
Indexed preorders, uniform preorders, and PCAs

Jonas Frey

Chambéry, 8 June 2012

1 / 41

Part I
What are indexed preorders, and what can they do for realizability?

2 / 41

Krivine realizability

• Λ terms, Π stacks,‚ ⊂ Λ× Π pole, PL ⊂ Λ proof-like terms

• P(Π) set of truth values

Define denotation ‖ϕ‖ ⊆ Π of closed formula ϕ inductively

• ‖R(t1, . . . , tn)‖ = ‖R‖(‖t1‖, . . . , ‖tn‖)
• ‖ϕ⇒ ψ‖ = ⊥‖ϕ‖·‖ψ‖ = {t ·π | t ∈ ⊥‖ϕ‖, π ∈ ‖ψ‖}
• ‖⊥‖ = Π

• ‖∀x :I .ϕ(x)‖ =
⋃

i:I‖ϕ(i)‖
• ‖∀X .ϕ(X)‖ =

⋃
p:P(Π)‖ϕ(P)‖

• second order encoding for other connectives

• A closed formula ϕ is realizable, if there exists t ∈ PL such that k⊥‖ϕ‖
• Define order on truth values: P ≤ Q for P,Q ⊆ Π, if P ⇒ Q is realizable,

i.e., ∃t ∈ PL . t⊥⊥P·Q.

3 / 41

Krivine realizability
Predicates

• Order on truth values does not contain all model theoretically interesting
information – need to consider predicates

• Given a set I, a predicate on I is a function

ϕ : I → P(Π)

• Given predicates ϕ,ψ : I → P(Π), define ϕ ≤ ψ iff ∀x :I .ϕ(x)⇒ ψ(x) is
realizable, i.e.,

∃t ∈ PL ∀i ∈ I . t⊥⊥ϕ(i)·ψ(i)

• Note order of quantifiers – not pointwise order of truth values

• uniform realizer for all i

• orders of predicate do encode all model-theoretically interesting
information

4 / 41

Krivine realizability as indexed boolean algebra

• For fixed set I, the set P(Π)I of predicates is a boolean algebra
• Given a function u : J → I, the map

u∗ : P(Π)I → P(Π)J , P(Π)J 3 ϕ 7→ ϕ ◦ u

is a homomorphism of boolean algebras.

• Given K v−→ J u−→ I, we have (u ◦ v)∗ = v∗ ◦ u∗

K
v //

u◦v
!!CC

CC
CC

C J

u
��

P(Π)K P(Π)Jv∗
oo

I P(Π)I

u∗
OO

(u◦v)∗

ffMMMMMMM

• We have id∗I = idP(Π)I : P(Π)I → P(Π)I

• The assignments
I 7→ P(Π)I

u 7→ u∗

define a functor of type kt(‚) : Setop → BA (BA is the category of
boolean algebras and boolean algebra homomorphisms)

• Such a functor can be called an indexed boolean algebra

5 / 41

Krivine realizability as a tripos
Quantification

Quantification

• Given u : J → I, define

∀u : P(Π)J → P(Π)I , ∀u(ψ)(i) =
⋃
uj=i

ψ(j)

• Then we have for ϕ : I → P(Π), ψ : J → P(Π) that

u∗(ϕ) ≤J ψ iff ϕ ≤I ∀u(ψ),

i.e. u∗ a ∀u (∀u is right adjoint to u∗)

Generic predicate

• The map tr = id : P(Π)→ P(Π) is a generic predicate for kt(‚),
meaning that every predicate can be represented as a reindexing of tr.

The stated properties make kt(‚) an example of a boolean tripos.

6 / 41

Hyperdoctrines and triposes

Definition (Hyperdoctrine)

A hyperdoctrine is an indexed Heyting algebra H : Setop → HA such that for
every u : J → I, u∗ : HI → HJ has left and right adjoints ∃u a u∗ a ∀u , subject
to the Beck-Chevalley conditions

(I × v)∗∀u×Kϕ ∼= ∀u×L(J × v)∗ϕ

(I × v)∗∃u×Kϕ ∼= ∃u×L(J × v)∗ϕ

hold for u : J → I, v : L→ K .

