
A computational proof of dependent choice,
compatible with classical logic

(partially work in progress)

Hugo Herbelin

Réalisabilité à Chambéry #5

8 June 2012

1

Outline

- Thanks to strong sums, Martin-Löf's intuitionistic type theory proves the axiom of choice

- Strong sums do not marry well with computational classical logic

- Countable universal quanti�cation can be turned into in�nite conjunction in PAω that
can be evaluated lazily

- Restricting proofs of strong sums to �negative-elimination free� proofs allows to ensure
these proofs to be essentially intuitionistic while keeping the rest of the logic compatible
with classical reasoning

- Countable choice and dependent choice are intuitionistically provable in PAω + negative-
elimination-free strong sums

- Comparison with realisability-based approaches (Krivine, Berardi-Bezem-Coquand, Escardó-
Oliva)

2

The axiom of choice in Martin-Löf's intuitionistic type theory

Using strong sums (a.k.a. strong existential, or Σ-types)

Γ ` p : ∃xT A(x)

Γ ` prf p : A(wit p)

the (intensional) axiom of choice is provable in Martin-Löf's intuitionistic type theory:

ACA,B , λH.(λx.wit (H x), λx.prf (H x))
: ∀xA∃yB P (x, y)⇒ ∃fA⇒B ∀xA P (x, f (x))

3

Strong sums are incompatible with classical logic

Consider computational classical logic:

Γ, α : A⊥⊥ ` p : A

Γ ` catchα p : A

Γ ` p : A (α : A⊥⊥) ∈ Γ

Γ ` throwα p : C

Example, Drinker Paradox:

DP , catchα.(x0, λy.λHx.catchβthrowα(y, λy′.λHy.throwβHy))
: ∃x ∀y (P (x)⇒ P (y))

4

Strong sums are incompatible with classical logic

What is wit on a proof that might backtrack on the witnesses it provides?

Indeed, applied to prf, the standard rule for computational classical logic gives:

prf (callccα(t1, ...(throwα(t2, p))...))
→ callccαprf (t1, ...(throwαprf (t2, p))...)

and the right-hand side is not typable because the two occurrences of α get the a priori
incompatible types P (t1) and P (t2)

In particular, in the proof of choice,

ACA,B , λH.(λx.wit (H x), λx.prf (H x))
: ∀xA∃yB P (x, y)⇒ ∃fA⇒B ∀xA P (x, f (x))

if Hx : ∃y P (x, y) is classically proved then what wit (H x) should be is unclear, and
how to keep it �synchronised� with prf (H x) is even more unclear.

5

A trick to recover countable choice

Turn ∀x∃y P (x, y) into a in�nite conjunction ∃y P (0, y) ∧ ∃y P (1, y) ∧ . . . and prove
instead

AC ′N,B , λH.(λn.wit (nthnH), λn.prf (nthnH))

: (∃y P (0, y) ∧ ∃y P (1, y) ∧ . . .)⇒ ∃fA⇒B ∀xA P (x, f (x))

Now, the in�nite conjunction is a �positive� object and we just have to evaluate it in (lazy)
call-by-value order to ensure that at the time wit and prf are called, the underlying stream
is evaluated at this position.

6

Classical arithmetic in �nite types: PAω

(the language of expressions: system T)

T, U ::= N | T ⇒ U
t, u ::= x | 0 | S(t) | rec t of [t | (x, y).t] | λx.t | t t

(x : T) ∈ Γ

Γ ` x : T

Γ, x : U ` t : T

Γ ` λx.t : U ⇒ T

Γ ` t : U ⇒ T Γ ` u : U

Γ ` t u : T

Γ ` 0 : N
Γ ` t : N

Γ ` S(t) : N
Γ ` t : N Γ ` t0 : U Γ, x : N, y : U ` tS : U

Γ ` rec t of [t0 | (x, y).tS] : U

(λx.t)u ≡ t[x← u]
rec 0 of [t0 | (x, y).tS] ≡ t0
rec S(t) of [t0 | (x, y).tS] ≡ tS[x← t][y ← rec t of [t0 | (x, y).tS]]

