Some properties of realizability models

Jean-Louis Krivine

PPS Group, University Paris-Diderot, CNRS krivine@pps.univ-paris-diderot.fr

Chambéry, June 2012

Outline

We give some general properties of classical realizability and we look at some particular models:

- True *arithmetical formulas*, and even true Π_1^1 *formulas* are realized; thus, realizability models cannot give indecidability results in arithmetic.
- A model is given by forcing iff its Boolean algebra ☐2 is trivial.
- We build models in which \(\frac{1}{2} \) is non trivial and finite.
- Following T. Ehrhard and T. Streicher, the usual models of lambda-calculus have, in fact, a structure of realizability algebra.

Therefore, they give rise to realizability models of ZF.

We study a simple case, in which 32 is non trivial and integers are preserved.

A game on first order formulas

We consider first order formulas written with: \rightarrow , \forall , \top , \bot , \neq , predicate constants, function symbols for recursive functions. A 1st order formula has the form $\forall \vec{x}[\Phi_1,...,\Phi_n \rightarrow A]$ where $\Phi_1,...,\Phi_n$ are 1st order formulas and A is atomic (i.e. $Rt_1 \dots t_k$ or $t_0 \neq t_1$ or \top or \bot). In the following, we only consider *closed* 1st order formulas. The atomic closed formula $t_0 \neq t_1$ is interpreted as \top (resp. \bot) if it is true (resp. false) in \mathbb{N} . We define a game with two players : \exists (the *client*) and \forall (the *server*). At each step, the *position* is a sequent $\mathcal{U} \vdash \mathcal{A}$ with closed 1st order formulas; the formulas of \mathscr{A} are atomic and $\bot \in \mathscr{A}$; \mathscr{U} and \mathscr{A} increase at each step. The game starts with a sequent $\mathcal{U}_0 \vdash \mathcal{A}_0$.

3

```
A move in this game is as follows:
Player \exists chooses \Psi \in \mathcal{U}, \Psi = \forall \vec{y} [\Phi_1(\vec{y}), ..., \Phi_n(\vec{y}) \rightarrow B(\vec{y})]
and \vec{j} \in \mathbb{N}^l such that B(\vec{j}) \in \mathcal{A} (if this is impossible, then \exists has lost).
Player \forall chooses a formula \Phi \in \mathcal{V} = \{\Phi_1(\vec{j}), \dots, \Phi_n(\vec{j})\},\
\Phi \equiv \forall \vec{x} [\Psi_1(\vec{x}), \dots, \Psi_m(\vec{x}) \to A(\vec{x})] ; \forall \text{ chooses also } \vec{i} \in \mathbb{N}^k.
The atomic formula A(\vec{i}) must not be \top (otherwise, \forall has lost).
Then \Psi_1(\vec{i}), \dots, \Psi_m(\vec{i}) are added to \mathscr{U} and A(\vec{i}) is added to \mathscr{A}.
\exists wins iff \forall cannot play at some step
(every formula of \mathcal{V} ends with \top, in particular if \mathcal{V} = \emptyset).
In fact, player ∀ tries to build a model over N in which
the formula \mathcal{V}_0 = \bigwedge \mathcal{W}_0 \rightarrow \bigvee \mathcal{A}_0 is false, and \exists tries to avoid this :
```

Theorem. i) Any model \mathcal{M} over \mathbb{N} s.t. $\mathcal{M} \not\models \mathcal{V}_0$ gives a winning strategy for \forall . ii) There exists a "trivial" strategy for the player \exists such that each play \exists loses using it, gives a model \mathcal{M} over \mathbb{N} , $\mathcal{M} \not\models \mathcal{V}_0$. i) We define a strategy for \forall such that, at each step:

every formula of \mathscr{U} (resp. \mathscr{A}) is true (resp. false) in \mathscr{M} . This is true at the beginning of the game.

Then \exists chooses $\Psi \in \mathcal{U}$, $\Psi = \forall \vec{y} [\Phi_1(\vec{y}), ..., \Phi_n(\vec{y}) \to B(\vec{y})]$ and $\vec{j} \in \mathbb{N}^l$ such that $B(\vec{j}) \in \mathcal{A}$. Therefore, $\mathcal{M} \models \neg B(\vec{j})$ and $\mathcal{M} \models \Psi$.

Thus, \forall can choose $\Phi \in \mathcal{V} = \{\Phi_1(\vec{j}), \dots, \Phi_n(\vec{j})\}$ s.t. $\mathcal{M} \models \neg \Phi$.

Let $\Phi = \forall \vec{x} [\Psi_1(\vec{x}), \dots, \Psi_m(\vec{x}) \rightarrow A(\vec{x})].$

Then \forall can choose $\vec{i} \in \mathbb{N}^k$ s.t. $\mathcal{M} \models \Psi_1(\vec{i}), \dots, \Psi_m(\vec{i})$ and $\neg A(\vec{i})$.

Finally $\Psi_1(\vec{i}), ..., \Psi_m(\vec{i})$ are added to \mathscr{U} and $A(\vec{i})$ to \mathscr{A} .