Definition (Tripos)

A tripos is a hyperdoctrine P : Setop → HA with a generic family of truth
values, i.e., a predicate tr ∈ PProp such that for every other predicate ϕ ∈ PI

there exists χϕ : I → Prop such that χ∗ϕtr ∼= ϕ.

7 / 41

Interpreting first order logic in hyperdoctrines
Want to interpret a first order language L in a hyperdoctrine H : Setop → HA

The language

• L a language of many-sorted first order logic, with sort symbols
A,B,C, . . . , function symbols f , g, h, . . . , relation symbols R,S,T , . . .

• We always consider terms [x1:A1, . . . , xn:An | t(x1 . . .×n)] and formulas
[x1:A1 . . . xn:An | ϕ(x1 . . . xn)] with explicit variable contexts (but we don’t
always write the contexts).

Interpretation of constants

• for each sort symbol A, fix a set ‖A‖
• for each function symbol f : A1, . . . ,An → B, fix a function
‖f‖ : ‖A1‖ × · · · × ‖An‖ → ‖B‖
• For each relation symbol R(x1:A1, . . . , xn:AN) fix a relation
‖R‖ ∈ H‖A1‖×···×‖An‖

Interpretation of terms and formulas

• ‖x1 . . . xn | xi‖ = πi (appropriate projection)

• ‖f (t1 . . . tn)‖ = ‖f‖ ◦ 〈‖t1‖ . . . ‖tn‖〉

8 / 41

Interpreting first order logic in hyperdoctrines (2)

Interpretation of formulas

• ‖R(t1 . . . tn)‖ = 〈‖t1‖ . . . ‖tn‖〉∗‖R‖
• ‖ϕ ∧ ψ‖ = ‖ϕ‖ ∧ ‖ψ‖
• ‖ϕ ∨ ψ‖ = ‖ϕ‖ ∨ ‖ψ‖
• ‖ϕ⇒ ψ‖ = ‖ϕ‖ ⇒ ‖ψ‖
• ‖⊥‖ = ⊥
• ‖[x1:A1 . . . xn:An | ∀y :B .ϕ]‖ = ∀π(‖[x1:A1 . . . xn:An, y :B | ϕ]‖), where
π : ‖A1‖ × · · · × ‖An‖ × ‖B‖ → ‖A1‖ × · · · × ‖An‖
• analogous for ∃

Lemma

• The interpretation is sound wrt intuitionistic logic, i.e. ‖ϕ‖ ∼= > for
intuitionistically provable ϕ.

• Interpretation in boolean hyperdoctrines is sound wrt classical logic.

Exercise

Where do we need the Beck Chevalley condition in proving the lemma?

9 / 41

Recapitulating

• Indexed preorders/hyperdoctrines/triposes give a view on realizability
where the concept of predicate is central

• Logical connectives correspond to algebraic operations characterized by
universal properties (meet, join, adjunction)

• We interpret arbitrary formulas, not only closed ones

10 / 41

Kleene realizability
Inductive definition of truth values

Define denotation ‖ϕ‖ ⊆ N of closed formula ϕ inductively

• ‖s = t‖ =

{
N if ‖s‖ = ‖t‖
∅ else

• ‖R(t1, . . . , tn)‖ = ‖R‖(‖t1‖, . . . , ‖tn‖)
• ‖ϕ ∧ ψ‖ = {〈n,m〉 | n ∈ ‖ϕ‖,m ∈ ‖ψ‖}
• ‖ϕ ∨ ψ‖ = {〈n, 0〉 | n ∈ ‖ϕ‖} ∪ {〈n, 1〉 | n ∈ ‖ψ‖}
• ‖ϕ⇒ ψ‖ = {e ∈ N | ∀n ∈ ‖ϕ‖ .φe(n) ∈ ‖ψ‖}
• ‖∀x :I .ϕ(x)‖ =

⋂
i∈I‖ϕ(i)‖ (!)

