
Talk on Interactive Realizability - Chambery, June 2011

1

An Interactive Realizability Semantics
for non-constructive proofs

Summer School
“Réalisabilité à Chambéry”

14-17 June, 2011

Toward a model for Classical Logic

through parallel computations
and non-monotonic learning

Stefano Berardi http://www.di.unito.it/~stefano/
C.S. Dept. Torino University

Acknowledgements

• I thank P. Hyvernat for inviting me to give a talk to
Chambery Summer School on Realization, and C.
Raffalli and T. Hirschowitz for organizing the event.

• I thank F. Aschieri, G. Birolo and U. de’ Liguoro for
checking an earlier version of this talk, and for
suggesting several improvements.

If there are mistakes left in these slides they are of the
author …

2

Abstract
• Brower-Heyting-Kolmogorov-Realizability Semantics, from

now on BHK-Realizability, takes a constructive
mathematical proof of the existence of an individual with
a given property and automatically extracts a certified
functional program computing the individual. Extracted
programs are readable and may be improved.

• A proof using Classical Logic (say, by contradiction) may
still be interpreted as a program, but in a larger language,
including extra features like continuation or A-translation.
Extracted program are often unreadable and hard to
improve.

• Our goal is to define a Interactive Realizability Semantics
of Classical Logic, I-Realizability for short, based over the
idea of Learning in the limit, in the sense of Gold [Go],
which interprets classical proofs as parallel, non-
deterministic programs, more readable and easier to
improve. 3

§ 1. Introduction:
comparing the Functional paradigm

and the Learning paradigm

4

We outline:

• the principles of BHK Realizability, interpreting proofs
without Excluded Middle as “constructions” in a typed
functional language;

• the principle of Interactive Realizability, interpreting
Excluded Middle as a a learning operator.

This section only compare the respective ideas, and includes
no formal definition. For an introduction to BHK
realizability we refer to [Lo], Part 1.

Talk on Interactive Realizability - Chambery, June 2011

2

Realizability Semantics and
functional programs

• In BHK Realizability Semantics, all proofs of B with an
hypothesis A are interpreted by recursive maps f:AB,
called realizers. They take an individual a:A (“a of type
A”) and return an individual f(a):B (“f(a) of type B”).
Proof axioms are interpreted by primitive maps, proof
rules are interpreted by compositions of such maps.

• Properties of realizers f:AB are described by
specifications of the form xP.f(x)Q, with PA, QB
properties of individuals of type A, B.

• Realizability Semantics defines realizers in a functional
language, a typed lambda calculus extended with
primitive for data types and recursion, called system T .

5

Realizability Semantics and
Excluded Middle

• Excluded Middle for a predicate A(x) over natural
numbers is the axiom: EMA = x.(A(x)A(x))

• EM is the schema {EMA | A(x) arithmetical formula}

• A realizer r of EMA in BHK Realizability Semantic is a map
taking some mN and returning a triple <b,r1,r2>, such
that b is Boolean, and if b=True then r1 is a realizer of
A(x), if b=False then r2 is a realizer of A(x).

• Thus, if there is a realizer of EMA in BHK Realizability
Semantic, then the existence of a realizer for A(x) is a
decidable predicate. This requirement forbids the
existence of a BHK realizer of EMA for most arithmetical
predicates A(x): EM is false in BHK Realizability

6

Interactive Realizability Semantics and
Monotonic Learning

• In this talk we introduce a more general notion of
realizability, Interactive Realizability, which interprets
classical proofs using programs learning in the limit in the
sense of Gold [Go], and monotonic learning.

• We assume having a countable set Atom of atoms of
information, a set S of consistent sets of such atoms, and
a global knowledge state sS, common to all realizers.

• Proofs of B with assumption A are interpreted by recursive
maps f=<f1,f2>: A×SB×Pfin(Atom) we call “interactive
realizers”. An interactive realizer takes a global state sS,
some a:A, and returns some f1(a,s):B and some finite set of
atoms f2(a,s)=XAtom, to be added to sS. We interpret
adding X to s as a form of “monotonic learning”. 7

The interaction between a realizer and
the knolwedge state

• Whenever f2(a,s)=X (there is something to learn), we
recompute f2(a,s’)=X’Atom in the new state s’ obtained
adding X to s. We define in this way some increasing chain
ss’s’’... of states, and we assume that f2(a,s(n))= for
some n (that eventually the realizer f has nothing left to
learn).

• Properties of maps f=<f1,f2>:A×SB×Pfin(Atom) are
described by specifications of the form xP. (X=
)f(x)Q, with PA, QB. Whenever X=, that is, “f
has nothing left to learn”, f behaves like a construction of
BHK-Realizability, otherwise f extends the knowledge
state s by adding X to s. 8

Talk on Interactive Realizability - Chambery, June 2011

3

Realizability Semantics and 1-Excluded Middle
EM1 (1-Excluded Middle) = {x.(y. P(x,y)  y.P(x,y)) |

P(x,y) decidable, P complement of P}

• EM1 is an axiom schema stronger than constructive
Arithmetic, but weaker than EM [Ak]. There is no realizer
of EM1 in BHK Realizability Semantics.

• There is a realizer of EM1 in the I-Realizability. EM1 is
interpreted as a learning program, a construction of a
more general kind than those considered in BHK
Realizability.

• In order to interpret full EM as a learning program, we
have to consider non-monotonic learning (not included in
this talk), in which sometimes atoms are removed from
the knowledge state. In monotonic learning we may only
add atoms. 9

§ 2. BHK Realizability Semantics

10

• We introduce Goedel’s system T and a version BHK-
(Brouwer-Heyting-Kolmogorov) Realizability in which
realizers are terms of T.

• In the next section, we compare BHK Realizability with the
I-Realizability Semantics.

11

Goedel’s system T
a simply typed -calculus

• Goedel’s system T is a simply typed lambda calculus,
having as atomic types the Data Types:

Unit={unit}, Bool={True,False}, N={0,1,2,3,..},
L={nil, cons(n,nil), cons(n,cons(m,nil)), …} (n,mN)

• Types of T are closed under product types TU and
arrow types TU. If u:U in T, then xT.u:TU in T.

• Constants of T are if, unit, True, False, 0, Succ, and
primitive recursion recN, recL over integers and lists, n-
ple <.,…,.> and the i-th projection i, with the suitable
typing (see [Bo] for more details).

• BHK Realizability Semantics takes an arithmetical proof
and turns it into a program written in system T. 12

A Realizability Interpretation
of Formulas.

• Let A be any arithmetical formula. We define the
type|A| of the realizers of A by induction over A. Let
T={Unit,Bool,N,L}.