7

Classical arithmetic in �nite types: PAω

(formulas and equational theory)

A,B ::= t = u | > | ⊥ | A⇒ B | A ∧B | A ∨B | ∀xT A | ∃xT A

0 = 0 ≡ >
0 = S(u) ≡ ⊥
S(t) = 0 ≡ ⊥
S(t) = S(u) ≡ t = u

8

Classical arithmetic in �nite types: PAω

(intuitionistic inference rules)

(a : A) ∈ Γ

Γ ` a : A

Γ ` p : A Γ, a : A ` q : B

Γ ` let a = p in q : B

Γ ` p : A A ≡ B

Γ ` p : B Γ ` () : >

Γ ` p : ⊥

Γ ` exfalso p : C

Γ ` p1 : A1 Γ ` p2 : A2

Γ ` (p1, p2) : A1 ∧ A2

Γ ` p : A1 ∧ A2 Γ, a1 : A1, a2 : A2 ` q : B

Γ ` split p as (a1, a2) in q : B

Γ ` p : Ai

Γ ` ιi(p) : A1 ∨ A2

Γ ` p : A1 ∨ A2 Γ, a1 : A1 ` p1 : B Γ, a2 : A2 ` p2 : B

Γ ` case p of [a1.p1 | a2.p2] : B

Γ, a : A ` p : B

Γ ` λa.p : A⇒ B

Γ ` p : A⇒ B Γ ` q : A

Γ ` p q : B

Γ, x : T ` p : A(x)

Γ ` λx.p : ∀xT A(x)

Γ ` p : ∀xT A(x) Γ ` t : T

Γ ` pt : A(t)

Γ ` p : A(t) Γ ` t : T

Γ ` (t, p) : ∃xT A(x)

Γ ` p : ∃xT A(x) Γ, x : T, a : A(x) ` q : B

Γ ` dest p as (x, a) in q : B

t ≡ u

Γ ` refl : t = u

Γ ` p : t = u Γ ` q : P (t)

Γ ` subst p q : P (u)

Γ ` t : N Γ ` p : P (0) Γ, x : T, a : P (x) ` q : P (S(x))

Γ ` ind t of [p | (x, a).q] : P (t)

9

Classical arithmetic in �nite types: PAω

(classical logic)

Γ, α : A⊥⊥ ` p : A

Γ ` catchα p : A

Γ ` p : A (α : A⊥⊥) ∈ Γ

Γ ` throwα p : C

10

Classical arithmetic in �nite types: PAω

(call-by-value evaluation semantics, minimal part)

(λa.q) p → let a = p in q

(λx.p) t → p[x← t]

case ιi(p) of [a1.p1 | a2.p2] → let ai = p in pi
dest (t, p) as (x, a) in q → let a = p in q[x← t]

split (p1, p2) as (a1, a2) in q → let a1 = p1 in let a2 = p2 in q

let a = b in q → q[a← b]

let a = λb.q in q → q[a← λb.q]

let a = λx.p in q → q[a← λx.t]

let a = () in q → q[a← ()]

let a = ιi(p) in q → let b = p in q[a← ιi(b)]

let a = (t, p) in q → let b = p in q[a← (t, b)]

let a = (p1, p2) in q → let a1 = p1 in let a2 = p2 in q[a← (a1, a2)]

subst refl p → p

ind 0 of [p | (x, a).q] → p

ind S(t) of [p | (x, a).q] → q[x← t][a← ind t of [p | (x, a).q]]

11

Classical arithmetic in �nite types: PAω

(call-by-value evaluation semantics, non minimal part)