• ‖∃x :I .ϕ(x)‖ =
⋃

i∈I‖ϕ(i)‖ (!)

〈·, ·〉 (primitive) recursive pairing function, n 7→ φn effective enumeration of
partial recursive functions

11 / 41

Kleene realizability
Indexed preorder

• Truth values are sets U ⊆ P(N)

• Predicates on a set I are functions ϕ,ψ : I → P(N)

• For predicates ϕ,ψ : I → P(N), define ϕ ≤ ψ iff ∀x :I .ϕ(x)⇒ ψ(x) is
realizable, i.e.

∃e:N ∀i:I, n ∈ ϕ(i) .φe(n) ∈ ψ(i)

Definition

The effective tripos eff : Setop → HA is defined by

I 7→ P(N)I with the order defined above

u 7→ u∗ where u∗ϕ = ϕ ◦ u

The most important clause of Kleene’s interpretation is implication, since it
gives the order on predicates. The others are determined up to equivalence
by soundness and universal properties.

12 / 41

Relativized quantification

• Kleene – doing realizability for arithmetic and not for generic first order
logic – considered other clauses for quantification:

‖∀x :N .ϕ(x)‖K = {e | ∀n:N .φe(n) ∈ ‖ϕ(n)‖}
‖∃x :N .ϕ(x)‖K = {〈n,m〉 | m ∈ ‖ϕ(n)‖}

• Kleene’s interpretation can be recovered up to equivalence from our
uniform interpretation of quantifiers by relativization:

‖∀x :N .ϕ(x)‖K = ‖∀x :N . nat(x)⇒ ϕ(x)‖
‖∃x :N .ϕ(x)‖K = ‖∃x :N . nat(x) ∧ ϕ(x)‖,

where nat : N→ P(N) is given by nat(n) = {n}.
• This is related to Alexandre’s comments about ω and ωג
• N with uniform quantification is ωג – ω can be recovered by switching

from the tripos to the topos, by a construction which formally adds
subquotients to Set relative to the logic of the tripos

• We won’t do this today, instead we talk about partial combinatory
algebras

13 / 41

Partial combinatory algebras

Partial combinatory algebras provide a framework to generalize Kleene
realizability.

Definition

A (weak) partial combinatory algebra (PCA) is a set A equipped with a partial
binary operation (− ·−) : A×A⇀ A such that there exist k , s ∈ A such that

• ∀x , y .kxy = y

• ∀x , y .sxy↓
• ∀x , y , z .xz(yz)↓ ⇒ sxyz = xz(yz)

Examples

• We can define a PCA structure on N by n·m = φn(m) – existence of k
and s follows from classical recursion theory

• Untyped lambda terms modulo β-equivalence form a total PCA with
respect to application

• More generally, models of untyped lambda calculus give rise to total
PCAs

14 / 41

PCAs via functional completeness

• Instead of using k and s, PCAs can be defined as applicative structures
admitting a certain kind of abstraction operation. More precisely:

Lemma

A set A with a partial binary operation (− · −) : A×A⇀ A is a PCA iff for
every term t(x1 . . . xn+1) built up from partial application (− · −), parameters
in A and variables x1 . . . xn+1, there exists a term s(x1 . . . xn) such that

t(a1 . . . an+1) = s(a1 . . . an)·an+1

for all a1 . . . an+1 ∈· whenever the left hand side is defined.

Proof.

From functional completeness, we can construct k and s by abstracting the
terms t(x , y) = x and t ′(x , y , z) = xz(yz).
Conversely, we can abstact terms using only k and s using the algorithm
known from combinatory logic.

15 / 41

Realizability in a PCA

Definition

For a pca A, define the indexed preorder rt(A) : Setop → Ord by

• Predicates on I are maps ϕ : I → P(A).

• For ϕ,ψ : I → P(A), we set

ϕ ≤ ψ iff ∃e:A ∀i:I, a ∈ ϕ(i) .ea ∈ ψ(i).

Lemma

rt(A) is a tripos.

