A computational proof of dependent choice,
compatible with classical logic

(partially work in progress)

Hugo Herbelin

Réalisabilité a Chambéry #5

8 June 2012

Outline

- Thanks to strong sums, Martin-Lof's intuitionistic type theory proves the axiom of choice
- Strong sums do not marry well with computational classical logic

- Countable universal quantification can be turned into infinite conjunction in PAY that
can be evaluated lazily

- Restricting proofs of strong sums to ‘negative-elimination free” proofs allows to ensure
these proofs to be essentially intuitionistic while keeping the rest of the logic compatible
with classical reasoning

- Countable choice and dependent choice are intuitionistically provable in P A“ + negative-
elimination-free strong sums

- Comparison with realisability-based approaches (Krivine, Berardi-Bezem-Coquand, Escards-

Oliva)

The axiom of choice in Martin-L6t's intuitionistic type theory

Using strong sums (a.k.a. strong existential, or -types)

I'Fop: 3zt A(x)
['Fprfp: A(wit p)

the (intensional) axiom of choice is provable in Martin-L6f's intuitionistic type theory:

ACyp & MH.Az.wit (H x), \v.prf (H))
Vo3P P(x,y) = 3f7PVad Pz, f())

Strong sums are incompatible with classical logic

Consider computational classical logic:
Fa:Ar*Fp:A TrFp:A (a:AM)eTl
[' catch,p: A ['+ throw,p: C

Example, Drinker Paradox:

DP £ catch,.(wo, Ay.AH,.catchgthrow,(y, \y'. AH,.throwsH,))
JzVy (P(z) = P(y))

Strong sums are incompatible with classical logic

What is wit on a proof that might backtrack on the witnesses it provides?
Indeed, applied to prf, the standard rule for computational classical logic gives:
prf (callcc,(ty,...(throw,(t2, p))...))
— callcc,prf (ty,...(throw,prt (t2, p))...)
and the right-hand side is not typable because the two occurrences of a get the a priori
incompatible types P(t1) and P(t5)

In particular, in the proof of choice,

ACyp & MH.(Az.wit (H x), \v.prf (H))
VaA3yP Pz, y) = 3PVt Pla, f())

if Hx : Jy P(x,y) is classically proved then what wit (H x) should be is unclear, and
how to keep it “synchronised” with prf (H x) is even more unclear.

A trick to recover countable choice

Turn Vz3y P(x,y) into a infinite conjunction 3y P(0,y) A Jy P(1,y) A ... and prove
instead

ACy p 2 \H.(An.wit (nthn H), A\n.prf (nthn H))
3y P(0,y) Ay P(Ly) A ...) = 7PVt Pa, f(2))

Now, the infinite conjunction is a “positive” object and we just have to evaluate it in (lazy)
call-by-value order to ensure that at the time wit and prf are called, the underlying stream
is evaluated at this position.

Classical arithmetic in finite types: PA%

(the language of expressions: system T')

T.U :=N|T=U
t,u = x|0]S(t)]|rectof [t|(z,y).t]| et |ttt

(x:T) el Fae:UFL:T PHt:U=T Thru:U
I'Fax:T ['FXet:U=T I'Htu:T

't N I'Ft:N I'Ety:U e Nyy:Uktg: U

'FO:N T'FS(t):N ['Frectof [ty|(x,y)ts] - U

(Az.t)u
rec 0 of [ty]| (x,y).tg]
rec S(t) of [ty | (x,y).ts]

tlx < u]
to
ts|lr < tlly < rec t of [to]| (z,y).ts]]

Classical arithmetic in finite types: PA%

(formulas and equational theory)

ABi=t=u|T|L|A=B|AAB|AVB|VaT A| 3T A

20
||
[
.