• |P(t1,…,tm)| = Unit
• |A1A2| = |A1|  |A2|
• |A1A2| = Bool  |A1|  |A2|
• |A1A2| = |A1| |A2|
• |xT.A| = T  |A|
• |xT.A| = T  |A|

Talk on Interactive Realizability - Chambery, June 2011

4

The extraction method implemented in Coq:
BHK’s Realizability

BHK’s realizability is a way of associating to each closed
arithmetical formula A all possible programs t:|A| of T
which realize what the formula says. We write t|-A for “t
realizes A”, and we call t a BHK realizer of A.
Definition (Realizers). Let t be a term of Goedel’s system T.

1. t |- P(t1,…,tn) iff P(t1,…,tn) = True

2. t |- AB iff 0t |- A and 1t |- B

3. t |- AB iff for all u, if u |- A, then t(u) |- B
4. t |- xA iff for all nN, t(n) |- A[n/x]

5. t |- AB iff 0t = True, 1t |- A, or 0t = False,2t |- B

6. t |- xA iff 0t = n and 1t |- A[n/x] 13

Informative clauses in BHK’s Realizability
• Clauses 1 of BHK Realizability says that a proof of an
atomic formula P(t1,…,tn) carries no information but the fact
that P(t1,…,tn) is true, and corresponds to a trivial program.

• Clauses 2-4 of BHK Realizability (AB, AB, xA) move
the information from a realizer to another one, but they
produce no new information.

• The clause 3 for t |- AB has the typical form u{a |-
A}. t(u) {b|- B} used in functional languages.

• Clause 5 produces some new information: TrueBool
whenever the left-hand-side of AB is realizable, FalseBool
whenever the right-hand-side of AB is realizable.

• Clause 6 produces some new information: some nN
such that A[n/x] is realizable. 14

BHK Realizers interprets proofs without
EM as constructions

• There is a general procedure taking an arithmetical
constructive proof of A (i.e., a proof without EM), and
producing a BHK realizer of A, a program whose ideas
mirrors the ideas of the proof. See Appendix for a sketch,
[Re], § 1.2 for more details, and [Bo] for a full account.

• If the proof uses Peano Induction, then we decided to
express the BHK realizer belongs to the system T.

• If the proof also uses induction over well-founded
decidable relations, we express the BHK realizer in the
system T + fixed point operator.

15

BHK Realizers allow to compute the
witness of an existential statement

• A constructive proof of xy.P(x,y), with P any formula, is
interpreted by some r|-xy.P(x,y), which takes some value
a for x and return some value b for y such that P(a,b).

• Such a b is called a “witness” of y.P(a,y).
• For instance, if L is the type of lists over N, a proof of
lL.mL.(Perm(l,m)Sorted(m)) is interpreted by a
realizer which is a sorting algorithm ([Re], § 2.1).

• The particular sorting algorithm we obtain depends on
the idea of the proof: there are proofs corresponding to
InsertSort, MergeSort, ...

16

Talk on Interactive Realizability - Chambery, June 2011

5

BHK Realizers does not interpret EM1

• We cannot interpret in BHK Realizability Semantics an
arithmetical proof including EM.

• The reason is that the boolean and the natural number
in Clauses 5, 6 are computed by recursive maps from the
parameters of the formula.

• This forbids realizers of some instance x.(y.P(x,y) 
y.P(x,y)) of EM1, for some decidable P(x,y).

• Indeed, any realizer of EM1 should provide a map taking
some nN and returning True if y.P(n,y) is realizable, False
if y.P(n,y) is realizable. By Turing’s proof of undecidability
of the Halting problem, there is no such a map for some
decidable P(x,y). 17

§ 3. Interactive Realizability Semantics

18

• We introduce Goedel’s system T extended with
knowledge states, then Interactive Realizability
Semantics, I-Realizability for short.

• We compare I-Realizability with BHK-Realizability
Semantics.

19

The set Atom of atoms of information

• Assume D1,..,Dn,D are data types in {Unit,Bool, N, L}.
• Let d=d1,…,dn. An atom is any sequence <P,d,d>, with

P:D1,..,Dn,DBool any closed term of T, and d1D1, …,
anDn, dD, such that P(d,d)=True in T.

• An atom <P,d,d> includes the information: xD.P(d,x) =
True is true, and provides an example of some dD such
that P(d,d)=True. Such a dD is called a witness of
xD.P(d,x)=True.

• We denote with Atom the set of all atoms. A set s of
atoms is consistent if it includes at most one witness for
any existential statement xD.P(d,x)=True. A set s of
atoms is complete if it it includes exactly one witness for
any existential statement xD.P(d,x)=True. Any
complete set is infinite and is not recursive.

20

The set S of knowledge states
• S is the set of finite consistent sets of atoms.
• S is the set of (possibly infinite) consistent sets of atoms.
• Pfin(Atom) is the set of (possibly inconsistent) finite sets of

atoms.
• Any s = {<P1,d1,d1>, …, <Pk,dk,dk>}  S includes the

information that finitely many xD.P(d,x)=True are true,
and exactly one witness for each of them.

• If sS includes no witness for xD.P(d,x)=True, we say
that s “guesses”xD.P(d,x)=False.

• This “guess” may be used during the computation of a
realizer, but often turns out to be false during the same
computation.

Talk on Interactive Realizability - Chambery, June 2011

6

21

Merging sets of atoms
• The merging of a consistent sS and of XPfin(Atom) is

some s’sX obtained by selecting one atom <P,d,d>X
for each xD.P(d,x)=True having no witness in s (such
that <P,d,e>s for all eD), and adding it to s.

• An example of merging. Let X = {<P,d,d>, <P,d,d’>}.
1. If <P,d1,…,dn,e>s for all eD, then the two possible

merging of s, X are s’=s{<P,d,d>} and s’= s{<P,d,d’>}.
We select and add to s one witness for xD.P(d,x)=True.

2. If <P,d,e>s for some eD, then the only possible merging
of s, X is s’=s. We do not add a witness for
xD.P(d,x)=True to s, because we already have one.

Merging corresponds to an (apparent) conflict in a parallel
computation, when two processes having the same goal
try to write over the same memory. It does not matter
which process wins: the goal is fulfilled in any case. 22

Monotonic Learning and
knowledge states

• A program with monotonic learning has a state sSfin, and
uses all information and assumptions from s.

• Whenever the program finds some example P(d,d)=True
which falsifies an assumption xD.P(d,x)=False of s, it
merges the one-element set {<P,d,d>} with s and restarts
all subcomputations which used this wrong assumption.

• This idea of monotonic learning is better expressed using
processes executed in parallel and non-deterministically.
However, in order to compare I-Realizability with BHK-
Realizability, we express monotonic learning programs in
some extension of Goedel’s system T. The relation
between learning programs and functional programs may
be made formal in term of Monads [Be].

23

An extension T S of Goedel’s system T
with knowledge states

We add to Goedel’s system T and to the language of
arithmetic the following constants.