Thus $\mathscr U$ and the negation of formulas of $\mathscr A$ remain true in $\mathscr M$.

ii) Here is the "trivial" strategy for ∃: fix an enumeration of all ordered pairs $\langle \Psi, \vec{j} \rangle$ (Ψ is a closed formula, $\vec{j} \in \mathbb{N}^l$). At each step, \exists chooses the first allowed pair $\langle \Psi, \vec{j} \rangle$, not chosen before. Suppose \exists loses some play with this strategy. Let \mathcal{M} be the model which satisfies exactly the closed atomic formulas never put in \mathcal{A} during this play. A pair $\langle \Psi, \vec{j} \rangle$ is called *acceptable* if Ψ is put is \mathcal{U} and $B(\vec{j})$ in \mathcal{A} at some step (not necessarily the same) where $B(\vec{y})$ is the final atom of Ψ . Every acceptable pair is effectively played by ∃ at some step: namely when every acceptable pair strictly less than it has been played. We prove, by induction, that \mathcal{M} satisfies every formula Ψ which is put in \mathcal{U} and the negation of every formula Φ chosen by \forall during the play.

Proof for Ψ . The result is clear if Ψ is atomic because, if Ψ is both in $\mathscr U$ and $\mathscr A$ then $\langle \Psi, \emptyset \rangle$ is acceptable and thus will be chosen by \exists ; then \exists wins. Otherwise, let $\Psi = \forall \vec{y} [\Phi_1(\vec{y}), \dots, \Phi_n(\vec{y}) \rightarrow B(\vec{y})]$. We must show that $\mathcal{M} \models \Phi_1(\vec{i}), \dots, \Phi_n(\vec{i}) \rightarrow B(\vec{i})$ for every $\vec{i} \in \mathbb{N}^k$. This is clear if $B(\vec{j})$ is never put in \mathscr{A} , because $\mathscr{M} \models B(\vec{j})$. Otherwise, $\langle \Psi, \vec{j} \rangle$ is acceptable and is chosen by \exists at some step. Then $\mathcal{V} = \{\Phi_1(\vec{j}), \dots, \Phi_n(\vec{j})\}$ and $\Phi_1(\vec{j})$, for instance, is chosen by \forall . By induction hypothesis, we have $\mathcal{M} \models \neg \Phi_1(\vec{i})$, which gives the result. **Proof for** Φ . Let $\Phi = \forall \vec{x} [\Psi_1(\vec{x}), ..., \Psi_m(\vec{x}) \rightarrow A(\vec{x})]$; \forall chooses \vec{i} and puts $A(\vec{i})$ in \mathscr{A} and $\Psi_1(\vec{i}), \dots, \Psi_m(\vec{i})$ in \mathscr{U} . By induction hypothesis, $\mathcal{M} \models \Psi_1(\vec{i}), \dots, \Psi_m(\vec{i})$; and, by definition, $\mathcal{M} \not\models A(\vec{i})$. Thus $\mathcal{M} \models \neg \Phi$. It follows that $\mathcal{M} \not\models \mathcal{V}_0$ since $\mathcal{M} \models \mathcal{U}_0$ and $\mathcal{M} \models \neg A$ for $A \in \mathcal{A}_0$. **OED**

Well founded recursive relations

```
Let f: \mathbb{N}^2 \to \{0,1\} be arbitrary. The predicate f(x,y) = 1 is well founded
iff the formula \forall X \forall z \{ \forall x [\forall y (f(x, y) = 1 \rightarrow Xy) \rightarrow Xx] \rightarrow Xz \} is true in \mathbb{N}.
We show that, in this case, this formula is even realized.
Theorem. If the predicate f(x, y) = 1 is well founded, then
Y \Vdash \forall X \forall z \{ \forall x [\forall y (f(x, y) = 1 \mapsto Xy) \to Xx] \to Xz \}.
Let t \Vdash \forall x [\forall y (f(x, y) = 1 \mapsto Xy) \to Xx] and n \in \mathbb{N}; we show by induction on n,
following the well founded predicate "f(x, y) = 1", that Yt \parallel Xn.
Since Yt \star \pi > t \star Yt \cdot \pi, it suffices to show that Yt \Vdash \forall y(f(n, y) = 1 \mapsto Xy)
i.e. \forall t \parallel f(n,p) = 1 \mapsto Xp. This is trivial if f(n,p) \neq 1
and this follows from the induction hypothesis if f(n, p) = 1.
Thus, if \pi \in ||Xn||, we have t \star Yt \cdot \pi \in \bot and therefore Y \star t \cdot \pi \in \bot.
                                                                                                            OED
This shows that a recursive well founded predicate on integers
is also well founded in every realisability model.
```

True Π_1^1 formulas

A Π_1^1 formula is of the form $F \equiv \forall \vec{X} \Phi[\vec{X}]$ where Φ is a 1st order formula written with the function symbols $0,1,+,\times$ and the predicate symbols \neq,\vec{X} . **Theorem.** If F is a true Π_1^1 formula, then F^{int} is realized.

This shows, in particular, that the integers of any realizability model are *elementary equivalent* to the integers of the ground model. It is not possible to show the independence of some *arithmetical* (and even Π_1^1)

formula by means of realizability models.

Open problems : What about Σ_1^1 (or higher) formulas ?

Are the *constructible universes* of the ground model and the realizability model elementarily equivalent? This is (trivially) true in the case of forcing.