Aim of this talk: understand and characterize indexed posets of the form
rt(A) for a partial combinatory algebra A

16 / 41

More examples
Indexed preorders from preorders

• Given A preorder (A,≤), we can define an indexed preorder 〈(A,≤)〉,
whose predicates are families ϕ : I → A of elements of A, and where the
ordering is given pointwise (i.e. ϕ ≤ ψ : I → A iff ∀i .ϕ(i) ≤ ψ(i)).

• 〈(A,≤)〉 is a tripos iff (A,≤) is a complete Heyting algebra, it is a
boolean tripos iff (A,≤) is a complete boolean algebra
• In both cases, quantification is given by infinite meets and joins.

17 / 41

More examples
Modified realizability

• Modified realizability was introduced by Kreisel, and uses terms of
Gödel’s system T as realizers.
• We can express it as indexed preorder as follows:

truth values are pairs (σ,S), where σ is a type of system T, and S is a set of
terms of type σ modulo β-convertibility
predicates are families of truth values of the same type
For predicates ϕ and ψ of types σ and τ on I, define

ϕ ≤ ψ iff ∃f :σ→τ ∀i:I, s ∈ ϕ(i) . fs ∈ ψ(i).

• The ensuing indexed preorder is a hyperdoctrine, but not a tripos (since
it doesn’t have a generic predicate

18 / 41

Part II
Uniform preorders

19 / 41

Uniform preorders
Sources, references

• PJW Hofstra, All realizability is relative, 2006

• J Longley, Computability structures, simulations and realizability, 2011

• N Hoshino, unpublished work, 2011

20 / 41

Uniform preorders
Uniform preorders are a generalization of Hofstra’s basic combinatory objects

Definition

A (single sorted) uniform preorder is a pair (A,R), where A is a set, and
R ⊆ P(A× A) is a set of binary relations, subject to the following axioms.

1 r ∈ R, s ⊆ r =⇒ s ∈ R
2 id ∈ R
3 r , s ∈ R =⇒ s ◦ r ∈ R

Definition

For a uniform preorder (A,R), the associated indexed preorder 〈(A,R)〉
has functions ϕ : I → A as predicates; the ordering relation is defined by

ϕ ≤ ψ iff {(ϕ(i), ψ(i)) | i:I} ∈ R for ϕ,ψ : I → A.

Observation

The indexed preorder 〈(A,R)〉 associated to a uniform preorder (A,R) has a
generic predicate, given by idA : A→ A.

21 / 41

Examples

• For a preorder (A,≤), define a uniform preorder (A,R≤) by R≤ = ↓{≤}.
• Given a PCA A, we can define a uniform preorder (A,RA), where

R = {r ⊂ A×A | ∃e:A ∀(a, b) ∈ r .e·a = b} is the set of
‘sub-computable’ partial functions.

• For a PCA A, we define a second uniform preorder (PA,RA), where
R = {r | ∃e:A ∀(U,V) ∈ r ∀a ∈ U .e·a ∈ V}.
• Given an indexed preorder D : Setop → Ord with generic predicate
ι ∈ AA, we can define a uniform preorder (A,RD) by
RD = {r ⊂ A× A | π∗l ι ≤r π

∗
r ι}, where for r ⊂ A× A, πl , πr : r → A are

the left and right projections.

Remarks

• For preorders (A,≤), the ordering on 〈(A,R≤)〉I is the pointwise one.

• For PCAs A, we have 〈(PA,RA)〉 = rt(A)

• For indexed preorders D with generic predicate ι ∈ DA, we have
〈(A,RD)〉 ' D

Representability Lemma

An indexed preorder is representable by a uniform preorder iff it has a
generic predicate. (Proof needs choice)

22 / 41

Uniform preorders
Monotonic maps

Definition

• A monotonic map between uniform preorders (A,R), (B,S) is a
function f : A→ B such that

r ∈ R ⇒ (f × f)(r) ∈ S.

• For monotonic maps f , g : (A,R)→ (B,S), we define

f ≤ g iff {(fa, ga) | a ∈ A} ∈ S.