• Atomic types: S denoting the set of finite consistent sets of
atoms, and Pfin(Atom), denoting the set of finite sets of
atoms.

• One costant s for each sS, and one constant X for each
XPfin(Atom)

• The union map U:Pfin(Atom), Pfin(Atom)Pfin(Atom)
For any P:D1,..,Dn,DBool closed term of T we add:
• the Skolem map: P:S,D1,..,DnD,
• the oracle P: S,D1,..,DnBool
• the update map: AddP: S,D1,..,Dn,DPfin(Atom) 24

Reduction rules for T S
TS is defined by adding to T the algebraic reductions

corresponding to the following equations:
1. U(X,Y) = XY
2. AddP(s,d,d) = {<P,d,d>}Pfin(Atom) if P(d,d) = True and

<P,d,d>s for no dD, =Pfin(Atom) otherwise.
3. P(s,d)=dD if <P,d,d>s, =some dummy value d0D

otherwise.
4. P(s,d)=True if <P,d,d>s for some dD, =False otherwise.
• U is union map, AddP adds atoms to the knowledge state.
• P is a Skolem map providing a witness for xD.P(d,x) =

True if any exists in s, P is an oracle deciding whether
xD.P(d,x)=True is true using s. The maps P, P, are
relativized to some sS.

Talk on Interactive Realizability - Chambery, June 2011

7

25

Some examples for P and P

• Let s={<P,0,13>, <P,13,205>}. Assume P:N,NBool is a
binary closed term of TS.

• We have P(s,0)=True and P(s,0) =13, because <P,0,13>s.
• We have P(s,13)=True and P(s,13)=205, because

<P,13,205>s.
• We have P(s,205)=False and P(s,205)=some dummy

valueN, because <P,205,m>s for all mN.
• Even if P(s,205)=False, we might have xN.P(205,x)=True

because, say, P(205,133)=True but s “does not know it”: by
this we mean: <P,205,m>s for all mN.

26

The Skolem maps and the oracles of T S
may be wrong

• The Skolem maps P(s,d) and the oracle P(s,d) of TS have an
extra argument s, they use the information and the guesses
from s, and they are computable, while ordinary Skolem
maps are not.

• The price to pay is that P(s,d) may fail to produce a witness
for xD.P(d,x)=True even if some exists, in the case no
such witness is available in s.

• For the same reason, we may have P(s,d)=False even if
xD.P(d,x)=True is true, if no witness for such statement is
available in s.

• The outputs of P, P rely on the guesses made by s, which
may turn out to be wrong. However, thorugh a learning
mechanism, a realizer of a of simply existential formula in TS
will eventually return a correct witnesses for the formula.

Terms and formulas having a “hole” of type S

• We call each sS a (finite) “knowledge state”.

• We call S-terms and S-formulas all terms t[.] and
formulas A[.] having a free variable (.):S as unique
subterm of type S.

• We denote by A[s] the result of replacing (.) with some
s:S. The constant s is the only subterm of type S in t[s],
A[s], and it represents the current knowledge state of
the realizer t[.] and of the formula A[.].

Interactive Realizability
(w.r.t. a knowledge state s)

• For each arithmetical formula we define a type ||A|| for
the interactive realizers of A. The definition is the same as in
BHK, but in the case of an atomic formula, in which we
choose: ||P(t1,…,tm)||= Pfin(Atom). Interactive realizers of
atomic formulas are (possibly inconsistent) sets of atoms,
while BHK realizers of atomic formulas are dummy constants.
• For any S-term t, S-formula A such that t:||A||, we define a
realizability notion t ||-s A, to be read: “t realizes A w.r.t. to a
knowledge state sS”. We call it “Interactive Realizability”.

• The goal of a realizer t w.r.t. the knowledge state sS is to
interact with the global knowledge state s, extending it in
order to make the formula A true.

Talk on Interactive Realizability - Chambery, June 2011

8

Interactive Realizability
(w.r.t. a knowledge state s)

The definition of Interactive Realizability is by induction over
the S-formula A. Differences with BHK’s Realizability are
marked red.

1. t ||-s P(t1,…,tk) iff t[s]–s = ø implies P(t1,…,tk)[s] = True

2. t ||-s AB iff 0t ||-s A and 1t ||-s B

3. t ||-s AB iff for all u ||-s A we have tu ||-s B

4. t ||-s xA iff for all nN we have tn ||-s A[n/x]
5. t ||-s AB iff either 0t[s]=True and 1t ||-s A, or

0t[s]=False and 2t ||-s B

6. t ||-s xA iff 0t[s]=n and 1t ||-s A[n/x]

t ||- A iff sS. t ||-s A 29

Atomic formulas in Interactive Realizability
• The clause 1 for t ||-s P(t1,…,tk) has the form sS. t[s]-
s=ø implies P(t1,…,tk)[s]= True. It is the only clause different
from BHK Realizability.

• Clause 1 defines the following loop, which we call the
learning loop: the realizer t merges some Xt[s]-s with
s, forming s’, then some X’t[s’]-s’ with s’, forming s”,
and so forth, producing some increasing chain ss’s’’...
of states.

• If and when we have =t[s(n)]-s(n) (no fresh atoms are
added to s(n)) we reached some state s(n) in which, according
to clause 1, we have P(t1,…,tk)[s(n)]= True. We may prove
that if a realizer is extracted from a proof, then t[s]s=
for all sS, in this case the loop ends when=t[s(n)].

30

The Fixed Point Theorem
• We may prove (using the fact that the map s:S|t[s]:
Pfin(Atom) is continuous w.r.t. the Scott topology over S)
the following Fixed Point result, which guarantees
termination of the learning loop.

Fixed Point Theorem. Assume t[.]:Pfin(Atom) is any S-term.
Then any sequences ss’s’’... of states defined by s(i)
s(i+1)  some merging of s(i), t[s(i)] for all i, terminates in
=t[s(n)]-s(n), for some n.

In the next slide we represent one possible learning loop
associated to a realizer t[.] validating an atomic formula A.
In this particular loop we add the maximum possible of
atoms at each step. By Fixed Point Theorem, though, we
are not forced to add the maximum of atoms at each step.

31

A possible learning loop for a realizer t[.]
of an atomic formula A

As0=False

As1=False

As2=False

The set S of states

s1= merging of s0, t[s0]

s3=merging of s2, t[s2]As3=False

…

s’ such that As’ =True

s2=merging of s1, t[s1]

t[s’]=

Talk on Interactive Realizability - Chambery, June 2011

9

Informative clauses in Interactive Realizability
• Clauses 2-4 of Interactive Realizability (AB, AB,
xA) move some information from a realizer to another
one, but they produce no new information.