Proof. Fix a recursive enumeration of closed formulas and also of sequents $\mathcal{U} \vdash \mathcal{A}$. Let $F \equiv \forall \vec{X} \neg \Phi[\vec{X}]$ be a *true* Π^1 formula.

The meaning of F is that the 1st order formula $\Phi \rightarrow \bot$ has no model.

Thus, the "trivial" strategy for ∃ is winning

in the game which starts with the sequent $\Phi \vdash \bot$.

Now, let f(x, y) = 1 be the recursive predicate which says that

x, y are (numbers of) successive positions chosen by \forall such that, between them, \exists has applied (once) the trivial strategy.

This strategy is winning for \exists iff each play is finite, i.e. iff the predicate f(x, y) = 1 is well founded.

Now, by the above theorem, we obtain:

$$Y \Vdash \forall X \{ \forall x [\forall y (f(x, y) = 1 \mapsto Xy) \to Xx] \to \forall x Xx \}.$$

But we have just proved that : "f(x, y) = 1 is well founded" $\rightarrow F$.

Let θ be a proof-like term associated with this proof. Then $\theta Y \Vdash F$.

OED

The case of arithmetical formulas

An arithmetical formula is of the form

 $\forall x_1 \exists y_1 ... \forall x_n \exists y_n (f(x_1, y_1, ..., x_n, y_n) \neq 0)$ where $f : \mathbb{N}^{2n} \rightarrow \{0, 1\}$ is recursive.

Theorem. Let $f: \mathbb{N}^{2n} \to \{0,1\}$ be an arbitrary function, such that

 $\forall x_1 \exists y_1 ... \forall x_n \exists y_n (f(x_1, y_1, ..., x_n, y_n) \neq 0)$ is true in \mathbb{N} . Then

 $\forall x_1 \exists y_1^{\text{int}} ... \forall x_n \exists y_n^{\text{int}} (f(x_1, y_1, ..., x_n, y_n) \neq 0)$ is realized

by a proof-like term that depends only on n.

This theorem shows once again that any true arithmetical formula is realized.

```
For n=1, the proof is very simple : 

Theorem. Let \theta \in \mathsf{QP} be such that \theta \star \underline{n} \cdot \xi \cdot \pi \succ \xi \star \underline{n} \cdot \theta \underline{n}^+ \xi \cdot \pi with \underline{n}^+ = (s)\underline{n}. Then \theta \underline{0} \Vdash \forall x \left( \forall y^{\mathsf{int}} (f(x,y) \neq 0 \to \bot) \to \bot \right) for every f : \mathbb{N}^2 \to 2 such that \mathbb{N} \models \forall x \exists y (f(x,y) = 1). We simply need to prove \theta \underline{0} \Vdash \forall y^{\mathsf{int}} (f(y) \neq 0 \to \bot) \to \bot for every f : \mathbb{N} \to 2 such that \mathbb{N} \models \exists y (f(y) = 1). Lemma. Let \xi \Vdash \forall y^{\mathsf{int}} (f(y) \neq 0 \to \bot); if \theta \underline{n} \xi \not\Vdash \bot, then f(n) = 0 and \theta \underline{n}^+ \xi \not\Vdash \bot. We have \theta \star \underline{n} \cdot \xi \cdot \pi \notin \bot, thus \xi \star \underline{n} \cdot \theta \underline{n}^+ \xi \cdot \pi \notin \bot; therefore \theta \underline{n}^+ \xi \not\Vdash f(n) \neq 0 hence the result. QED Suppose \theta \star 0 \cdot \xi \cdot \pi \notin \bot; the lemma gives f(n) = 0 for all n \in \mathbb{N}, a contradiction. QED
```

```
We consider now the case n=2, which is typical for the general case.
Theorem. Let \theta_x = \lambda t \lambda \sigma \lambda m \lambda n(xm) \lambda y (H\sigma m y n)((t)(\Sigma)\sigma m y) m' n' (x is free) where
H, \Sigma are closed \lambda-terms defined below; \langle m', n' \rangle is the successor of \langle m, n \rangle in \mathbb{N}^2.
Then, for every f: \mathbb{N}^3 \to \{0,1\}, there exists \phi: \mathbb{N} \to \mathbb{N} such that :
\lambda x(Y)\theta_x 000 \Vdash \forall x^{\text{int}} \exists y \forall z^{\text{int}} (f(x, y, z) = 1) \rightarrow \forall x \forall z (f(x, \phi x, z) \neq 0).
Definition of H, \Sigma. The variables m, n represent integers; \eta an arbitrary term;
the variable \sigma represents a finite sequence of ordered pairs \langle m, \eta \rangle.
If no pair < m, \bullet > is in \sigma, put \Sigma \sigma m \eta = \sigma \smile < m, \eta >, H \sigma m \eta = \eta.
Else, put \Sigma \sigma m \eta = \sigma; H \sigma m \eta = \zeta for the first \langle m, \zeta \rangle appearing in \sigma.
Proof by contradiction. Suppose \xi \Vdash \forall x^{\text{int}} (\forall y [\forall z^{\text{int}} (f(x, y, z) = 1) \rightarrow \bot] \rightarrow \bot);
\forall \theta_{\xi} 000 \not\Vdash \bot \text{ and } f(x_0, \phi x_0, z_0) = 0.
We show, by recurrence on < m, n > \le < x_0, z_0 >, that \forall \theta_{\xi} \sigma_{mn} mn \not \Vdash \bot,
with \sigma_{mn}, \eta_{mn}, b_{mn} defined by recurrence; it's true for \sigma_{00} = 0. If it's true for \langle m, n \rangle
we have Y\theta_{\xi}\sigma_{mn}mn\star\pi\notin\bot, i.e. \theta_{\xi}\star Y\theta_{\xi}\bullet\sigma_{mn}\bullet m\bullet n\bullet\pi\notin\bot, or else :
```

```
\xi \star m \cdot \lambda y (H\sigma_{mn} m y n) ((Y\theta_{\xi})(\Sigma)\sigma_{mn} m y) m' n' \cdot \pi \notin \bot. Thus, there exists b_{mn} s.t.:
\lambda y(H\sigma_{mn}myn)((Y\theta_{\xi})(\Sigma)\sigma_{mn}my)m'n' \not\Vdash \forall z^{int}(f(m,b_{mn},z)=1) \rightarrow \bot \text{ and thus}
there exists \eta_{mn} \Vdash \forall z^{int}(f(m, b_{mn}, z) = 1) such that
                    H\sigma_{mn}m\eta_{mn}\star n\bullet((Y\theta_{\mathcal{E}})(\Sigma)\sigma_{mn}m\eta_{mn})m'n'\bullet\pi\notin\bot.
(*)
Definition of \phi m: i) if no pair \langle m, \bullet \rangle appears in \sigma_{mn} then put \phi m = b_{mn};
ii) else, \langle m, \phi m \rangle is the first (indeed only) pair \langle m, \bullet \rangle appearing in \sigma_{mn}.
Now, we have H\sigma_{mn}m\eta_{mn} \Vdash \forall z^{int}(f(m,\phi m,z)=1) because:
in case (i) H\sigma_{mn}m\eta_{mn} = \eta_{mn} and \phi_m = b_{mn}; in case (ii), by induction on < m, n>
since H\sigma_{mn}m\eta_{mn} = \eta_{mq} with < m, q > strictly before < m, n >.
Thus
                     H\sigma_{mn}m\eta_{mn}n \Vdash f(m,\phi m,n) \neq 1 \rightarrow \bot.
Now, we put \sigma_{m'n'} = (\Sigma)\sigma_{mn}m\eta_{mn}.
Thus, by (*), we have Y\theta_{\xi}\sigma_{m'n'}m'n' \not\Vdash f(m,\phi m,n) \neq 1.
therefore f(m, \phi m, n) = 1 and \forall \theta_{\xi} \sigma_{m'n'} m'n' \not \Vdash \bot.
Since f(x_0, \phi x_0, z_0) = 0, we have a contradiction if \langle m, n \rangle = \langle x_0, z_0 \rangle.
Else, we have done the recurrence step.
                                                                                                                             OED
```

