of Peirce's Law using interaction constants

Completeness

Proposition: Completeness of II- w.r.t. Gg

Suppose the calculus of realizers contains:

@ infinitely many interaction constants
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Interaction constants

The substitutive case The specification of Peirce's Law using interaction constants

Completeness

Proposition: Completeness of II- w.r.t. Gg

Suppose the calculus of realizers contains:
@ infinitely many interaction constants

@ infinitely many substitutive and non generative stack constants
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Interaction constants

The substitutive case The specification of Peirce's Law using interaction constants

Completeness

Proposition: Completeness of II- w.r.t. Gg

Suppose the calculus of realizers contains:
@ infinitely many interaction constants
@ infinitely many substitutive and non generative stack constants

If tp IF VX(=X = X) = X then t is a winning strategy for the
game G
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Interaction constants

The substitutive case The specification of Peirce's Law using interaction constants

Completeness

Proposition: Completeness of II- w.r.t. Gg

Suppose the calculus of realizers contains:
@ infinitely many interaction constants
@ infinitely many substitutive and non generative stack constants

If tp IF VX(=X = X) = X then t is a winning strategy for the
game G

Proof.
Consider (Kj.a;j)ien like in the red hypothesis and 'fresh’ for t.

Ol

Mauricio GUILLERMO & Alexandre MIQUEL Specifying Peirce’'s Law in Classical Realizability




Interaction constants

The substitutive case The specification of Peirce's Law using interaction constants

Completeness

Proposition: Completeness of II- w.r.t. Gg

Suppose the calculus of realizers contains:
@ infinitely many interaction constants
@ infinitely many substitutive and non generative stack constants

If tp IF VX(=X = X) = X then t is a winning strategy for the
game G

Proof.
Consider (Kj.a;j)ien like in the red hypothesis and 'fresh’ for t.

to wins the game Gg against ¥V playing (ki.c;)ien

Mauricio GUILLERMO & Alexandre MIQUEL Specifying Peirce’'s Law in Classical Realizability



Interaction constants
The specification of Peirce's Law using interaction constants

Completeness (cont.)

By threads method:
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Interaction constants
The specification of Peirce's Law using interaction constants

Completeness (cont.)

By threads method:

Consider the sequence of the threads of the play
Qo) tp * Koag = Ko * ti.ap
Ql) 1 x Kiar = Ko * tb.og
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Interaction constants
The specification of Peirce's Law using interaction constants

Completeness (cont.)

By threads method:

Consider the sequence of the threads of the play
Qo) to * Koag > Ko * ti.ag
Ql) 1 x Kiog = Ko * t.ag

Q,’) i x Kiqj >
Qiy1) 0
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Interaction constants
The specification of Peirce's Law using interaction constants

Completeness (cont.)

By threads method:

Consider the sequence of the threads of the play
Qo) to * Koag > Ko * ti.ap
Ql) 1 x Kiog = Ko * t.ag

Q,’) i x Kiqj = Ko tiyi.00
Qit1)
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Interaction constants
The specification of Peirce's Law using interaction constants

Completeness (cont.)

By threads method:
Consider the sequence of the threads of the play

Qo) to * Kop.ap - Ko * t.ap
Ql) 1 x Kiog - Ko * t.apg
Q,’) i x Kiqj = Ko * tiy1.00

Qiy1) tix1 * Kiyi.ait1
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Interaction constants
The specification of Peirce's Law using interaction constants

Completeness (cont.)

By threads method:
Consider the sequence of the threads of the play

Qo) to * Kop.ap - Ko * t.ap
Ql) 1 x Kiog - Ko * t.apg
Q,’) i x Kiqj = Ko * tiy1.00

Qit1) tiy1 x Kipr.aip
Define 1L := (U;cy Qi)€
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Interaction constants
The specification of Peirce's Law using interaction constants

Completeness (cont.)

e Consider X := {ap}.
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Interaction constants
The specification of Peirce's Law using interaction constants

Completeness (cont.)

e Consider X := {ap}.

e Kol =X = Xsince ty IF (-X = X) = X and
to * Kp.g §é AL,
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Interaction constants
The specification of Peirce's Law using interaction constants

Completeness (cont.)

e Consider X := {ap}.

e Kol =X = Xsince ty IF (-X = X) = X and
to * Kp.g §é AL,

@ Then there is a term t IF =X s.t. Ky x t.ag belongs to a
thread, namely Q,_;.
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Interaction constants
The specification of Peirce's Law using interaction constants

Completeness (cont.)

e Consider X := {ap}.

e Kol =X = Xsince ty IF (-X = X) = X and
to * Kp.g §é AL,

@ Then there is a term t IF =X s.t. Ky x t.ag belongs to a
thread, namely Q,_;.