N
I
S

Classical arithmetic in finite types: PA%

(intuitionistic inference rules)

(a: A) el 'tp:A T,a:Abkq:B '-p:A A=B F'kp: L
'Fa:A 'Fleta=ping: B I'-p:B CE(Q:T ['+ exfalsop:C

FFpliAl Fl_pglAg Fl_p:Al/\AQ F,alel,aQ:Agl—q:B

I'F (p1,po) : A1 A A [t split p as (aj,as) ing: B
I'Ep: A I'Ep:A VA I'ai: AiFp1: B [as: AsFps: B
['F(p) : Ay V A ['F case p of [a1.p1 |as.po] : B

[a:AFp:B TFp:A=B I'kFq:A Dz:TrEp: Alz) Ik p:Val A(z) I'=t:T
'FXap: A= B I'kFpq:B L= Ax.p: Vol A(z) [k opt: A(t)

I'Ep: A(t) et T ['Fp: 3zt A(x) Ce:T,a:A(x)F-q: B
[k (t,p): 32T A(x) ['Fdest pas (z,a) ing: B

—— CkEp:t=u T'kq:Pt) 'Ft:N TFp:P0) Fox:T,a: Plx)Fq: P(S(x))

Frefl:t=u ['F substpq: P(u) ['F ind ¢ of [p]|(z,a).q] : P(t)

Classical arithmetic in finite types: PA%

(classical logic)

Fa:ArFp:A Trkp:A (a:AM) el

' catch,p: A [' - throw,p: C

10

Classical arithmetic in finite types: PA%

(call-by-value evaluation semantics, minimal part)

(Aa.q)p — leta=ping
(Ax.p)t — plr +]
case t;(p) of |a1.p1 | as.po] — let a; = p in p;
dest (t,p) as (z,a) in ¢ — let a =p in gz <]
split (p1,p2) as (ay,a2) in ¢ — let a; = p; in let as = py ingq
leta=bingq — qla < V]
let a = Ab.q in ¢ — qla < A\b.q]
let a = Az.pin g — qla + A\x.t]
leta=()ingq — qla <+ ()]
let a = 1;(p) in g — let b=pin qla < 1;(b)]
let a = (t,p) in g — let b=pin qla < (t,b)]
let a = (p1,p2) in ¢ — let a; = pp in let as = po in gla < (ay, as)]
subst refl p — D
ind 0 of [p|(z,a).q] — P
N

ind S(t) of [p|(x,a).q] qlx < t]la < ind t of [p|(x,a).q]]

11

Classical arithmetic in finite types: PA%

(call-by-value evaluation semantics, non minimal part)

Flexfalso p exfalso p
F[throw,p) throw,p
F|catch,p] catch, Flpla < F]]
exfalso exfalso p exfalso p
exfalso throwgp throwgp

exfalso catchgp exfalso pla <+ exfalso []]

e

throwgexfalso p exfalso p
throwgthrow,p throw,p
throwgcatch,p thrOWﬁp[Ol — B
catch,throw,p catch,p
catchgcatch,p catchgpla <+]

where

Fl] w= w1 () p[)!(VH)I(t,H)

| case [] of [a1.p1|a2.po] | split [] as (a1,az2) in q | subst[]p
| dest[]as (z,a)inp|[]q[[]t|leta=[]1ing

Note: can be reduced to 2 rules if one decomposes catch, p, throw, p and exfalso p
as po.|alp, p_alp and @ .|tp, |p respectively (for tp, evaluation context constant
witnessing | -elimination).

12

P A% has coinductive formulas

For instance, the infinite conjunction P(0) A P(1) A ... can be represented by

AN (F(0) = 1AV (f(n) = 1= (P(n) A f(S(n)) = 1))

(standard second order encoding, using quantification over functions rather than on pred-
icates)

13

For convenience, add primitive cofixpoints to P A%

Df:T=Naxz:Tb: flxr)y=1Fp: A f(_) =1 possibly occurs in positive A

['F cofixy,p:v;, A

with equation

V}xA = Alx < t]|f(y) =1« V}JxA]

For instance, 7 (P(x) A f(S(x)) = 1) represents P(3) A P(4) A ...