F [exfalso p] → exfalso p

F [throwαp] → throwαp

F [catchαp] → catchαF [p[α← F]]

exfalso exfalso p → exfalso p

exfalso throwβp → throwβp

exfalso catchβp → exfalso p[α← exfalso []]

throwβexfalso p → exfalso p

throwβthrowαp → throwαp

throwβcatchαp → throwβp[α← β]

catchαthrowαp → catchαp

catchβcatchαp → catchβp[α← β]

where
F [] ::= ιi([]) | ([], p) | (V, []) | (t, [])

| case [] of [a1.p1 | a2.p2] | split [] as (a1, a2) in q | subst [] p

| dest [] as (x, a) in p | [] q | [] t | let a = [] in q

Note: can be reduced to 2 rules if one decomposes catchα p, throwα p and exfalso p
as µα.[α]p, µ_.[α]p and µ_.[tp⊥]p respectively (for tp⊥ evaluation context constant
witnessing ⊥-elimination).

12

PAω has coinductive formulas

For instance, the in�nite conjunction P (0) ∧ P (1) ∧ ... can be represented by

∃fN⇒N (f (0) = 1 ∧ ∀n (f (n) = 1⇒ (P (n) ∧ f (S(n)) = 1))

(standard second order encoding, using quanti�cation over functions rather than on pred-
icates)

13

For convenience, add primitive co�xpoints to PAω

Γ, f : T ⇒ N, x : T, b : f (x) = 1 ` p : A f (_) = 1 possibly occurs in positive A

Γ ` cofixtbxp : νtf xA

with equation

νtf xA ≡ A[x← t][f (y) = 1← νyf xA]

For instance, ν3
f x(P (x) ∧ f (S(x)) = 1) represents P (3) ∧ P (4) ∧ . . .

14

Extend evaluation semantics of PAω to co�xpoints

case cofixtbxp of [a1.p1 | a2.p2] → let c = cofixtbxp in case c of [a1.p1 | a2.p2]

dest cofixtbxp as (x, a) in q → let c = cofixtbxp in dest c as (x, a) in q

split cofixtbxp as (a1, a2) in q → let c = cofixtbxp in split c as (a1, a2) in q

let a = cofixtbxp in exfalso q → exfalso let a = cofixtbxp in q

let a = cofixtbxp in throwαq → throwαlet a = cofixtbxp in q

let a = cofixtbxp in catchαq → catchαlet a = cofixtbxp in q

F [let a = cofixtbxp in q] → let a = cofixtbxp in F [q]

let a = cofixtbxp in D[case a of [a1.p1 | a2.p2]] →
let a = p[b← λy.cofixybxp][x← t] in D[case a of [a1.p1 | a2.p2]]

let a = cofixtbxp in D[split a as (a1, a2) in q] →
let a = p[b← λy.cofixybxp][x← t] in D[split a as (a1, a2) in q]

let a = cofixtbxp in D[dest a as (x, a′) in q] →
let a = p[b← λy.cofixybxp][x← t] in D[dest a as (x, a′) in q]

where

D[] ::= [] | D[F []] | let a = cofixtbxp in D[]

15

Adding strong elimination of existential to PAω (�rst step)

Replace weak elimination of existential by

Γ ` V : ∃xT A(x)

Γ ` prfV : A(witV)

Γ ` V : ∃xT A(x)

Γ ` witV : T

where
V ::= a | ιi(V) | (V, V) | (t, V) | λa.p | λx.p | () | refl

Moreover, forbid dependency in implication introduction and cut

Γ, a : A ` p : B a 6∈ FV (B)

Γ ` λa.p : A⇒ B

Γ ` p : A Γ, a : A ` q : B a 6∈ FV (B)

Γ ` let a = p in q : B

And update the equational theory, evaluation contexts and evaluation rules

wit (t, p) ≡ t F [] ::= . . . | prf [] prf (t, p) → p

Claim: The resulting system is equivalent to PAω for judgements not mentioning wit: the
restriction on p combined with call-by-value ensures that p is �evaluated� when substituted
and that no classical reasoning occurs before taking the witness.