Consider now a function $f: \mathbb{N}^4 \to \{0,1\}$ s.t. $\mathbb{N} \models \forall u \exists x \forall y \exists z (f(u,x,y,z) = 0)$.

This gives $\forall u (\forall x \exists y \forall z (f(u, x, y, z) \neq 0) \rightarrow \bot).$

Thus, for every $u \in \mathbb{N}$ and $\phi : \mathbb{N} \to \mathbb{N}$ we get :

$$\|\forall x \forall z (f(u, x, \phi x, z) \neq 0)\| = \|\bot\| = \Pi.$$

It follows from the previous theorem that

$$\lambda x(Y)\theta_x 000 \Vdash \forall u \Big(\forall x^{\text{int}} \exists y \forall z^{\text{int}} (f(u, x, y, z) = 1) \rightarrow \bot \Big)$$

which is the case n=2 for arithmetical formulas.

32 trivial

```
Let \delta be a proof-like term s.t. \delta \Vdash \forall x^{\rfloor 2} (x \neq 0, x \neq 1 \rightarrow \bot) (i.e. \rfloor 2 is trivial).
We have \delta \in |\top, \bot \to \bot| \cap |\bot, \top \to \bot|. Let \delta' = \lambda x \lambda y \operatorname{cc} \lambda k(\delta)((k)x)(k)y; then
               \xi \star \pi \in \bot or \eta \star \pi \in \bot \Rightarrow \delta' \star \xi \cdot \eta \cdot \pi \in \bot
Thus, \delta' \Vdash X, Y \to X and \delta' \Vdash X, Y \to Y for every truth values X, Y.
Theorem. (\exists \Phi \in \mathsf{QP})(\forall \theta \in \mathsf{QP})(\forall X \subset \Pi)(\theta \Vdash X \Rightarrow \Phi \Vdash X).
Define e (read eval) by the following program:
e 0 = B, e 1 = C, e 2 = E, e 3 = I, e 4 = K, e 5 = W, e 6 = cc, e 7 = \delta;
e n + 8 = ((e)(p_0)n)(e)(p_1)n;
where p_0, p_1 define a recursive bijection from \mathbb{N} onto \mathbb{N}^2.
For every \theta \in QP, there is an integer n s.t. en > \theta.
Now define \phi by : \phi \star n \cdot \pi > \delta' \star en \cdot (\phi)(s)n \cdot \pi. Finally \Phi is \phi 0.
Let \theta \in \mathsf{QP} s.t. \theta \Vdash X; thus, we have \phi n \Vdash X for some n,
then \phi n - 1 \Vdash X, \dots; eventually \phi 0 \Vdash X.
```

OED

32 trivial

Let $\mathscr{B} = \mathscr{P}(\Pi)$ be the Boolean algebra of truth values.