Remarks

• Uniform preorders and monotonous maps form an order-enriched
category

• Monotonic maps between uniform preorders induce natural
transformations between associated indexed preorders.

23 / 41

The relation between preorders, indexed preorders, and uniform preorders is
displayed in the following diagram, where all inclusion functors are locally
essentially full and order reflecting (i.e. they induce equivalences of preorders
on hom-sets).

Ord

##HH
HH

HH
HH

H

��
UOrd // IOrd

We can identify Ord with a full subcategory of UOrd, and UOrd with a full
subcategory of IOrd.

24 / 41

Many sorted uniform preorders

Definition (Longley)

A many sorted uniform preorder is a triple (I,A,R), where A = (Ai)i∈I is a
family of sets, and R = (Rij)i,j∈I , Rij ⊆ P(Ai × Aj) is a family of sets of
relations, subject to the following axioms.

• i, j ∈ I, r ∈ Rij , s ⊆ r =⇒ s ∈ Rij

• i ∈ I =⇒ id ∈ Rii

• i, j, k ∈ I, r ∈ Rij , s ∈ Rjk =⇒ sr ∈ Rij

• Defined by Longley with different morphisms

• Many sorted uniform preorders correspond to indexed preorders with a
generic family of predicates

• Occur e.g. in modified realizability (typed notion of realizer)

• Better closure properties, but more difficult to handle

25 / 41

Closure properties

• UOrd has small products and an involution operator (−)op

• The category of many sorted uniform preorders has moreover small
coproducts and is cartesian closed (−)op

Definition (Opposite uniform preorder)

For a uniform preorder (A,R), its opposite (A,R)op is given by (A,Rop)
where Rop = {r◦ | r ∈ R}.

Definition (Binary products)

The product of uniform preorders (A,R), (B,S) is given by (A× B,R ⊗ S),
where R ⊗ S = ↓{r × s | r ∈ R, s ∈ S}.

26 / 41

Finite completeness

• A preorder (A,≤) has finite meets iff δ : (A,≤)→ (A,≤)× (A,≤) and
! : (A,≤)→ 1 have right adjoints.

• In the same way, we say that a uniform preorder (A,R) has finite meets
(or is finitely complete), if δ : (A,R)→ (A,R)× (A,R) and
! : (A,R)→ 1 have right adjoints.

• Since UOrd→ IOrd is a local equivalence and preserves finite products,
(A,R) is finitely complete iff 〈(A,R)〉 has finite meets in all fibers.
• Concretely, (A,R) has binary meets iff there exists a monotonic map
∧ : A× A→ A such that

{(a ∧ b, a) | a ∈ A, b ∈ A} ∈ R
{(a ∧ b, b) | a ∈ A, b ∈ A} ∈ R
{(a, a ∧ a) | a ∈ A} ∈ R

Examples

(A,RA) and (PA,RA) have finite meets for any PCA A; (A,R≤) has finite
meets iff (A,≤) has them.

27 / 41

Functional uniform preorders

Definition

We call a uniform preorder (A,R) functional if all elements of R are
functional relations.

Lemma

If a finitely complete uniform preorder (A,R) is functional, then the pairing
map ∧ : A× A→ A is injective (This is never the case for posets!).

Example

• The uniform preorder (N, Prim), where Prim is generated by the primitive
recursive functions, is finitely complete and functional.
Here, ∧ is given by a primitive recursive coding of pairs.

• For any PCA A, (A,RA) is finitely complete and functional

28 / 41

Existential quantification

Definition

For a preorder (A,≤), denote by dcl (A,≤) the poset of downward closed
subsets of (A,≤), ordered by inclusion.

dcl (A,≤) is a complete lattice and we have

Lemma

Given a monotonic map f : (A,≤)→ (B,≤), where (A,≤) is a preorder, and
(B,≤) is a complete lattice, there exists a unique (infinite) join-preserving
map f̃ : dcl (A,≤)→ (B,≤) making the following triangle commute.

(A,≤)

↓{−} ��
f

''PPPPP

dcl (A,≤)
f̃

//__ (B,≤)

Observation

Given a preorder (A,≤), we can define an ordering on PA by setting

M ≤ N iff ∀m ∈ M ∃n ∈ N .m ≤ n for U,V ⊆ A.