14

Extend evaluation semantics of PA“ to cofixpoints

case cofix} p of [a1.p1 |ag.ps]

dest cofix} p as (z,a) in g

split cofix] p as (a1, az) in ¢

let a = cofix} p in exfalso ¢

let a = cofix; p in throw,q

let a = cofix} p in catch,g

F[let a = cofix] p in (]

let a = cofix} p in D[case a of [a;.p; | az.ps]|

N

let ¢ = cofix] p in case ¢ of [a1.p1 | as.po]
let ¢ = cofix] p in dest c as (z,a) in ¢
let ¢ = cofix} p in split ¢ as (aj,az2) in ¢
exfalso let a = cofix] p in ¢

throw,let a = cofix] p in ¢

catch,let a = cofix] p in g

let a = cofix} p in F|q]

let a = p[b < Ay.cofix; p|[x < t] in D[case a of [a;.p; | az.ps]|
let a = cofix} p in D[split a as (a1,as) in q] —

let a = p[b < Ay.cofix; p|[z < t] in D[split a as (aj,as) in ¢

let a = cofix} p in D[dest a as (z,d’) in ¢]

_>

let a = p[b < A\y.cofix; p|[x < t] in D[dest a as (z,d’) in ¢]

where

D[] == []| D[F[]] | let a = cofix] p in D[]

15

Adding strong elimination of existential to PA“ (first step)

Replace weak elimination of existential by
M=V dal A(z) MV 3zt A(z)
'FprfV : Awit V) MFwitV T

where

Vii=a|uV) | (V,V)| (V)] dap]| Azp| ()| refl
Moreover, forbid dependency in implication introduction and cut
la:AFp:B a¢ FV(B) 'Fp: A a:AFq: B a ¢ FV(B)
I'FMXap: A= B ['Fleta=pingqg: B

And update the equational theory, evaluation contexts and evaluation rules

wit (t,p) = t F[] == ... | prf|] prf (t,p) — p

Claim: The resulting system is equivalent to P A% for judgements not mentioning wit: the
restriction on p combined with call-by-value ensures that p is “evaluated” when substituted
and that no classical reasoning occurs before taking the witness.

16

Adding strong elimination of existential to PA“ (second step)

Replace weak elimination of existential by

I'Fop:dal Alz) p is positively eliminated
['Fprfp: A(witp)

where

e a value is positively eliminated

e if p, q, p1 and py are positively eliminated then case a of [a1.p; | as.pa],
dest q as (r,a) in p and split q as (a1, az) in p are positively eliminated

Claim: we still get a system equivalent to PAY.

17

Adding strong elimination of existential to PA% (third step)

Replace weak elimination of existential by

'Fop:dal Alx) p is strongly N-elimination-free
['Fprfp: A(witp)

where

e a value is strongly N-elimination-free

eif p, g, p1 and po are strongly N-elimination-free then ind t of [p1|(z,a).po],
case a of |aj.p1|as.ps], dest ¢ as (x,a) in p and split q as (aj,az) in p
are strongly N-elimination-free

Claim: we then get the strength of countable choice

18

The proof of countable choice

ACy = Xa.let b= cofix) (an,b(Sn)) in
(An.wit (nthenb), An.prf (nthenb))
. Vndy P(n,y) = 3f Vn P(n, f(n))
where
nthen : Re(0) = Re(n)
nthon = Ab.mi(ind n of [b| (m,c).m(c)])

(s is the stream of type Rc(0) = Jy P(0,y) A Jy P(1,y) A ... extracted from the
hypothesis)

19

Adding strong elimination of existential to PA“ (fourth step)

Replace weak elimination of existential by

I'Fop: 3z A(x) pis N-elimination-free
['Fprfp: A(witp)

where

e a value is N-elimination-free

e if p, q, p1 and py is N-elimination-free then prf p, ind t of [p1 | (x,a).ps],
case a of [aj.p1|as.po], dest ¢ as (x,a) in p and split g as (ai,as) in p are
N-elimination-free.

Claim: we then get the strength of dependent choice

20

The proof of dependent choice

DC £)Xa)rg.let b=sax in
(An.wit (nthpn (x, b)),
(refl, An.mi(prf (prf (nthpn (xg,b))))))
Yoy Pz, y) =
Voo 3f (f(0) = 2o AVR P(f(n), f(S(n))))

where
nthpn : dz Rp(x) = Jx Rp(x)
nthpn = \b.ind n of [b|(m,c).dest c as (v,d) in

(wit (prf d), mo(prf (prfd)))]
sar : Rp(x)

sax =cofix{ (dest an as (y,c) in (y, (¢, by)))