The order is defined by $A \leq B \Leftrightarrow (\exists \theta \in \mathsf{QP})(\theta \Vdash A \to B)$.

Thus, the order on \mathscr{B} is defined by $A \leq B \Leftrightarrow \Phi \Vdash A \to B$.

Theorem. \mathscr{B} is a complete Boolean algebra :

If $B_i (i \in I)$ is a family of truth values, then $\inf_{i \in I} B_i = \bigcup_{i \in I} B_i$.

Let $A \leq B_i$ for $i \in I$. Then $\Phi \Vdash A \to B_i$, thus $\Phi \Vdash A \to \bigcup_{i \in I} B_i$.

Conversely $I \Vdash \bigcup_{i \in I} B_i \rightarrow B_{i_0}$.

QED

Thus, the realizability model is, in fact, a forcing model.

The converse is also true: in the case of forcing, the realizability algebra is a commutative idempotent monoid with a unity $\mathbf{1}$; then $QP = \{\mathbf{1}\}$.

We have $1 \Vdash X, Y \to X$ and $X, Y \to Y$; thus $\Im 2$ is trivial.

32 with 4 elements

```
Let d be a term constant and suppose \perp has the following property:
If two out of the three processes \xi \star \pi, \eta \star \pi, \zeta \star \pi are in \bot then d \star \xi \cdot \eta \cdot \zeta \cdot \pi \in \bot.
We have d \in [T, \bot, \bot \to \bot | \cap | \bot, T, \bot \to \bot | \cap | \bot, \bot, \top \to \bot |.
               d \Vdash \forall x^{2} \forall y^{2} (x \neq 0, y \neq 1, x \neq y \rightarrow xy \neq x)
Thus
               We now build a model in which \Im 2 has exactly 4 elements.
The only term constants are the elementary combinators, cc and d.
There are two stack constants \pi^0, \pi^1. Let \omega = (WI)(W)I = (\lambda x xx)\lambda x xx.
For i \in \{0, 1\}, let \Lambda^i (resp. \Pi^i) be the set of terms (resp. stacks)
which contain the only stack constant \pi^i.
For i, j \in \{0, 1\}, define \perp i as the least set P \subset \Lambda^i \star \Pi^i of processes such that :
1. \omega \star j \cdot \pi^i \in P;
2. \xi \star \pi \in \Lambda^i \star \Pi^i, \xi \star \pi > \xi' \star \pi' \in P \Rightarrow \xi \star \pi \in P (P is saturated in \Lambda^i \star \Pi^i);
3. if 2 out of the 3 processes \xi \star \pi, \eta \star \pi, \zeta \star \pi are in P, then d \star \xi \cdot \eta \cdot \zeta \cdot \pi \in P.
```

```
We define \perp \!\!\! \perp by : \Lambda \star \Pi \setminus \perp \!\!\! \perp = \bigcup_{i \in \{0,1\}} (\Lambda^i \star \Pi^i \setminus \perp_i^i)
In other words, a process is in \perp iff
either it is in \perp \!\!\! \perp_0^0 \cup \perp \!\!\! \perp_1^1 or it contains both stack constants \pi^0, \pi^1.
Lemma. If \xi \star \pi \in \perp_i^i and \xi \star \pi > \xi' \star \pi' then \xi' \star \pi' \in \perp_i^i (closure by reduction).
Suppose \xi_0 \star \pi_0 > \xi_0' \star \pi_0'; \xi_0 \star \pi_0 \in \perp_j^i; \xi_0' \star \pi_0' \notin \perp_j^i; We may suppose that \xi_0 \star \pi_0 > \xi_0' \star \pi_0' is exactly one step.
Then \perp i \setminus \{\xi_0 \star \pi_0\} has properties 1,2,3 defining \perp i; contradiction.
                                                                                                                                                                          QED
Lemma. \perp \!\!\! \perp_0^i \cap \perp \!\!\! \perp_1^i = \emptyset.
We prove that \Lambda^{i} \star \Pi^{i} \setminus \perp_{1}^{i} \supset \perp_{0}^{i} by showing properties 1, 2, 3.
1. \omega \star \underline{0} \cdot \pi^i \notin \underline{\mathbb{L}}_1^i because \underline{\mathbb{L}}_1^i \setminus \{\omega \star \underline{0} \cdot \pi^i\} has properties 1, 2, 3 defining \underline{\mathbb{L}}_1^i.
2. Follows from previous lemma.
3. Suppose \xi \star \pi, \eta \star \pi \notin \perp \downarrow_1^i; then d \star \xi \cdot \eta \cdot \zeta \cdot \pi \notin \perp \downarrow_1^i
because \perp 1^i \setminus \{d \star \xi \cdot \eta \cdot \zeta \cdot \pi\} has properties 1, 2, 3 defining \perp 1^i.
                                                                                                                                                                          QED
Theorem. This realizability model is coherent.
Let \theta \in QP s.t. \theta \star \pi^0 \in \mathbb{L}_0^0 and \theta \star \pi^1 \in \mathbb{L}_1^1. Then \theta \star \pi^0 \in \mathbb{L}_0^0 \cap \mathbb{L}_1^0.
                                                                                                                                                                          OED
```

```
Remark. If \pi \in \Pi \setminus (\Pi_0 \cup \Pi_1), then \xi \star \pi \in \bot for every term \xi.
Thus, we can remove these stacks and consider only \Pi^0 \cup \Pi^1.
We define two individuals in this realizability model:
\gamma_0 = (\{0\} \times \Pi^0) \cup (\{1\} \times \Pi^1) ; \gamma_1 = (\{1\} \times \Pi^0) \cup (\{0\} \times \Pi^1).
Obviously, \gamma_0, \gamma_1 \subset \mathbb{J}2 = \{0, 1\} \times \Pi. Now we have :
\|\forall x(x \not\in \gamma_0)\| = \Pi^0 \cup \Pi^1 = \|\bot\| ; \omega_0 \Vdash 0 \not\in \gamma_0 \text{ et } \omega_1 \Vdash 1 \not\in \gamma_0.
It follows that \gamma_0 is not \varepsilon-empty and that every \varepsilon-element of \gamma_0 is \neq 0, 1.
Thus the Boolean algebra \beth 2 is not trivial and has exactly 4 \varepsilon-elements.
We have \xi \Vdash \forall x^{2}(x \varepsilon \gamma_0, x \varepsilon \gamma_1 \to \bot) for every term \xi:
Indeed, |i \varepsilon \gamma_0| = \{k_\pi; \pi \in \Pi^i\} for i = 0, 1 and \xi \star k_{\rho_0} \cdot k_{\rho_1} \cdot \pi \in \bot if \rho_i \in \Pi^i.
It follows that \gamma_0, \gamma_1 are the singletons of the \varepsilon-elements \neq 0, 1 of \gimel 2.
Remark. We can easily modify this construction in order to obtain
for 32 any finite Boolean algebra.
```