Then the preorder (PA,≤) is equivalent to dcl (A,≤).
29 / 41

Existential quantification
For uniform preorders, there is a construction analogous to dcl, which in this
case freely adds existential quantification (rather than arbitrary joins). This
was originally observed by Hofstra for his BCOs.

Definition

Let (A,R) be a uniform preorder, r ∈ R. Define [r] ⊆ P(A× A) by

[r](M,N) :⇔ ∀m ∃n .r(m, n)

This allows to define a uniform preorder D(A,R) = (PA,DR), where
DR =↓ {[r] | r ∈ R}.

• This gives a lax idempotent monad D : UOrd→ UOrd.
• D freely adds ∃ to a uniform preorder – (A,R) has ∃ iff it is a D-algebra
• For a pca A, we have D(A,RA) = (PA,RA)
• For preorders (A,≤), we have D(A,R≤) ' (dcl(A),R⊆)
• By dualizing, we obtain a monad U classifying ∀

Remark

For any preorder (A,≤), dcl (A,≤) has finite meets (since it is a complete
lattice). The analogous statement for uniform preorders is not true, but
D(A,R) has finite meets whenever (A,R) has them. In this case they are
given by M ∧ N = {m ∧ n | m ∈ M, n ∈ N}.

30 / 41

The monad D+

• Replacing the powerset P by the non-empty powerset P+ in the
definition of D, we obtain a monad D+.

Lemma

Longley’s category of computability structures is the Kleisli category of UOrd
(many-sorted) for the monad D+.

Lemma

Let A,B be pcas. Then an applicative morphism from A to B is the same
thing as a finite meet preserving monotonous map of type

(A,RA)→ D+(B,RB)

31 / 41

Characterizing the image of D

Definition

An element p ∈ D of a complete lattice (D,≤) is is called completely ∨-prime,
if for every family (di)i∈I of elements of D we have

a ≤
∨

i

di =⇒ ∃i:I .a ≤ di .

• A preorder (D,≤) can be recovered from its lattice dcl(D) of downsets
by taking the completely ∨-prime elements.

• A complete lattice is of the form dcl(D) iff every element of D can be
represented as a supremum of completely ∨-prime elements.

We can do something completely analogous for uniform preorders.

32 / 41

Characterizing the image of D

Definition

Let (A,R) be a uniform preorder with existential quantification. Call a
predicate α : I → A ∃-prime, if for all functions K v−→ J u−→ I and predicates
ϕ : K → A such that u∗α ≤ ∃vϕ, there exists a function w : J → K such that
vw = idJ and u∗α ≤ w∗ϕ.

Lemma

• The image of η : 〈(A,R)〉 → 〈D(A,R)〉 coincides up to equivalence with
the ∃-prime predicates in 〈D(A,R)〉.
• A uniform preorder (B,S) is of the form D(A,R) for some uniform

preorder (A,R) iff it has a generic ∃-prime predicate, and for each
predicate ϕ : I → B there exists an ∃-prime predicate α : J → B and a
function u : J → I such that ϕ ∼= ∃uα.

33 / 41

Relational completeness

• For a preorder (A,≤) with finite meets, dcl (A,≤) is always a complete
Heyting algebra, which allows to interpret ∀ and⇒.

• For uniform preorders, D(A,R) does not necessarily have⇒ and ∀
(counterexample: (N, Prim)).

• This motivates the following definition, which gives a criterion on finitely
complete uniform preorders (A,R) such that D(A,R) has⇒, ∀.

Definition

Let (A,R) be a finitely complete uniform preorder. Call (A,R) relationally
complete, if there exists @ ∈ R such that for all r ∈ R there exists r̃ ∈ R such
that

∀a ∈ A ∃h ∈ A . r̃(a, h) ∧ r(a ∧ −,−) ⊆ @(h ∧ −,−)

34 / 41

Relational completeness

Lemma

Let (A,R) be a finitely complete uniform preorder. Then the following are
equivalent.