@ Therefore, Q, = th(t * Kp.ap).
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Krivine's Cla

Interaction constants

The non substituti The specification of Peirce's Law using interaction constants

Conc

Completeness (cont.)

Consider X := {ag}.
Ko I =X = Xsince tp IF (-X = X) = X and
to * Kp.g §é AL,

@ Then there is a term t IF =X s.t. Ky x t.ag belongs to a
thread, namely Q,_;.

Therefore, Q, = th(t x Kpy.cp).
SincetIFX= 1, K, IfFX, Kyxaggl
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Interaction constants
The specification of Peirce's Law using interaction constants

The substitutive case

@ Then, there is an n such that K, x ag € Q.
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Interaction constants
The specification of Peirce's Law using interaction constants

The substitutive case

@ Then, there is an n such that K, x ag € Q.

@ We have p < n since K;'s are non generative and does not
occur in ty.
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Interaction constants
The specification of Peirce's Law using interaction constants

The substitutive case

@ Then, there is an n such that K, x ag € Q.

@ We have p < n since K;'s are non generative and does not
occur in ty.

@ Moreover, K;'s are inert and then the threads of this play are
the following:
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Interaction constants
The specification of Peirce's Law using interaction constants

The substitutive case

@ Then, there is an n such that K, x ag € Q.

@ We have p < n since K;'s are non generative and does not
occur in ty.

@ Moreover, K;'s are inert and then the threads of this play are
the following:

Q()) to * Ko.ap = Ky * ti.ag
prl) ti1 % Kpfl.apfl = Ky * tp-0p

Qn) t, * Kp.ap - Ko * o
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The substitutive case The specification of Peirce's Law using interaction constants

Completeness (cont.)

... Know, since K;'s and «;'s are substitutives, we can reason by
(dynamic) substitution, thus proving the result. O
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The substitutive case

The specification of Peirce's Law using interaction constants

Completeness (cont.)

... Know, since K;'s and «;'s are substitutives, we can reason by
(dynamic) substitution, thus proving the result. O

RENEILS

All plays played by ty have the same lenght (n + 1 threads) and
chooses the p-th V-move to win.
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Interaction constants
The specification of Peirce's Law using interaction constants

The substitutive case

... Know, since K;'s and «;'s are substitutives, we can reason by
(dynamic) substitution, thus proving the result. O

All plays played by ty have the same lenght (n + 1 threads) and
chooses the p-th V-move to win.

Conclusion

For a Krivine machine compatible with interaction
instructions, all realizers of Peirce’s Law are uniform w.s.
for Go, i.e.: they have the same behaviour than a
suitable C, p.
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A wild realizer

The non substitutive case

Consider a term t such that for any stack u.m:

txum = uxk.am
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A wild realizer

The non substitutive case

Consider a term t such that for any stack u.m:
txum = u x> uxkm

suppose k satisfies for any stack v”.7":

ke > u" .7t Ifu” £ o

any process otherwise

kxu" 7"~
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A wild realizer

The non substitutive case

Consider a term t such that for any stack u.m:
txum = u x> uxkm

suppose k satisfies for any stack v”.7":

ke x u" .7t Ifu” #

or maybe...  otherwise

kxu' 7" -
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A wild realizer

The non substitutive case

Consider a term t such that for any stack u.m:
txum = u x> uxkm
suppose k satisfies for any stack v”.7":

ke x "7 M0 #

BANG! otherwise

kxu".7" —

Mauricio GUILLERMO & Alexandre MIQUEL Specifying Peirce's Law in Classical Realizability



A wild realizer

The non substitutive case

Consider a term t such that for any stack u.m:
txum = u x> uxkm
suppose k satisfies for any stack v”.7":

ke x "7 M0 #

BANG! otherwise

kxu".7" —

Proposition

tlF VX (=X = X) = X
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A wild realizer

The non substitutive case

Consider a term t such that for any stack u.m:

txum = u 7> uxkm

suppose k satisfies for any stack v”.7":

ke x "7 M0 #

BANG! otherwise

kxu".7" —

Proposition
tIFVX(=X = X) = X
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A wild realizer

The non substitutive case

Consider a term t such that for any stack u.m:
txum = u x> uxkm
suppose k satisfies for any stack v”.7":

ke x "7 M0 #

BANG! otherwise

kxu".7" —

Proposition

tlF VX (=X = X) = X

@ Consider a pole I and a falsity value X.