Denotational semantics

T. Ehrhard has found a method which converts usual models of λ -calculus into realizability algebras, by defining stacks, cc and k_{π} in such models. The construction of stacks was also given by T. Streicher.

We need to avoid *parallel or*, because we don't want to get *forcing models*.

Thus, our example will be the simplest coherent model of λ -calculus.

Let us recall (one of) its construction.

Let o be a fixed set which is not an ordered pair.

The the set V of formulas is the smallest set s.t.:

 $o \in V$; if $\alpha \in V$, $a \in \mathscr{P}_f(V)$ and $\langle a, \alpha \rangle \neq \langle \emptyset, o \rangle$ then $\langle a, \alpha \rangle \in V$ $(\mathscr{P}_f(V))$ is the set of finite subsets of D).

If $a \in \mathscr{P}_f(V)$ and $\alpha \in V$, we set $a \to \alpha = \langle a, \alpha \rangle$ except that $(\emptyset \to o) = o$.

Every element of V except o is an ordered pair.

If $\alpha \in V$, its rank $r(\alpha)$ is the total number of \rightarrow in α .

```
Each \alpha \in V has a unique normal form \alpha = (a_1, ..., a_k \rightarrow o)
with k \in \mathbb{N}, a_1, \dots, a_k \in \mathscr{P}_f(V) and a_k \neq \emptyset. Then \alpha = (a_1, \dots, a_k, \emptyset, \dots, \emptyset \to o).
The truth value |\alpha| \in \{0,1\} of a formula \alpha is defined by induction :
|a_1,\ldots,a_k\to o|=1 iff \exists i(\exists\beta\in a_i)(|\beta|=0).
If \alpha = (a_1, \dots, a_k \to o), \beta = (b_1, \dots, b_k \to o) we define
                          \alpha \sqcap \beta = (a_1 \cup b_1, \dots, a_k \cup b_k \rightarrow o).
This operation is associative, commutative and idempotent; o is neutral;
it defines an order relation : \alpha \leq \beta \Leftrightarrow b_1 \subset a_1, \ldots, b_k \subset a_k.
Define a subset D of V (the web) by induction on the rank :
(a_1,\ldots,a_k\to o)\in D iff, for 1\leq i\leq k,
a_i \subset D and (\forall \beta, \gamma \in a_i)(\beta \neq \gamma \Rightarrow \beta \sqcap \gamma \notin D) (a_i is an antichain of D).
D is a final segment of V: let \alpha = (a_1, ..., a_k \rightarrow o), \beta = (b_1, ..., b_k \rightarrow o),
\alpha \in D, \alpha \leq \beta. Then b_i \subset a_i and a_i is an antichain of D, thus so is b_i.
\alpha, \beta \in D are called compatible if \alpha \sqcap \beta \in D; in symbols \alpha = \beta.
If \alpha_1, \ldots, \alpha_n are pairwise compatible, then \alpha_1 \sqcap \ldots \sqcap \alpha_n \in D.
```