• (A,R) is relationally complete

• 〈D(A,R)〉 has⇒ and ∀
• 〈D(A,R)〉 is a tripos

• Remark: This generalizes a result of Hofstra, who characterized those
BCOs A such that DA is a tripos

35 / 41

PCAs

Definition

Let (A,R) be a finitely complete uniform preorder. A designated truth value is
an element a ∈ A such that {(>, a)} ∈ R

Lemma

A finitely complete uniform preorder (A,R) is (up to equivalence) of the form
(A,RA) if and only if it is

• relationally complete,

• functional, and

• all elements are designated truth values

36 / 41

PCAs and triposes

Definition

Let P : Setop → Ord be an indexed preorder. We call a predicate ι ∈ PI

modest, if for every predicate ϕ ∈ PJ , surjective function e : K → J, and
function f : K → I such that e∗ϕ ≤ f ∗ι, there exists g : J → I such that ge = f
and ϕ ≤ g∗ι.

This looks technical, but says basically that a certain relation (expressed by
the span (e, f)) is functional, and thus is related to functional uniform
preorders.

Lemma

A tripos P : Setop → Ord is of the form rt(A) for a pca A iff

• ∃-prime predicates in P are closed under finite meets,

• P is generated by ∃-prime predicates under existential quantification

• all ∃-prime truth values (predicates in P1) are equivalent

• there exists a modest ∃-prime predicate ι ∈ PA which is generic among
∃-prime predicates

37 / 41

Appendix
The tripos-to-topos construction

38 / 41

• Triposes were originally introduced as intermediate step in the
construction of realizability toposes
• The topos Set[P] associated to a tripos P : Setop → Ord can be viewed

as category which internalises the logic of P
• Formally, Set[P] is obtained from P by freely adding subquotients with

respect to partial equivalence relations in P to Set

Definition

Let P : Setop → Ord be a tripos. The category Set[P] is defined as follows.

• Objects are pairs (C, ρ) where C is a set and ρ ∈ PC×C is a partial
equivalence relation, which means that the judgments
ρ(x , y), ρ(y , z) ` ρ(x , z) and ρ(x , y) ` ρ(y , x) hold in the logic of P.

• A morphism from (C, ρ) to (D, σ) is a predicate φ ∈ PC×D such that the
following judgments hold in P.

φ(x , y) ` ρ(x , x) ∧ σ(y , y)

ρ(x ′, x), φ(x , y), σ(y , y ′) ` ρ(x ′, y ′)

φ(x , y), φ(x , y ′) ` σ(y , y ′)

ρ(x , x) ` ∃y .φ(x , y)

• Logically equivalent predicates are identified as morphisms in Set[P].

• Composition is relational composition.
39 / 41

The category Set[P]

• The construction of Set[P] out of P can be performed whenever P has
conjunction and existential quantification satisfying the Frobenius
condition

ϕ ∧ ∃uψ ≤ ∃uu∗ϕ ∧ ψ for ϕ ∈ Pi , ψ ∈ PJ , u : J → I

(automatic in presence of implication)

• In this case, it gives an exact category

• If P is a tripos, then Set[P] is a topos

The internal logic

• Monomorphisms in Set[P] are interesting, since they are the predicates
of the internal logic
• Given an object (C, ρ) in Set[P], monomorphisms with codomain (C, ρ)

can be identified with predicates ϕ ∈ PC which are compatible with ρ in
the sense that the judgments ϕ(x) ` ρ(x , x) and ϕ(x), ρ(x , y) ` ϕ(y)
hold in P

40 / 41

The diagonal functor

Definition

Let P be a tripos (or more generally an indexed preorder with ∧ and ∃
satisfying Frobenius). We define a functor

∆ : Set→ Set[P]

by ∆A = (A,=) (the set equipped with the discrete equivalence relation) and
∆(f : A→ B) = [x , y | fx = y].

Remarks

• The order of subobjects of ∆A is equivalent to PA

• ∆A seems to be the ‘topos version’ of Krivine’s Aג

41 / 41