Mauricio GUILLERMO & Alexandre MIQUEL Specifying Peirce's Law in Classical Realizability



A wild realizer

The non substitutive case

Consider a term t such that for any stack u.m:
txum = u x> uxkm
suppose k satisfies for any stack v”.7":

ke x "7 M0 #

BANG! otherwise

kxu".7" —

Proposition

tlF VX (=X = X) = X

@ Consider a pole I and a falsity value X.
@ Pick a term v lF =X = X and a stack 7 € X.
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A wild realizer

The non substitutive case

Consider a term t such that for any stack u.m:
txum = u x> uxkm
suppose k satisfies for any stack v”.7":

ke x "7 M0 #

BANG! otherwise

kxu".7" —

Proposition

tlF VX (=X = X) = X

@ Consider a pole I and a falsity value X.
@ Pick a term v lF =X = X and a stack 7 € X.

@ We must prove t xu.m € L.

Mauricio GUILLERMO & Alexandre MIQUEL Specifying Peirce's Law in Classical Realizability



A wild realizer

The non substitutive case

Consider a term t such that for any stack u.m:
toum = u *xm = uxkm

suppose k satisfies for any stack v”.7":

ke x "7 M0 #

BANG! otherwise

kxu".7" —

Proposition

tlF VX (=X = X) = X

@ Consider a pole I and a falsity value X.
@ Pick a term v |F =X = X and a stack 7 € X.
@ We must prove t xu.m € L.

@ By antireduction, if v IF X we are done...
Mauricio GUILLERMO & Alexandre MIQUEL Specifying Peirce's Law in Classical Realizability



A wild realizer

The non substitutive case

txum = u x> uxkm
k satisfies for any stack u”.7":

ke x "7 M0 #£

BANG! otherwise

kxu' 7" -

Otherwise, it suffices to prove: ux k.m € 1L and for that, it
suffices to prove k IF —=X.

Consider u” I X. By assumption, v” # ' and hence
k% u". 7" = uxm which is in 1L because ul- X and 7 € X. O
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Playing wild
The non substitutive case

How works a wild realizer?
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Playing wild
The non substitutive case

How works a wild realizer?

Imagine you are arguing against someone....
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Playing wild
The non substitutive case

How works a wild realizer?

Imagine you are arguing against someone....
You want to be sure your opponent is wrong, so you stand for a
wrong argument...
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Playing wild
The non substitutive case

How works a wild realizer?

Imagine you are arguing against someone....

You want to be sure your opponent is wrong, so you stand for a
wrong argument...

Throughout the discussion, you imagine your opponent’s possible
arguments, to anticipate...
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Playing wild
The non substitutive case

How works a wild realizer?

Imagine you are arguing against someone....

You want to be sure your opponent is wrong, so you stand for a
wrong argument...

Throughout the discussion, you imagine your opponent’s possible
arguments, to anticipate...

Hence, if your opponent gives an argument that you know how to
refute, you can go conviced your opponent is wrong!
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Playing wild
The non substitutive case

How works a wild realizer?

Imagine you are arguing against someone....

You want to be sure your opponent is wrong, so you stand for a
wrong argument...

Throughout the discussion, you imagine your opponent’s possible
arguments, to anticipate...

Hence, if your opponent gives an argument that you know how to
refute, you can go conviced your opponent is wrong!

Imagine the arguments of your opponent are of the form:

The process u.my never arrives on execution in our
discussion
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Playing wild
The non substitutive case

How works a wild realizer?

Imagine you are arguing against someone....

You want to be sure your opponent is wrong, so you stand for a
wrong argument...

Throughout the discussion, you imagine your opponent’s possible
arguments, to anticipate...

Hence, if your opponent gives an argument that you know how to
refute, you can go conviced your opponent is wrong!

Imagine the arguments of your opponent are of the form:

The process u.my never arrives on execution in our
discussion

If uxmy was yet on execution, you know he's wrong!
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Playing wild
The non substitutive case The specification of P s out interaction constants

Are there wild realizers?