16

Adding strong elimination of existential to PAω (second step)

Replace weak elimination of existential by

Γ ` p : ∃xT A(x) p is positively eliminated

Γ ` prf p : A(wit p)

where

� a value is positively eliminated

� if p, q, p1 and p2 are positively eliminated then case a of [a1.p1 | a2.p2],
dest q as (x, a) in p and split q as (a1, a2) in p are positively eliminated

Claim: we still get a system equivalent to PAω.

17

Adding strong elimination of existential to PAω (third step)

Replace weak elimination of existential by

Γ ` p : ∃xT A(x) p is strongly N-elimination-free

Γ ` prf p : A(wit p)

where

� a value is strongly N-elimination-free

� if p, q, p1 and p2 are strongly N-elimination-free then ind t of [p1 | (x, a).p2],
case a of [a1.p1 | a2.p2], dest q as (x, a) in p and split q as (a1, a2) in p
are strongly N-elimination-free

Claim: we then get the strength of countable choice

18

The proof of countable choice

ACN , λa.let b = cofix0
bn(a n, b(Sn)) in

(λn.wit (nthC n b), λn.prf (nthC n b))
: ∀n∃y P (n, y)⇒ ∃f ∀nP (n, f (n))

where
nthC n : RC(0)⇒ RC(n)

nthC n , λb.π1(ind n of [b | (m, c).π2(c)])

(s is the stream of type RC(0) , ∃y P (0, y) ∧ ∃y P (1, y) ∧ . . . extracted from the
hypothesis)

19

Adding strong elimination of existential to PAω (fourth step)

Replace weak elimination of existential by

Γ ` p : ∃xT A(x) p is N-elimination-free

Γ ` prf p : A(wit p)

where

� a value is N-elimination-free

� if p, q, p1 and p2 is N-elimination-free then prf p, ind t of [p1 | (x, a).p2],
case a of [a1.p1 | a2.p2], dest q as (x, a) in p and split q as (a1, a2) in p are
N-elimination-free.

Claim: we then get the strength of dependent choice

20

The proof of dependent choice

DC ,λa.λx0.let b = s a x0 in

(λn.wit (nthD n (x0, b)),
(refl, λn.π1(prf (prf (nthD n (x0, b))))))

: ∀x∃y P (x, y)⇒
∀x0 ∃f (f (0) = x0 ∧ ∀nP (f (n), f (S(n))))

where
nthD n : ∃xRD(x)⇒ ∃xRD(x)

nthD n,λb.ind n of [b | (m, c).dest c as (x, d) in
(wit (prf d), π2(prf (prf d)))]

s a x : RD(x)

s a x ,cofixxbn(dest a n as (y, c) in (y, (c, by)))

(s is a stream of type RD(x0) , ∃x1 (P (x0, x1) ∧ ∃x2 (P (x1, x2) ∧ . . .)) obtained by
recursively applying the hypothesis)

(that exactly the strength of dependent choice is captured is still a conjecture)

21

Properties of the systems with N-elimination-free strong elimination of
existential quanti�cation

Subject reduction: if Γ ` p : A and p→ q then Γ ` q : A

Normalisation: if Γ ` p : A then p normalises [the proof, which is still in progress,
uses dependent choice at the meta-level]

Progress: if ` p : A and p not a value then p reduces

Evaluation: ` p : A then ` V : A for some V s.t. P
∗→ V

Conservativity over HAω for closed ∀-⇒-ν-wit-free and Σ0
1-formulas: if ` T

and T ∀-⇒-ν-wit-free or Σ0
1 then `HAω T

Consistency: 6` ⊥

22

Comparison with Krivine's realiser of the axioms of countable and
dependent choice (restated as a proof in PA2 + quote)

