

Constructing classical realizability models of Zermelo-Fraenkel set theory

Alexandre Miquel Plume team – LIP/ENS Lyon

June 5th, 2012 Réalisabilité à Chambéry

- 1 The theory ZF_{ε}
- 2 [The model](#page-16-0) $\mathcal{M}^{(\mathcal{A})}$ of \mathcal{A} -names
- 3 Realizing the axioms of ZF_{ε}
- ⁴ [Realizing more axioms](#page-41-0)
- ⁵ [Realizability algebras](#page-51-0)
- 6 [Properties of the model](#page-59-0) $\mathcal{M}^{(\mathcal{A})}$

1 [The theory ZF](#page-1-0)_F

2 [The model](#page-16-0) $\mathcal{M}^{(\mathscr{A})}$ of \mathscr{A} -names

3 Realizing the axioms of ZF_{ε}

⁴ [Realizing more axioms](#page-41-0)

⁵ [Realizability algebras](#page-51-0)

6 [Properties of the model](#page-59-0) $\mathcal{M}^{(\mathcal{A})}$

- A similar difficulty occurs in the construction of
	- a forcing model of ZF [Cohen'63]
	- a Boolean-valued model of ZF [Scott, Solovay, Vopěnka]
	- a realizability model of IZF [Myhill-Friedman'73, McCarty'84]
	- a classical realizability model of ZF [Krivine'00]

which is the interpretation of the axiom of extensionality :

$$
\forall x \forall y [x = y \Leftrightarrow \forall z (z \in x \Leftrightarrow z \in y)]
$$

• The reason is that in these models, sets cannot be given a canonical representation \rightarrow need some extensional collapse

(A similar problem occurs in CS when manipulating sets)

- Most authors solve the problem in the model, when defining the interpretation of extensional equality and membership
- Krivine proposes to address the problem in the syntax, using a non extensional presentation of ZF called $\overline{ZF}_{\varepsilon}$ (= assembly language for ZF)

The language of ZF_{ε}

Formulas $\phi, \psi \; ::= \; x \notin y \; \; | \; \; x \notin y \; \; | \; \; x \subseteq y$ $|\top|\perp|\phi \Rightarrow \psi|\forall x \phi$

• Abbreviations :

$$
\neg \phi \equiv \phi \Rightarrow \bot
$$
\n
$$
\phi \land \psi \equiv \neg(\phi \Rightarrow \psi \Rightarrow \bot)
$$
\n
$$
\phi \lor \psi \equiv \neg \phi \Rightarrow \neg \psi \Rightarrow \bot
$$
\n
$$
\phi \lor \psi \equiv \neg \phi \Rightarrow \neg \psi \Rightarrow \bot
$$
\n
$$
\phi \Leftrightarrow \psi \equiv (\phi \Rightarrow \psi) \land (\psi \Rightarrow \phi)
$$
\n
$$
\exists x {\phi_1 \& \cdots \& \phi_n} \equiv \neg \forall x (\phi_1 \Rightarrow \cdots \Rightarrow \phi_n \Rightarrow \bot)
$$
\n
$$
(\forall x \in a) \phi \equiv \forall x (x \in a \Rightarrow \phi)
$$
\n
$$
(\forall x \in a) \phi \equiv \forall x (x \in a \Rightarrow \phi)
$$
\n
$$
(\exists x \in a) \phi \equiv \exists x {\x \in a \& \phi}
$$
\n
$$
(\exists x \in a) \phi \equiv \exists x {\x \in a \& \phi}
$$

• A formula ϕ is extensional if it does not contain \oint

• Formulas $x \in y$, $x \subseteq y$, $x \approx y$ are extensional $\forall x \in y$ is not.