In order to obtain a wild realizer, you can write a term cc’
satisfying:

cc’ evaluation
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Playing wild
The non substitutive case The specification of P s out interaction constants

Are there wild realizers?

In order to obtain a wild realizer, you can write a term cc’
satisfying:

cc’ evaluation

for all stacks u.m
cxum = Tlul*m = uxK[u,7x]m
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A
Playing wild
The non substitutive case The specification s ithout interaction constants

Are there wild realizers?

In order to obtain a wild realizer, you can write a term cc’
satisfying:

cc’ evaluation

for all stacks u.m
cxum = Tlul*m = uxK[u,7x]m

where this evaluation uses only the rules of the basic machine
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A
Playing wild
The non substitutive case The specification s ithout interaction constants

Are there wild realizers?

In order to obtain a wild realizer, you can write a term cc’
satisfying:

cc’ evaluation

for all stacks u.m
cxum = Tlul*m = uxK[u,7x]m

where this evaluation uses only the rules of the basic machine
and T[u] * 7 is the sole process with the stack 7 in this thread

Mauricio GUILLERMO & Alexandre MIQUEL Specifying Peirce's Law in Classical Realizability



A
Playing wild
The non substitutive case The specification s ithout interaction constants

Are there wild realizers?

In order to obtain a wild realizer, you can write a term cc’
satisfying:

cc’ evaluation

for all stacks u.m
cxum = Tlul*m = uxK[u,7x]m

where this evaluation uses only the rules of the basic machine
and T[u] * 7 is the sole process with the stack 7 in this thread

ke xu' . U # T[u]

Klu, ] x . 7" = .
Hx 7’ Otherwise
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A
Playing wild
The non substitutive case The specification s ithout interaction constants

Are there wild realizers?

In order to obtain a wild realizer, you can write a term cc’
satisfying:

cc’ evaluation

for all stacks u.m
cxum = Tlul*m = uxK[u,7x]m

where this evaluation uses only the rules of the basic machine
and T[u] * 7 is the sole process with the stack 7 in this thread

ke xu' . U # T[u]
H* 7’ Otherwise
where H is an inert constant and K is written using (eq)

Klu, ] x . 7" =
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Playing wild
The non substitutive case

Proposition

o IF VX(=X = X) = X
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Playing wild

The non substitutive case

Proposition

o IF VX(=X = X) = X

Proposition

cc’ is not a winning strategy for the game Gg
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Playing wild

The non substitutive case

Proposition

o IF VX(=X = X) = X

Proposition

cc’ is not a winning strategy for the game Gg

Proof.
We describe a winning strategy for V:

@ V initializes the game with the stack H.aqg

Ol

Mauricio GUILLERMO & Alexandre MIQUEL Specifying Peirce's Law in Classical Realizability



Playing wild

The non substitutive case

Proposition
cd IF YX(-X=X)=X

Proposition

cc’ is not a winning strategy for the game Gg

Proof.
We describe a winning strategy for V:

@ V initializes the game with the stack H.aqg

@ The first thread finishes on the process H x K[H, ag].co and
hence V must play K[H, ag]

Ol
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Playing wild

The non substitutive case

e V answers T[H].ag. Then, the second thread finishes on the

process H * ap.

@ Since the term H was not played before by V and 9 cannot
play again, V has win.
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The non substitutive case The specification of Peirce's Law without interaction constants

The game G,

Syntactic definition of G

We represent the J-current position by the set of the heads of all
threads currently played. The set of V played moves is ¢ C [1.
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Playing w
The non substitutive case The specification of Peirce's Law without interaction constants

The game G,

Syntactic definition of G
We represent the J-current position by the set of the heads of all
threads currently played. The set of V played moves is ¢ C [1.

—— (If p> u*mp for some p € P and u.m € /)
<P7€> € Wl/lo.ﬂo
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The non substitutive case ation of Peirce’s Law without interaction constants

The game G,

Syntactic definition of G

We represent the J-current position by the set of the heads of all
threads currently played. The set of V played moves is ¢ C [1.