The realizability algebra

```
\Lambda_D is the set \mathscr{A}(D) of antichains of D, i.e. t \subset D is a term iff
(\forall \alpha, \beta \in t)(\alpha \sqcap \beta \in D \rightarrow \alpha = \beta).
\Pi_D is the set \mathscr{S}(D) of filters of D, i.e. \pi \subset D is a stack iff
(\forall \alpha, \beta \in \pi) \alpha \sqcap \beta \in \pi ; \forall \alpha \forall \beta (\alpha \in \pi, \alpha \leq \beta \rightarrow \beta \in \pi) ; o \in \pi.
Remark. \Pi_D can be identified with \Lambda_D^{\mathbb{N}}: a sequence of terms t_n (n \in \mathbb{N})
correspond with the filter \{a_1, ..., a_k \rightarrow o : a_1 \subset t_1, ..., a_k \subset t_k\}.
\Lambda_D \star \Pi_D is \{0,1\} and \perp is \{1\}.
If t \in \Lambda_D, \pi \in \Pi_D then t \star \pi \in \bot iff t \cap \pi \neq \emptyset (i.e. t \cap \pi is a singleton).
t \cdot \pi = \{a \rightarrow \alpha ; a \subset t, \alpha \in \pi\};
tu = \{\alpha \in D : (\exists a \subset u)(a \to \alpha) \in t\};
K is the set of all formulas : \{\alpha\}, \emptyset \to \alpha for \alpha \in D.
S is the set of all formulas:
\{a_0, \{\alpha_1, ..., \alpha_k\} \to \beta\}, \{a_1 \to \alpha_1, ..., a_k \to \alpha_k\}, a_0 \cup a_1 \cup ... \cup a_k \to \beta\}
with \{\alpha_1, \ldots, \alpha_k\} \in \mathcal{A}(D) and a_0 \cup a_1 \cup \ldots \cup a_k \in \mathcal{A}(D).
```

```
k_{\pi} is the set of formulas : (\{\alpha\} \rightarrow o) for \alpha \in \pi;
cc is the set of all formulas:
\{a \to \alpha\} \to \alpha \sqcap \alpha_1 \sqcap \ldots \sqcap \alpha_k \text{ with } a = \{\{\alpha_1\} \to \mathsf{o}, \ldots, \{\alpha_k\} \to \mathsf{o}\} \text{ and } \alpha \sqcap \alpha_1 \sqcap \ldots \sqcap \alpha_k \in D.
QP is defined as the set of t \in \Lambda_D s.t. |t| = 1 i.e. (\forall \alpha \in t)(|\alpha| = 1).
We have K, S, cc \in QP; t, u \in QP \Rightarrow tu \in QP.
The model is coherent because |t| = 1 \Rightarrow o \notin t i.e. t \star \{o\} \notin \bot.
Lemma 1. t \Vdash \top, ..., \top \rightarrow \bot \text{ iff } t = \{o\}.
Indeed, t \star \emptyset \cdot \dots \cdot \emptyset \cdot \{o\} \in \bot \Rightarrow t = \{o\}
                                                                                                                                         QED
Lemma 2. If t \in |\top, \bot \to \bot| \cap |\bot, \top \to \bot| then t = \{o\}.
We have t \cap \emptyset \cdot \{o\} \cdot \{o\} \neq \emptyset and t \cap \{o\} \cdot \emptyset \cdot \{o\} \neq \emptyset; thus
(\emptyset, a \to o) \in t \text{ and } (b, \emptyset \to o) \in t \text{ with } a, b \subset \{o\}.
These two formulas are compatible and therefore equal; thus a = b = \emptyset.
                                                                                                                                         OED
| \cdot | \vdash \forall x^{-1/2} (x \neq 0, x \neq 1 \rightarrow \bot) \rightarrow \bot. Therefore:
The Boolean algebra 12 is non trivial.
```

Lemma 3. If $u \Vdash \bot, \bot \to \bot$ then u contains one of the formulas :

$$o ; \{o\} \to o ; \emptyset, \{o\} \to o ; \{o\}, \{o\} \to o.$$

We have $u \cap \{o\} \cdot \{o\} \neq \emptyset$, thus there exist $a, b \subset \{o\}$ s.t. $(a, b \to o) \in u$.

Lemma 4. Let $t \in \Lambda_D$ contain the 4 incompatible formulas :

$$\{O\} \to O$$
; $\{\{O\} \to O\}, \{O\} \to O$; $\{\emptyset, \{O\} \to O\}, \{O\} \to O$; $\{\{O\}, \{O\} \to O\}, \{O\} \to O$.

Then
$$t \Vdash |\top, \bot \to \bot| \cap |\bot, \top \to \bot|$$
, $\top \to \bot$ and $t \Vdash (\bot, \bot \to \bot), \bot \to \bot$.

By lemma 2, the first conclusion is $t \Vdash \bot \rightarrow \bot$; it is satisfied because ($\{o\} \rightarrow o\} \in t$.

Now, let $u \Vdash \bot$, $\bot \to \bot$; we must show $t \cap u \cdot \{o\} \cdot \{o\} \neq \emptyset$

which follows immediately from lemma 3.

QED

Theorem. The Boolean algebra ☐2 is atomless.