• Clause 5 produces some new information: if
0t[s]=TrueBool then the left-hand-side of AB is
realizable, if 0t[s]=FalseBool then the right-hand-side of
AB is realizable.

• The value 0t[s] (and the side of AB which we realize)
may change as the knowledge state increase. By a
continuity argument, in any increasing chain ss’s’’...
of states, 0t[s] is eventually stationary either to True or
to False. In general, 0t[s] is not stationary to the same
value True (or False) on all sequences. 33

Informative clauses in Interactive Realizability
• Clause 6 produces some new information: some
witness 0t[s]=nN of xA (some nN such that A[n/x] is
realizable).

• The witness 0t[s]N of xA may change as the
knowledge state increases. By a continuity argument, in
any increasing chain ss’s’’... of states, 0t[s] is
eventually stationary to some value n0 (not to the same n0

on all sequences, though).

• The term 0t[s] has a multi-value limit, one for each
increasing chain ss’s’’... of states.

• These different limit values arise in different
computations, therefore are not in contradiction each
other.

34

Interactive Realizers interprets proofs
with EM1 as learning programs

• We may interpret proofs using EM1 into Interactive
Realizers of system TS (of TS + fixed point operators if the
proof uses well-founded induction). The procedure is almost
the same interpreting arithmetical constructive proof of A
into BHK realizer of A. There are two differences:

1. We change BHK interpretation of “atomic rules”, that is,
of all rules having atomic premises and conclusion. For
instance: reflexivity, symmetry and transitivity of equality.

2. We produce an interactive realizer of EM1.

• We explain these changes in the next slides. We refer to
the Appendix for a sketch of the interpretation of proofs into
interactive realizers, and to [As],[As3] for a full account. 35

The interactive realizer
associated to an atomic rule

… …
r1[s]||- P1(t1) … rn[s]||- Pm(tm)

--
r1[s] U … U rn[s]||- P(t)

• Why is it correct to take the union of all realizers? In
order to reach a state in which P(t) is true it is enough to
reach a state in which P1(t), ..., Pn(t) are true, i.e., a state s in
which r1[s] = … = rn[s] = Pfin(Atom).

• If we define r[s] = r1[s] U … U rn[s], when r[s]= we have
r1[s] = … = rn[s] = Pfin(Atom), therefore P1(t), ..., Pn(t) are
true, hence P(t) is true. Thus, r[s]||- P(t).

36

Talk on Interactive Realizability - Chambery, June 2011

10

How does a realizer work
for an atomic rule?… …

t[s]: A u[s]: B

t[s] U u[s]: C

• The realizer r[s] = t[s] U u[s] searches for some s such that
r[s]=, that is, t[s]=u[s]= , in order to validate the atomic
formulas A and B at the same time, and C as a consequence.

• The search for s such that t[s]=u[s]= terminates in
finitely many steps by the Fixed Point Theorem. However,
this search may be more complex than just searching for
some s such that t[s]= . For instance, if we look first for a
state in which t[s]= and A is true it might be that u[s]
and B false, and conversely (see next slide for an example).

37

A possible learning loop for a realizer r[.]=t[.]Uu[.]
of the conclusion of an atomic rule

As0=false, Bs0=false

As1=true, Bs1=false

As2=false, Bs2=true

The set S of states

s1=merging of s0, t[s0]

s3=merging of s2, t[s2]
As3=true, Bs3=false

…

s’ such that As’=Bs’=Cs’=true

s2=merging of s1, u[s1]

t[s’]=u[s’]=

The interactive realizer of EM1

• A realizer EP||- x.(y.P(x,y)  y.P(x,y)) of an instance
of EM1 may be defined by

EP[s](x) = <P(s,x), <P(s,x), >, y.AddP(s,x,y)>

• Given any value n for x, the realizer EP[s](n) returns the
truth value P(s,n), that is, the assumption made by s about
the truth value of y.P(n,y), and a realizer either of
y.P(n,y), or of y.P(n,y), according to the truth value of
P(s,n).

• Assume P(s,n)=True. Then s has some atom <P,n,m>
proving y.P(n,y). In this case <P(s,n),> is a realizer of
y.P(n,y): indeed, m=P(s,n) is a witness of y.P(n,y), and
:Pfin(Atom) is a realizer of P(n,m), because P(n,m) is true.

39

The learning loop for EM1

• Assume P(s,n)=False. Then s has no atom <P,n,m>
proving y.P(n,y), and y.AddP(s,n,y) is a realizer of
y.P(n,y), that is, for any m, AddP(s,n,m) realizes P(n,m).
Indeed:

1. If m is a witness of y.P(n,y), then the realizer EP learns
that y.P(n,y) is true. AddP(s,n,m) returns the singleton
{<P,n,m>}Pfin(Atom), to be merged to the state s.

2. If m is no witness, then P(n,m) is false, and therefore
P(n,m) is trivially realizable by AddP(s,n,m)=Pfin(Atom).

Remark that the behaviour of each instance EP(n) of the
realizer EP is quite simple. EP[.](n) may add at most one atom
<P,n,m> to the knowledge state s. 40

Talk on Interactive Realizability - Chambery, June 2011

11

Program extraction in Interactive Realizability
• Any proof of xy.P(x,y), with P atomic, and using EM1, is
interpreted by some r||-xy.P(x,y), which takes some
value a for x, and returns some value b[s]=0r(a)[s] for y and
some state-extending operator t[s]=1r(a)[s]:Pfin(Atom).

• After a finite loop of state-extending operations, we may
reach some s such that t[s]=: for such an s, the value of b[s]
is a witness of y.P(a,y).

• Interactive Realizability provides a model of the fragment
EM1 of classical logic in which all connectives, including , ,
are interpreted as in BHK Realizability. This is not the case
with all other constructive interpretations of classical logic.

• The model is a conservative extension of BHK Realizability
model for formulasy.P(a,y) with P atomic. 41

The interpretation of y.P(x,y)
for a non-atomic P

• Any proof of xy.P(x,y), with P not atomic, and using
EM1, is interpreted by some r ||- xy.P(x,y), which takes
some value a for x, and returns some value b[s]=0r(a)[s] for
y and some realizer t[s]=1r(a)[s] of P(a,b).

• By a continuity argument, we may prove that b[s]
stabilizes to some limit value v on all increasing chains
ss’s’’... of states (not to the same value v on all
sequences, though).

• We may prove that v is a witness of y.P(a,y) only if the
knowledge state s = nNs(n)S limit of the chain is
complete. The limit v over the chain is not computable from
the input a when P is not atomic. 42

What is the use of a witness “in the limit”?

• A realizer r ||- xy.P(x,y) for a non-atomic P has an
interest in computations, even if it provides a witness
b[s]=0r(a)[s] only in the limit of an increasing chain
ss’s’’... of states, and even if this limit is not computable
in general.