(s is a stream of type Rp(xy) = Jxy (P(x0, 1) A Jzg (P21, 29) A ...)) obtained by
recursively applying the hypothesis)

(that exactly the strength of dependent choice is captured is still a conjecture)

21

Properties of the systems with N-elimination-free strong elimination of
existential quantification

Subject reduction: it I'Fp: Aandp —qgthenI'F¢g: A

Normalisation: if I' = p : A then p normalises [the proof, which is still in progress,
uses dependent choice at the meta-level]

Progress: if = p: A and p not a value then p reduces
Evaluation: Fp: Athen -V : Aforsome Vst PS5V

Conservativity over HA“ for closed V-=-v-wit-free and X{-formulas: if = T
and T’ V-=-v-wit-free or X2} then b0 T

Consistency: I/ L

22

Comparison with Krivine's realiser of the axioms of countable and
dependent choice (restated as a proof in PAg + quote)

Krivine's “proof” only supports the existence of relational choice functions

It needs classical logic

It relies on a "quote” effect y typed with

[Fp:3X P(X)
['Fxp:3dnP(®p(n))

where ®p is a formal predicate constant

ACN =)\CL.(UP,

Ar.dest x (ax) as (n,b) in catchwt, (An' . Af. A0 .throw,(g{;ly) b'))nb)
- VaNIYN=* P2Y)
= JUNN=2 YN P2, U(x))

23

where

V(I‘,’Il) = ﬂP(Qj,@p(ﬂj,ﬂ))

Z(x,n) = ¥Ym <nV(zx,m)= V(z,n)

Up(x) = Vn(=Z(z,n)= ®p(x,n)) “exists n minimal st. ®p(z,n)"

wf, - VnZ(z,n)=VnV(z,n) "if P(x,®p(x,n)), there is a minimal n for it

and for f:Vm < nV(x,m)and b: P(z,®p(z,n))

hk . A(Pp(z,n)) = A(Up(z))
T@J}C?) % An' Ak.if n =n' then c else kAf' A.if n' < n then fn'b else f'nb
nfb

2
b b
e 2 40 (me), 1" (mae))
N

e 2y (el a)

Y A(Up(x) = A(@p(z,n))
Wiy & endkkfb

Vivpe 2 (" (mo), " (me))

Aa. (V" (e (1" a)))

How to implement quote

Krivine implements x by quoting the top argument of the stack at runtime. It seems that
an alternative implementation is possible by quoting instead the witness:

xp = (lwitp],prfp)
A

O(n) = [n]

so that the reduction rule is

x(U,p) — (U], p)

Quoting needs its argument closed. The rule can however be used as a local rule: only
the decidability of equality |[U| = |U’| will need U and U’ to be closed so as to be
evaluable.

25

Comparison with Coquand-Berardi-Bezem's realiser of the axioms of
countable choice

As rephrased by Berger, Coquand-Berardi-Bezem's “proof” builds a choice function by
update induction.

Initially, the choice function returns a dummy value everywhere.

Each time a proof of P(n, f(n)) is requested, the proof of dy P(n,y) together with a
continuation that updates the choice function.

If, later on, the proof of some P(n, f(n)) has already been asked, the former value is
retrieved.

In our case, the choice function has no default value. The proofs of Jy P(i,y) fori <n
are executed whenever either f(n) or P(n, f(n)) is requested (but alternative, more
sophisticated, evaluation strategies for PAY can be imagined).

26

Comparison with Escardé-Oliva’s realiser of the axiom of countable and
dependent choice

Similar idea of evaluating a cofixpoint.

Note: Other realisation exists (e.g. Spector's functional interpretation based on bar
recursion).

27

Summary

By adding an appropriate intuitionistically-restricted rule for strong elimination of exis-
tential to PAY, we computationally capture the strength of either countable choice or
dependent choice.

This can be turned into a Martin-Lof-style type theory by allowing dependent products
with the restriction that they are instantiated only by N-elimination-free expressions.

Provides with an intuitionistic proof of bar induction compatible with classical logic:

Y30 B(a) =Yg (e o) — o) 290 =0

Our proof of choice uses a weak form of effect (lazy evaluation) but we suspect that other
proofs using effects are possible...

28