—— (If p> u*mp for some p € P and u.m € /)
<P7€> € Wl/lo.ﬂo

(PU{txur},lU{un}) e W,

up.7Q
(P,l) e W,

ug. 7o

for all u.w el

(if p > up x t.mo; p € P)

Mauricio GUILLERMO & Alexandre MIQUEL Specifying Peirce's Law in Classical Realizability



The non substitutive case The specification of Peirce's Law without interaction constants

Definition

A closed \-term ty is a winning strategy for Gy iff
({to * up.mo},0) € W, . for all stack ug.mo
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The non substitutive case The specification of Peirce's Law without interaction constants

Definition

A closed \-term ty is a winning strategy for Gy iff
({to * up.mo},0) € W, . for all stack ug.mo

Proposition: Adequacy of lIF w.r.t. G

If iy is a winning strategy for G; then ty IIF VX(—X = X) = X.
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The non substitutive case The specification of Peirce's Law without interaction constants

Definition

A closed A\-term ty is a winning strategy for G; iff
({to * up.mo},0) € W, . for all stack ug.mo

Proposition: Adequacy of lIF w.r.t. G
If iy is a winning strategy for G; then ty IIF VX(—X = X) = X.

Ol
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The non substitutive case The specification of Peirce's Law without interaction constants

Definition

A closed A\-term ty is a winning strategy for G; iff
({to * up.mo},0) € W, . for all stack ug.mo

Proposition: Adequacy of lIF w.r.t. G
If iy is a winning strategy for G; then ty IIF VX(—X = X) = X.

If (P,¢) € W/ . and ¢ C —X, then PN L # (.

o)
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The non substitutive case The specification of Peirce's Law without interaction constants

Definition

A closed A\-term ty is a winning strategy for G; iff
({to * up.mo},0) € W, . for all stack ug.mo

Proposition: Adequacy of lIF w.r.t. G
If iy is a winning strategy for G; then ty IIF VX(—X = X) = X.

If (P,0) € W/

ug. 7o

and ¢ C X, then PN L # 0.

And proceed as for the Adequacy of Gg DJ
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The non substitutive case The specification of Peirce's Law without interaction constants

Completeness

Proposition: Completeness of lIF w.r.t. G

If tp IF VX(=X = X) = X then t is a winning strategy for the
game G
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The non substitutive case The specification of Peirce's Law without interaction constants

Completeness

Proposition: Completeness of lIF w.r.t. G

If tp IF VX(=X = X) = X then t is a winning strategy for the
game G

@ Suppose (to* ug.mo, D) & W/, . for some wup.mo.
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The non substitutive case The specification of Peirce's Law without interaction constants

Completeness

Proposition: Completeness of lIF w.r.t. G

If tp IF VX(=X = X) = X then t is a winning strategy for the
game G

@ Suppose (ty * ug.mo, ) ¢ W) . for some ug.mo.

0-70
e Consider a surjection ¢ : N — A s.t. ¢~1(t) is infinite for all t.
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The non substitutive case

Completeness

Proposition: Completeness of lIF w.r.t. G

If tp IF VX(=X = X) = X then t is a winning strategy for the
game G

@ Suppose (ty * ug.mo, ) ¢ W) . for some ug.mo.

0-70
e Consider a surjection ¢ : N — A s.t. ¢~1(t) is infinite for all t.

e Define (Po, lo) := ({to * up.mo}, D) ¢ W,

0-770
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Playing w
The non substitutive case The specification of Peirce's Law without interaction constants

Completeness

Proposition: Completeness of lIF w.r.t. G

If tp IF VX(=X = X) = X then t is a winning strategy for the
game G

@ Suppose (ty * ug.mo, ) ¢ W) . for some ug.mo.

0-7T0

e Consider a surjection ¢ : N — A s.t. ¢~1(t) is infinite for all t.
@ Define <P0,€0> = ({to*Uo.ﬂ’o},(b> §é WISO.T('()
@ Suppose defined (P;, ¢;).
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Aw
Playing w
The non substitutive case The specification of Peirce's Law without interaction constants

Completeness

Proposition: Completeness of lIF w.r.t. G

If tp IF VX(=X = X) = X then t is a winning strategy for the
game G

@ Suppose (ty * ug.mo, ) ¢ W) . for some ug.mo.

0-7T0
e Consider a surjection ¢ : N — A s.t. ¢~1(t) is infinite for all t.
@ Define <P0,€0> = ({to*Uo.ﬂ’o},(b> §é WISO.T('()
@ Suppose defined (P;, ¢;).
o If p = uyx &(i).mo for some p € P;, by assumption there is a
stack wu.m s t.
(Piy1,0iv1) == (PiU{p(i) x ur}, £; U{u.w}) is not a winning
state.
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The non substitutive case The specification of Peirce's Law without interaction constants

Completeness

Proposition: Completeness of lIF w.r.t. G

If tp IF VX(=X = X) = X then t is a winning strategy for the
game G

@ Suppose (ty * ug.mo, ) ¢ W) . for some ug.mo.