• Indeed, assume that we use xy.P(x,y) as a Lemma to
prove a goal z.Q(z), with Q atomic. Then, by a continuity
argument, we may prove that we only need to know the
value of b[s] over some finite state sS in order to compute a
witness c for z.Q(z). We do not have to compute the limit of
b[s], we only have to know some “approximation” of b[s] in
some finite state in order to fulfill our goal z.Q(z).

43

Summing up
• Interactive Realizability w.r.t. a knowledge state interprets

a classical proof of an existential statement y.P(a,y) with
P atomic as a realizer finding a witness, and using a
knowledge state sS increasing with time.

• Whenever the proof, by Excluded Middle, uses the truth
value of a formula y.P(n,y) which is not known in s, the
realizer makes a guessy.P(n,y) about this truth value.

• If and when the realizer finds a witness m for the
opposite statement y.P(n,y), it merges {<P,n,m>} with
the current knowledge state s. Then it removes all
subcomputations built over the guess y.P(n,y).

• Program extracted from classical proofs are associated
to many state-extending operators C, C’, C”,

44

Talk on Interactive Realizability - Chambery, June 2011

12

Comparing Realizability and Games
models for Classical Logic

• Interactive Realizability is a Realizability model of EM1 and
monotonic learning. Interactive Realizability originates
from Game-Theoretical model of EM1 and monotonic
learning, which uses the idea of 1-backtracking [As2].

• “Backtracking” in Game Theory is the possibility for a
player of coming back finitely many times to a previous
position of the play and changing his/her move from it.
Adding backtracking to Game Theory allows us to model
full Classical Logic [Coq].

• “1-Backtracking” is a restricted form of backtracking,
when coming back to a previous move is an irreversible
choice. 1-backtracking models the fragment EM1 of EM
[Be1], [Be2], [Be3]. 45

“Retracting” and Classical Logic:
a mathematical study

• The common ground between Interactive Realizability and
Game Theory with backtracking is the possibility of
“retracting a previous choice”: retracting a guess in
Interactive Realizability, retracting a previous move in
Game Theory with backtracking.

• The notion of retracting may be studied as a
mathematical notion, without any reference to
Realizability, nor to Game Theory.

• It turns out that retracting is a suitable notion for defining
a constructive model of Predicative Classical Arithmetic
[Be4] and of non-monotonic learning.

46

Bibliography

[Ak] Y. Akama, S. Berardi, S. Hayashi, U. Kohlenbach, An
Arithmetical Hierarchy of the Law of Excluded Middle
and Related Principles. LICS 2004, pages 192-201.

[As] F. Aschieri and S. Berardi. A Realization Semantics for
EM1-Arithmetic. TLCA, 2009.

[As2] F. Aschieri. Learning Based Realizability for HA + EM1
and 1-Backtracking Games: Soundness and Completeness.
Submitted to APAL.

[As3] F. Aschieri. Learning, Realizability and Games in
Classical Arithmetic. Ph. D. thesis, Torino, 2011.

47

Bibliography

[Be] S. Berardi and U. de‘ Liguoro. Interactive realizers. A
new approach to program extraction from non
constructive proofs. To appear on TOCL 2011:

http://tocl.acm.org/accepted/451deLiguoro.pdf
Interactive Realizers and Monads (Preliminary and
simpler version of the journal paper, 2010):

http://www.di.unito.it/~deligu/papers/InterRealMonads.pdf
[Be1] S. Berardi, T. Coquand, and S. Hayashi. Games with 1-

backtracking. APAL, 2010.
[Be2] S. Berardi and M. Tatsuta. Positive Arithmetic Without

Exchange Is a Subclassical Logic. In Zhong Shao, editor,
APLAS, volume 4807 of Lecture Notes in Computer
Science, pages 271-285. Springer, 2007. 48

Talk on Interactive Realizability - Chambery, June 2011

13

Bibliography

[Be3] S. Berardi and Y. Yamagata. A Sequent Calculus for
Limit ComputableMathematics. APAL, 153(1-3):111-126,
2008.

[Be4] S Berardi, U. de’ Liguoro: Toward the interpretation of
non-constructive reasoning as non-monotonic learning.
Inf. Comput. 207(1): 63-81 (2009)

[Bo] L. Boerio “Optimizing Programs Extracted from
Proofs”. Ph. D. Thesis, C. S. Dept. Turin University, 1997:
http://www.di.unito.it/~stefano/BoerioPhD-
OptimizingProgramsExtractedFromProofs.ps

[Coq] T. Coquand. A Semantics of Evidence for Classical
Arithmetic. JSL, 60(1):325-337, 1995.

49

Bibliography
[Go] E. M. Gold, Limiting Recursion, Journal of Symbolic Logic

30, p. 28-48 (1965)

[Lo] J. Longley, Realizability: a short course, Summer School
“Réalisabilité à Chambéry”, 2011. Part 1.

[Re] Realizability: Extracting Programs from proofs, Summer
School of Bertinoro, Italy, 2007, § 1.2 and § 2.1:

http://www.di.unito.it/~stefano/Berardi-
ProgramExtraction-SummerSchool-Bertinoro2007.ppt

50

§ 4. Learning and Parallel computations:
an example

51

• We introduce some classical proofs of simple
existential statements, and we use Interactive
Realizability in order to extract a non-trivial program
mirroring the ideas from the proof.

• We stress that we if allow non-determinism and
parallelism in our interpretation, we may extract
different and subtler programs from the same proofs.

Learning and Parallel computations

• Evaluating the learning loop associated to an interactive
realizers require the study of a parallel computation.

• The reason is that such a realizer may be the union of
state-extending operators C, C’, C”, ..., which may return
at the same time different and possibly alternative
witnesses to be added to our knowledge base.

• We obtain a different result if we add one witness at the
time, sequentially, or many witnesses in parallel.

• Two witnesses of the same statement may be in
(apparent) conflict with each other, and may require a
non-deterministic choice. However, we may prove: if we
start from a logically correct proof we obtain a correct,
terminating and deadlock-free parallel computation.

52

Talk on Interactive Realizability - Chambery, June 2011

14

A picture of the learning loop

53

t(s)

u(s)

v(s)

The current knowledge state sS is extended

C(s)
C’(s)
C”(s)

Current values for the output
change their value

State-expanding operators
add new atoms

O
U
T
P
U
T

The Minimum Principle
• Assume f:NN is any map. A minimum point of f is any

xN such that f(x)f(y). The minimum principle is the
statement Min=xy.f(x)f(y), that is, “f has a minimum
point”.

• A BHK realizer of Min should define some computable
functional F[f], taking a parameter f:NN, and returning
some minimum point n=F[f] of f.

• By a continuity argument, we may show that a computable
functional F should produce a minimum point n out of
finitely many values of f. This is impossible for some f.
Thus, there is no such an F, and no BHK realizer of Min.