We have
$$t \Vdash \forall x^{\rfloor 2} (\forall y^{\rfloor 2} (xy \neq 0, xy \neq x \rightarrow \bot), x \neq 0 \rightarrow \bot)$$
 iff $t \Vdash |\top, \bot \rightarrow \bot| \cap |\bot, \top \rightarrow \bot|, \top \rightarrow \bot$ and $t \Vdash (\bot, \bot \rightarrow \bot), \bot \rightarrow \bot$.

Hence the result by lemma 4.

QED

Integers

```
In the sequel, we use truth values defined by subsets |V| of \Lambda.
They may be used in formulas only before a \rightarrow .
If |V| \subset \Lambda, ||A|| \subset \Pi, we define ||V \to A|| = \{t \cdot \pi : t \in |V|, \pi \in ||A||\}.
In particular \|\neg V\| = \{t \cdot \pi : t \in |V|, \pi \in \Pi\}.
Lemma 5. If (\forall t \in \Lambda)(t \in |V| \Rightarrow \theta t \in |W|) then \lambda x x \circ \theta \Vdash \neg W \rightarrow \neg V.
We shall sometimes write \theta \Vdash V \to W in such a case.
Now, define the formulas:
v_0 = (\{o\} \to o) ; v_1 = (\emptyset, \{o\} \to o) ; ... ; v_n = (\emptyset, ..., \emptyset, \{o\} \to o) ; ... ;
and the terms \overline{n} = \{v_n\}; suc = \{(\{v_0\} \rightarrow v_1), ..., (\{v_i\} \rightarrow v_{i+1}), ...\}.
Define the unary predicate N by :
|Nn| = \{\overline{n}\} if n \in \mathbb{N}; |Nn| = \emptyset if n \notin \mathbb{N}.
Then we have easily \lambda x(x)\overline{0} \Vdash \neg \neg N0; suc \Vdash Nn \rightarrow N(n+1) for every n;
i.e. \lambda x x \circ \text{suc} \Vdash \forall x (\neg N(x+1) \rightarrow \neg Nx).
                                          \Vdash \forall x^{\text{int}} \neg \neg Nx.
We have shown:
```

```
Theorem 6. Let u_n(n \in \mathbb{N}) be any sequence of terms and define :
\theta = \{(\{v_n\} \to \alpha) ; n \in \mathbb{N}, \alpha \in u_n\}. \text{ Then } \theta \overline{n} = u_n \text{ for all } n \in \mathbb{N}.
If every u_n is in QP, then \theta \in QP.
We show that \theta \in \Lambda_D: if (\{v_m\} \to \alpha) = (\{v_n\} \to \beta) then \{v_m, v_n\} is an antichain
and therefore m=n; thus \alpha, \beta \in u_m; but \alpha = \beta and therefore \alpha = \beta.
\theta\{v_n\} = u_n is obvious.
                                                                                                                  OED
Define the unary predicate ent(x) by :
|\operatorname{ent}(n)| = \{n\} (Church integer) for n \in \mathbb{N}; |\operatorname{ent}(n)| = \emptyset if n \notin \mathbb{N}.
We already know (general theory) that ent(x) is equivalent to int(x).
Apply lemma 5 and theorem 6 above with u_n = \{n\}.
This gives \theta \Vdash Nn \to \text{ent}(n) and therefore \lambda x x \circ \theta \Vdash \forall x (\neg \text{ent}(x) \to \neg Nx).
Finally we have shown that the predicates Nx, int(x), ent(x) are equivalent.
In the following, we use Nx which is the simplest.
```

```
Corollary. If \theta_n \Vdash F(n), with \theta_n \in \mathsf{QP} for all n \in \mathbb{N}, then there exists \theta \in \mathsf{QP} s.t. \theta \Vdash \forall n^{\mathsf{int}} F(n).
```

Applying theorem 6, we get $\theta \underline{n} \Vdash F(n)$ for all $n \in \mathbb{N}$, thus $\theta \Vdash \forall n^{\mathsf{int}} F(n)$. QED

By the above corollary, the set of formulas which are realized by a proof-like term is closed by the ω -rule.

Thus there exists a realizability model which is an ω -model.

Let $\mathscr{B} = \mathscr{P}(\Pi)$ be the Boolean algebra of truth values.

The order is defined by $||A|| \le ||B|| \Leftrightarrow (\exists \theta \in \mathsf{QP})(\theta \mid |-A \to B)$.

Theorem. \mathscr{B} is a countably complete Boolean algebra :

If $||B(n)||_{n\in\mathbb{N}}$ is a sequence of truth values, then $\inf_{n\in\mathbb{N}}||B(n)|| = ||\forall x^{\mathsf{int}}B(x)||$.

Let $||A|| \le ||B(n)||$ for every $n \in \mathbb{N}$. Then $\theta_n \Vdash A \to B(n)$ for some sequence $\theta_n \in \mathsf{QP}$.

By the previous corollary, we get $\theta \Vdash \|A \to \forall x^{\text{int}} B(x)\|$ i.e. $\|A\| \le \|\forall x^{\text{int}} B(x)\|$.

Conversely, $\|\forall x^{\text{int}} B(x)\| \le \|B(n)\|$ because $\lambda x(x) \underline{n} \Vdash \forall x^{\text{int}} B(x) \to B(n)$. QED