Krivine's �proof� only supports the existence of relational choice functions

It needs classical logic

It relies on a �quote� e�ect χ typed with

Γ ` p : ∃X P (X)

Γ ` χ p : ∃nP (ΦP (n))
where ΦP is a formal predicate constant

ACN , λa.(UP ,

λx.dest χ (a x) as (n, b) in catchαwfx (λn′.λf.λb′.throwα(↑n
′fb′

P (x,Y) b
′))n b)

: ∀xN∃Y N⇒? P (x, Y)
⇒ ∃UN⇒N⇒? ∀xN P (x, U(x))

23

where

V (x, n) , ¬P (x,ΦP (x, n))

Z(x, n) , ∀m < nV (x,m)⇒ V (x, n)

UP (x) , ∀n (¬Z(x, n)⇒ ΦP (x, n)) �exists n minimal s.t. ΦP (x, n)�

wfx : ∀nZ(x, n)⇒ ∀nV (x, n) �if P (x,ΦP (x, n)), there is a minimal n for it�

and for f : ∀m < nV (x,m) and b : P (x,ΦP (x, n))

↑nfbA : A(ΦP (x, n))⇒ A(UP (x))

↑nfbY (t) c , λn′.λk.if n = n′ then c else k λf ′.λb′.if n′ < n then f n′ b′ else f ′ n b

↑nfbA∧B c , (↑nfbA (π1c), ↑nfbB (π2c))

↑nfbA⇒B c , λa.(↑nfbB (c (↓nfbA a)))
. . .

↓nfbA : A(UP (x))⇒ A(ΦP (x, n))

↓nfbY (t) c , c n λk.k f b

↓nfbA∧B c , (↓nfbA (π1c), ↓nfbB (π2c))

↓nfbA⇒B c , λa.(↓nfbB (c (↑nfbA a)))
. . .

24

How to implement quote

Krivine implements χ by quoting the top argument of the stack at runtime. It seems that
an alternative implementation is possible by quoting instead the witness:

χ p , (bwit pc, prf p)

Φ(n) , dne

so that the reduction rule is

χ(U, p)→ (bUc, p)

Quoting needs its argument closed. The rule can however be used as a local rule: only
the decidability of equality bUc = bU ′c will need U and U ′ to be closed so as to be
evaluable.

25

Comparison with Coquand-Berardi-Bezem's realiser of the axioms of
countable choice

As rephrased by Berger, Coquand-Berardi-Bezem's �proof� builds a choice function by
update induction.

Initially, the choice function returns a dummy value everywhere.

Each time a proof of P (n, f (n)) is requested, the proof of ∃y P (n, y) together with a
continuation that updates the choice function.

If, later on, the proof of some P (n, f (n)) has already been asked, the former value is
retrieved.

In our case, the choice function has no default value. The proofs of ∃y P (i, y) for i ≤ n
are executed whenever either f (n) or P (n, f (n)) is requested (but alternative, more
sophisticated, evaluation strategies for PAω can be imagined).

26

Comparison with Escardó-Oliva's realiser of the axiom of countable and
dependent choice

Similar idea of evaluating a co�xpoint.

Note: Other realisation exists (e.g. Spector's functional interpretation based on bar
recursion).

27

Summary

By adding an appropriate intuitionistically-restricted rule for strong elimination of exis-
tential to PAω, we computationally capture the strength of either countable choice or
dependent choice.

This can be turned into a Martin-Löf-style type theory by allowing dependent products
with the restriction that they are instantiated only by N-elimination-free expressions.

Provides with an intuitionistic proof of bar induction compatible with classical logic:

∀f ∃nB(f|n)⇒ ∀g
(
∀l (B(l)⇒ g(l) = 0)∧
∀l (∀x g(l?x) = 0⇒ g(l) = 0)

)
⇒g(〈〉) = 0

Our proof of choice uses a weak form of e�ect (lazy evaluation) but we suspect that other
proofs using e�ects are possible...

28