• We describe now a classical proof of Min, then the
interactive realizer of Min extracted from it.

54

A classical proof of Min
• Assume f:NN is any map. We prove Min=xy.f(x)f(y)

using EM1, by induction over the well-founded relation
P(x,y)(f(x)>f(y)).

• A Proof of Min by EM1 and induction over P. We assume
that if f(y)<f(x) for some y, then Min holds, and we have to
prove Min. We use EM1 on P and x: y.f(x)>f(y) 
y.f(x)f(y), and case reasoning. Left-hand-side. If
y.f(x)>f(y), we pick some y such that f(x)>f(y), we apply the
induction hypothesis on y, and we deduce Min. Right-hand-
side. If y.f(x)f(y), then x is a minimum point of f. Q.E.D..

• If we express this proof in Natural Deduction, then we apply
the translation sketched in the Appendix, we obtain an
interactive realizer r[s] = <0[s], yN.C(y)[s]>, with 0:N,
and C||-y.f(0)f(y) a realizer.

55

An iteractive realizer of Min
We define the interactive realizer r[s] = <0[s], yN.C(y)[s]>,

with 0:N, and C||-y.f(0)f(y). Let P(x,y)(f(x)>f(y)).
1. The axiom EM1 on P, x is translated by P(s,x).
2. Case reasoning is translated by if(P(s,x), .,.).
3. In the case y.f(x)>f(y) (when P(s,x)=True) we pick an y

such that f(x)>f(y) with the Skolem map P(s,x), then we
translate ind. hyp. by a recursive call (P(s,x)).

4. In the case y.f(x)f(y) (when P(s,x)=False), x is a
minimum point of f, and we return x.

The realizer C(m) of f(0)f(m) is an instance of the right-
hand-side of EM1, and is equal to update map
AddP(s,0,m). In the case f(0)>f(m) (the guess
y.f(0)f(y) is wrong) C(m)[s] adds the atom <P,n,m>
with n=0[s] to the knowledge state s.

56

Talk on Interactive Realizability - Chambery, June 2011

15

Defining a Realizer
of the Minimum Principle

• Let P(x,y)  (f(x)>f(y)). We define r||-Min by r[s] = <0[s],
yN.C(y)[s]>, with 0:N, and C||-y.f(0)f(y) a realizer.

1. (x)[s] = if(P(s,x), (P(s,x)),x) :N
2. 0=(0) :N
3. C(y)[s] = AddP(s,0,y) ||- f(0)f(y)
• Let s={<P,0,13>, <P,13,205>}. In §2 we checked that:

P(s,0)=True, P(s,0)=13, P(s,13)=True, P(s,13)=205 and
P(s,205)=False. Thus, 0=(0) =(by P(s,0)=True) (P(s,0))
= (13) =(by P(s,13)=True) (P(s,13)) = (205) =(since
P(s,205)=False) 205. s “guesses” that 205 is a minimum
point of f because s includes no witness for y.f(205)>f(y).

• Let f(205)>f(133). Then C(205)[s]={<P,205,133>}: C finds
some counterexample to the “guess” of s and adds it to s.

57

Discussing the Realizer of
the Minimum Principle

• The component 0:N returns some 0[s], which is a
minimum point of f w.r.t. the knowledge state s: s makes
the “guess” y.P(0[s],y), that is, y.f(0[s])f(y),
because it has no evidence of the opposite.

• However, the guess made by s may be wrong, in this case
0[s] is no minimum point of f, and we have f(0[s])>f(p)
for some p.

• The realizer C(m)[s]:Pfin(Atom) asks for some mN. In the
case we have f(0[s])>f(m), then C(m)[s] adds the atom
<P,0[s],m> to the knowledge state s: it “learns that 0[s]
is wrong”.

58

What is the use of a witness “in the limit”?

• The interactive realizer r ||- xy.f(x)f(y) provideds a
witness for a non-atomic property y.f(x)f(y). It has an
interest for computations, even if it provides a witness 0[s]
only in the limit of an increasing chain ss’s’’... of states,
and even if this limit is not computable in general.

• In the rest of the talk, we use xy.f(x)f(y) as a Lemma
to prove goals of the form z.Q(z), with Q atomic. Then, by a
continuity argument, we may prove that we only need to
know the value of 0[s] over some finite state sS in order to
compute a witness c for z.Q(z). We will not have to
compute the limit of 0[s], we will only have to know some
“approximation” of 0[s] in some finite state.

59

An Interactive Realizer for the corollary
x.f(x) f(g1(x)) of Min (by T. Coquand)

• Let P(x,y)  (f(x)>f(y)). Assume f, g1:NN. Consider the
unequation (c1) f(n) f(g1(n)). The existence of a solution of
(c1) is a corollary of Min, if we set n=minimum point0 of f.

• Let C1=C(g1(0)):Pfin(Atom). Then <0,C1> is an interactive
realizer of x.f(n)f(g1(n)) interpreting the classical proof of
existence of a solution. C1 is a state-extending operator,
adding the atom <P,n,g1(n)> to s whenever n=0[s] and
f(n)>f(g1(n)) (i.e., c1 is false). In the new state s’, 0[s’]n.

• In the next picture, we fix a random choice of f, g1, then we
draw the only possible computation finding a solution of
the unequation (c1) using the operator C1. Whenever c1 is
false, we write c1NO. There is a unique state-extending
operator, therefore the computation is deterministic. 60

Talk on Interactive Realizability - Chambery, June 2011

16

A sample computation for the realizer C1
Start

c1NO

c1NO

c1NO

133

The computation returns only one possible solution: n=133

f(0)>f(g1(0)) Suppose g1(0)=13
s=, 0[s]=0, C1[s]={<P,0,13>}

f(13)>f(g1(13)) Suppose g1(13)=205
s={<P,0,13>}, 0[s]=13, C1[s]={<P,13,205>}

f(205)>f(g1(205)) Suppose g1(205)=133
s ={<P,0,13>, <P,13,205>}, 0[s]=205,
C1[s]={<P,205,133>}

f(133)f(g1(133)) End of computation
0[s]=133, s ={<P,0,13>, <P,13,205>, <P,205,133>},
C1[s]=

Let P(x,y)(f(x)>f(y))
A sample computation tree for a

sequential non-deterministic Realizer
• Let P(x,y)  (f(x)>f(y)). Assume f, g1, g2, g3, g4 :NN.

Consider the 4-equations system:
(ci) f(n)  f(gi(n)) (i=1,...,4)

• The existence of a solution for the system (c1)...(c4) is a
corollary of Min, if we set n=minimum point0 of f.

• The interactive realizer interpreting the classical proof of
existence of a solution is <0,C1U...UC4>, with Ci =
C(gi(0))[s] for i=1,...,4. Ci requires to add the atom <P,
0[s], gi(0[s])> to the current state s, whenever it is true
(whenever f(0[s]) > f(gi(0[s])) is true, i.e., ci is false).