0-7T0
e Consider a surjection ¢ : N — A s.t. ¢~1(t) is infinite for all t.
@ Define <P0,€0> = ({to*Uo.ﬂ’o},(b> §é WISO.T('()
@ Suppose defined (P;, ¢;).
o If p = uyx &(i).mo for some p € P;, by assumption there is a
stack wu.m s t.
(Piy1,0iv1) == (PiU{p(i) x ur}, £; U{u.w}) is not a winning
state.
e Otherwise <P,'+1,€,'+1> = <P,',€,'>




Playing
The non substitutive case The specification of Peirce's Law without interaction constants

Completeness (cont.)
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The non substitutive case

Completeness (cont.)

o Define P, := J;cy Pi and L€ :={J,cp, th(p)
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The non substitutive case

Completeness (cont.)

o Define P, := J;cy Pi and L€ :={J,cp, th(p)
e uyp I "X = Xsince tp IF (X =X) =X
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A wild
P
The non substitutive case The specification of Peirce's Law without interaction constants

Completeness (cont.)

o Define P, := J;cy Pi and L€ :={J,cp, th(p)
e uyp I "X = Xsince tp IF (X =X) =X
@ Thus ug * t.mp € th(p) for some tI- =X, p € P, and n € N.
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The non substitutive case

Completeness (cont.)

Define Py, := U;ey Pi and L€ :={J,cp, th(p)
up I =X = Xsince tp IF (-X = X) = X.
Thus up % t.mg € th(p) for some ¢ I =X, p € P, and n € N.

Pick " > n st. ¢(n') =t. We have p € P, because
Pn’ 2 Pn-
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The non substitutive case

Completeness (cont.)

o Define P, := J;cy Pi and L€ :={J,cp, th(p)
e up Iff =X = Xsince tp IF (-X = X) = X.
@ Thus ug * t.mp € th(p) for some tI- =X, p € P, and n € N.
@ Pick i > n st. ¢(n') =t. We have p € P,y because
Py 2 Py
e By definition, Pyy1 = P, U{¢(n') % u.m} for a suitable
stack u..
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The non substitutive case The specification of Peirce's Law without interaction constants

Completeness (cont.)

o Define P, := J;cy Pi and L€ :={J,cp, th(p)
e up Iff =X = Xsince tp IF (-X = X) = X.
@ Thus ug * t.mp € th(p) for some tI- =X, p € P, and n € N.
@ Pick i > n st. ¢(n') =t. We have p € P,y because
Py 2 Py
e By definition, Pyy1 = P, U{¢(n') % u.m} for a suitable
stack u..

@ Then txu.m ¢ I, ulff X and hence uxmy € L.
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The non substitutive case The specification of Peirce's Law without interaction constants

Completeness (cont.)

o Define P, := J;cy Pi and L€ :={J,cp, th(p)
e up Iff =X = Xsince tp IF (-X = X) = X.
@ Thus ug * t.mp € th(p) for some tI- =X, p € P, and n € N.
@ Pick i > n st. ¢(n') =t. We have p € P,y because
Py 2 Py
e By definition, Pyy1 = P, U{¢(n') % u.m} for a suitable
stack u..

@ Then txu.m ¢ I, ulff X and hence uxmy € L.

o Taking m>n' +1, (Pm,{m) € W, ,, which leads a
contradiction.
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Conclusion

conclusion

We have characterized the realizers of Peirce’'s Law, whenever the
evaluation is compatible with substitutive constants, as the
uniform winning strategies of a game Gy.

The goal for 3 in Gg is to put on execution a term u yet played by
the opponent and restore the initial stack.

The uniformity means that, for each realizer, all the plays have the
same length and finishes restoring the initial stack on the p-th
forall move.
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Conclusion

Conclusion (cont.)

We have characterized the realizers of Peirce’'s Law as the winning
strategies of a game G;.

The goal for 3 in G is to certify that one term u played by the

opponent arrives at any time on execution, together with the initial
stack mp.

Here the uniformity is broken and 3 can restore the stack of some
moves before they are played.
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