• In the next picture, we draw the tree of all possible
computations finding a solution of this system, using
C1,...,C4. Whenever ci is false, we write ciNO. 62

A sample computation tree for a
sequential non-deterministic Realizer

• Each Ci tries and make the subgoal (ci) true: whenever the
current value n=0[s] for the minimum of f is wrong, Ci
adds the atom <P, n, gi(n)> to the knowledge state s. As a
result, s increases to s’, and the current value n for the
minimum is replaced by gi(n)=0[s’].

• We have a tree of possible computation because the
computation is non-deterministic. When more than one ci

is false we choose which Ci to apply, by choosing one node
of the form ciNO: the tree forks. The computation is
sequential: we can never apply in parallel Ci,Cj, because
two atoms <P,n,gi(n)>, <P,n,gj(n)> define different witness
for y.f(n)>f(y), hence are inconsistent each other.

63

Out[340]//TreeForm=

Start

c1NO

c1 c2 c3c4NO

389

c2NO

c1 c2c3NO

11

c4

c3 c4NO

c1 c2c3NO

c1 c2c3NO

11

c4

c4NO

c1NO

440

c2 c3NO

c1c2NO

177

c3 c4

c4

Start

c1NO

c1 c2 c3 c4NO

523

c2NO

c1NO

28

c2 c3 c4

c3NO

c1 c2NO

c1 c2 c3NO

643

c4

c3 c4NO

248

c4

A sample computation tree for the realizer {C1,C2,C3,C4}

Possible alternative solutions for n,
according to which clause we choose first

Talk on Interactive Realizability - Chambery, June 2011

17

A realizer corresponding to a parallel program
• Thesis:f1,f2:NN.g1,g2:N,NN.n,mN s.t.

(c1) f1(n)  f1(g1(n,m))

(c2) f2(m)  f2(g2(n,m))
• Proof (using Min of f1 and f2). n=minimum point 1 of f1,

m=minimum point2 of f2.
• The realizer associated to the proof is <1,<2 ,C1UC2>>

with Ci=C(gi(1,2)). The current values of n,m rely on
guesses made by the state s.

1. C1 tries and make the subgoal (c1) true: whenever the
current value n for the minimum of f1 is wrong, C1 adds
f1(n)>f1(g1(n,m)) to the knowledge state. As a result, the
current value n for the minimum is replaced by g1(n,m).

2. C2 tries and make the subgoal (c2) true, in the same way.

The learning loop associated to C1, C2

66

f1(1)(s), f1(g1(1, 2))(s)

1,(s), 2,(s)

f1(1)(s), f1(g1(1, 2))(s)

current knowledge state sS

C1(s) (subgoal c1)

C2(s) (subgoal c2)

Current values for the outputState-expanding operators

O
U
T
P
U
T

A sample computation tree
for a parallel non-deterministic realizer

• In the next picture we assume to be fixed some random
maps f1,f2,g1,g2, and we draw the computation tree for
the union realizers C1 U C2 in a sample case.

• A node labelled “c1NO” represent a situation in which
the subgoal c1 is false and we apply C1 to try and make
c1 true. The same for a node labelled “c2NO”.

• A node labelled “c12NO” represent a situation in which
both subgoals c1,c2 are false and we apply C1 and C2 in
parallel to try and make c1,c2 true. C1, C2, may be
applied in parallel, because they produce atoms
associated to different existential formulas y.f1(n)>f1(y),
y.f2(n)>f2(y), hence always consistent each other.

67

A sample computation tree
for a parallel non-deterministic realizer (2)

• A node labelled “c1” represent a situation in which c1 is
true and we cannot apply C1.

• A node labelled “c2” represent a situation in which c2 is
true and we cannot apply C2.

• A node labelled “c12” represent a situation in which
either c1 or c2 is true and cannot apply C1, C2 in
parallel.

• A pair of leaves of the tree labeled with two integers,
say, 733, 299, represent a situation in which the current
values n=733, m=299 for the minimum of f1,f2 solve the
original problem (w.r.t. some f1,f2,g1,g2 fixed at random).

68

Talk on Interactive Realizability - Chambery, June 2011

18

Out[486]//TreeForm=

Start

c1 c2NO

c1NO

c1NO

c1 c2NO

733 299

c12

c2NO

c1NO

355 658

c2 c12

c12NO

733 658

c2 c12

c12

A sample computation tree for the realizer {C1,C2}

Possible alternative
solutions for n,m

Appendix 1. The interpretation of
proofs in the Realizability Semantics

70

• We define a mapping sending any proof with
EM1 of A into an interactive realizer of A.

• With a minimum of changes the same
procedure works for BHK Realizability for
Intuitionistic Arithmetic.

71

Interactive Realizability
and BHK Realizability

• We define a map taking an arithmetical proof in natural
deduction form of some formula , using EM1 and returns
some interactive realizer r|| -  in Goedel’s system TS
extended with states. For a full account we refer to [As],
[As3].

• For a description of arithmetic in natural deduction form
we refer to [Re].

• The definition of the realizer is by induction over the proof.
• If we change the clauses for atomic formula and we drop

the realizer for EM1 we obtain a procedure which maps an
intuitionistic arithmetical proof of  into a BHK Realizer r| -
 in Goedel’s system T.

72

Extending Realizability to more Data Types

• All what we will say applies not just to a
language having types:

T=Unit, Bool, N (Natural Numbers),

L (Lists of Natural Numbers)
• but also to a language having types

T=any Bohm-Berarducci Data Types
• We refer Boerio Ph.d [Bo] for a procedure

transforming any intuitionistic proof of this
extended language into a BHK realizer.

Talk on Interactive Realizability - Chambery, June 2011

19

73

Dummy constants.
• For each simple type T of TS, we we will need some

dummy element dummyT:T (just dT for short), to be
used as default value for such type.

• We define dT:T by induction over T.
1. dummyPfin(Atom) = 
2. dummyUnit = unit
3. dummyBool = False
4. dummyN = 0
5. dummyL = nil
6. dummyTU = x. dummyU

7. dummyTU = <dummyT, dummyU>
74

Realizability Interpretation of Formulas.

• Let  be any closed formula and T={Unit,Bool,N,L}. We
recall the definition of the simple type |||| for all
interactive realizer r of . The definition of |||| is by
induction over .

• ||P(t1,…,tm)|| = Pfin(Atom)
• ||12|| = ||1||  ||2||
• ||12|| = Bool  ||1||  ||2||
• ||12|| = ||1|| ||2||
• ||xT.|| = T  ||||
• ||xT.|| = T  ||||
We obtain the definition || of the type of a BHK realizer of
 if we write |P(t1,…,tm)|= Unit in the atomic case

75

The Interactive Realizability
Interpretation of proofs

• If x=x1,…,xn is a vector of variables of types T1,…, Tn, then
|(x)| = T1…Tn|| is the type of all r||-(x).

• Let ={1,…,n} be a set of assumptions and x=x1,…,xk. We
write r||- (|-(x)) for: r is an interactive realizer of (x),
depending on free variables in x, and on the realizer
variables1||-1(x), …, k||-k(x).

• We may turn every proof of (x), with free assumptions in
, possibly using EM1, into some r||- (|-(x)). Definition
is by induction on p, with one clause for each possible rule
at the conclusion of p.

• If the proof of (x) is purely intuitionistic, we may define a
BHK realizer r|- (|-(x)) by changing the case of atomic
formulas and removing the definition of a realizer of EM1.

The Interactive Realizer for an Atomic rule

Atomic rules. If the proofs ends by some Atomic rule, then
the realizers of the assumptions are state-extending
operators, and we take their union to realize the
conclusion.

… …
r1[s] ||- P1(t1) … rm[s] ||- Pm(tm)

r1[s] U … U rm[s] ||- P(t)

If r1[s] ||- |-P1(t1), …, rm[s] ||- |-Pm(t1), then r1[s] U …
U rm[s] ||- |- P(t)

76

Talk on Interactive Realizability - Chambery, June 2011

20

77

The BHK Realizer for an Atomic rule

• Atomic rules. If the proofs ends by some Atomic
rule, then r(x)=unit.

… …
unit|- P1(t1) … unit|- Pm(tm)

unit|- P(t)

• If unit|- |-P1(t1), …, unit|- |-Pm(t1), then unit|-
|- P(t)

78

Interactive/BHK realizers for Conjunction

• Rules for 
• Introduction rules:

s1||-  s2||- 

<s1,s2>||-   

• If s1||- |-  and s2||- |-  then <s1,s2>||- |- 


79

Interactive/BHK realizers for Conjunction

• Elimination rules:

s||-    s||-   
----------------- -----------------
1(s)||-  2(s)||- 

• If s||- |-   , then 1(s)||- |-  and
2(s)||- |-

80

Interactive/BHK realizers for Disjunction

• Rules for . Let T=True, F=False, and _, _’, be the
dummy elements of type ||||, |||| (of type
||, || in the case of a BHK-realizer)

• Introduction rules:
r||-  s||- 

----------------------------- ----------------------------
<True,r,_’>||-    <False,_,s>||-   

• If r||- |-  then <True,r,_’>||- |-   
• If s||- |- then <False,_,s>||- |-   

Talk on Interactive Realizability - Chambery, June 2011

21

81

Interactive/BHK realizers for Disjunction

• Elimination rules for . Let
u = if (i=True) then s(a) else t(b)

Then
||- ||-
… …

<i,a,b>||-    s()||-  t()||- 

u||- 

• If r||- |- and s()||- ,:|- and
t()||- ,:|-, then u||- |-

\ \

82

Interactive/BHK realizers for Implication

• Rules for. Introduction rule:

||-
…

s()||- 

 .s()||-

• If s()||- , : |-  , then .s()||- |- 

\

83

Interactive/BHK realizers for Implication

• Elimination rule:

r||- s||-

r(s)||-
• If r||- |-  and s||- |- , then r(s)||-

 |- .

84

Interactive/BHK realizers for Existential

• Rules for : Introduction rule.

…

r||- [t/x]

<t,r>||- xT.

• If r||- |-[t/x] for some t, then <t,r>||- |-x
T.

Talk on Interactive Realizability - Chambery, June 2011

22

85

Interactive/BHK realizers for Existential

• Rules for : Elimination rule.
  , ||-
… …

<i,a>||- xT. t(x,)||- 
--

t(i,a)||-

• Provided xFV(,).
• If <i,a>||- |-xT., t(x,)||- ,:|-, and

xFV(,), then t(i,a)||- |-

\

86

Interactive/BHK realizers for Universal

• Rules for: Introduction rule.


…

r||-

x.r||-xT.
• Provided xFV()
• If r||- |- and xFV(), then x.r||- |-xT.

87

Interactive/BHK realizers for Universal

• Rules for: Elimination rule.

…

f||-xT.

f(t)||-[t/x]

• If f||- |-xT., then f(t)||- |- [t/x] for all t

88

Interactive/BHK realizers
for Induction on Natural Numbers

• The Induction Axiom for the type N=Natural Numbers:

Ind: xN.([0/x]xN.([x+1/x]))
• The realizer Rec has type:

N||||(N||||||||)||||

BHK realizers have || in the place of ||||.
• Let n:N, r||-[0/x] and s||-xN.([x+1/x]).

• We define Rec(n,r,s)||-[n/x] by primitive recursion:
1. Rec(0,r,s) = r

2. Rec(n+1,r,s) = s(n,Rec(n,r,s))

Talk on Interactive Realizability - Chambery, June 2011

23

89

Interactive/BHK realizers for Induction
for Induction on Lists

• Induction Axiom for the type L=Lists is:
IndL:lL.([nil/l] 

lL, xN.([cons(x,l)/l]) )
• We abbreviate AB…C by A,B,…C.
• The realizer RecL has type:

L,||||,(L,N,||||||||)||||
BHK realizers have || in the place of ||||.
• Let m:L, r||- [nil/l], s||-lL, xN.([cons(x,l)/l])
• We define RecL(m,r,s)||-[m/l] by primitive recursion:
1. RecL(nil,r,s) = r
2. RecL(cons(n,l),r,s) = s(l,n,RecL(l,r,s)) 90

Interactive/BHK realizers
for Well-founded Induction

• Assume R is an atomic arithmetical formula defining
some well-founded relation (i.e., there is no infinite R-
chain). The Well-founded Induction Axiom for R is:

WInd: (yN.(zN.R(y,z)[z/x])[y/x]) xN.
• The realizer W has type (with || or ||||):

(N(NPfin(Atom)||||)||||)N||||

• Let r||-yN.(zN.R(z,y)[z/x])[y/x] and n:N.
• We define W(r,n)||-[n/x] by fixed point:

W(r,n) = r(n, m:N.s:Pfin(Atom).W(r,m)) : ||||
The realizer belongs to TS + fixed point operators. Terms of

this system are convergent if we reduce only closed
terms which are not in the minor branch of an “if”.

The Interactive realizer of EM1

• An interactive realizer EP||- x.(y.P(x,y)  y.P(x,y))
of an instance of EM1 may be defined as in § 3, by

E[s](x) = <P(s,x), <P(s,x), >, y.AddP(s,x,y)> ||-

|-x.(y.P(x,y)  y.P(x,y))

There is no BHK realizer for EM1, instead.

91

Talk given at Technolac