Extensional formulas are the formulas of ZF

 \bullet Proofs formalized in natural deduction $+$ Peirce's law

The extensional relations \in , \subset and \approx (1/2)

 \bullet Extensionality axioms define \in and \subset by mutual induction

$$
x' \in y \Leftrightarrow (\exists y' \in y) x' \approx y'
$$

\n
$$
\Leftrightarrow (\exists y' \in y) \{x' \subseteq y' \& y' \subseteq x'\}
$$

\n
$$
x \subseteq y \Leftrightarrow (\forall x' \in x) x' \in y
$$

\n
$$
\Leftrightarrow (\forall x' \in x) (\exists y' \in y) \{x' \subseteq y' \& y' \subseteq x'\}
$$

• Foundation scheme expresses that ε is well-founded :

$$
\forall \vec{z} \ [\forall x ((\forall y \in x) \phi(y, \vec{z}) \Rightarrow \phi(x, \vec{z})) \Rightarrow \forall x \phi(x, \vec{z})]
$$

• Combining Extensionality with Foundation, we get :

Reflexivity : $ZF_{\varepsilon} \vdash \forall x (x \subseteq x)$

Induction hypothesis : $\phi(x) \equiv x \subseteq x$

• Consequences : $ZF_{\varepsilon} \vdash \forall x (x \approx x)$ $ZF_{\varepsilon} \vdash \forall x \forall y (x \varepsilon y \Rightarrow x \in y)$

The extensional relations \in , \subset and \approx

• From Extensionality, we have :

$$
x \subseteq y \iff (\forall x' \in x) (\exists y' \in y) \{x' \subseteq y' \& y' \subseteq x'\}
$$

• Combined with Foundation again, we get :

Transitivity : ZF_ε $\vdash \forall x \forall y \forall z (x \subseteq y \Rightarrow y \subseteq z \Rightarrow x \subseteq z)$

 $\begin{array}{lll} \text{Induction hypothesis}: & \phi(x) & \equiv & \forall y \, \forall z \, (x \subseteq y \Rightarrow y \subseteq z \Rightarrow x \subseteq z) \, \wedge \ & \forall y \, \forall z \, (z \subseteq y \Rightarrow y \subseteq x \Rightarrow z \subseteq x) \end{array}$

So that :

- Inclusion $x \subseteq y$ is a preorder
- Extensional equality $x \approx y$ is the associated equivalence relation

• Extensional (ZF) definitions of \subseteq and \approx are then derivable :

$$
ZF_{\varepsilon} \vdash \forall x \forall y [x \subseteq y \Leftrightarrow \forall z (z \in x \Rightarrow z \in y)]
$$

$$
ZF_{\varepsilon} \vdash \forall x \forall y [x \approx y \Leftrightarrow \forall z (z \in x \Leftrightarrow z \in y)]
$$

Extensional peeling

• We can now derive that \approx is compatible with the two primitive extensional predicates \notin and \subseteq :

$$
ZF_{\varepsilon} \vdash \forall x \forall y \forall z (x \approx y \Rightarrow x \notin z \Rightarrow y \notin z)
$$

\n
$$
ZF_{\varepsilon} \vdash \forall x \forall y \forall z (x \approx y \Rightarrow z \notin x \Rightarrow z \notin y)
$$

\n
$$
ZF_{\varepsilon} \vdash \forall x \forall y \forall z (x \approx y \Rightarrow x \subseteq z \Rightarrow y \subseteq z)
$$

\n
$$
ZF_{\varepsilon} \vdash \forall x \forall y \forall z (x \approx y \Rightarrow z \subseteq x \Rightarrow z \subseteq y)
$$

Extensional peeling

For any extensional formula $\phi(x,\vec{z})$:

$$
\mathsf{ZF}_{\varepsilon} \;\vdash\; \forall \vec{z} \; \forall x \, \forall y \, [x \approx y \;\Rightarrow\; (\phi(x, \vec{z}) \Leftrightarrow \phi(y, \vec{z}))]
$$

Proof: by structural induction on $\phi(x, \vec{z})$

- Remarks :
	- Proof structurally depends on $\phi(x,\vec{z}) \rightarrow$ non parametric
	- Only holds when $\phi(x,\vec{z})$ is extensional. Counter-example :

$$
x \approx y \; \not\Rightarrow \; \big(x \in z \Leftrightarrow y \in z\big)
$$

Consequences of extensional peeling

- Extensional peeling is the tool to derive the usual extensional axioms of ZF from their intensional formulation in ZF_{ε} . But schemes need to be restricted to extensional formulas (as in ZF)
- In ZF_{ε} , (intensional) Foundation and Comprehension schemes $\forall \vec{z} \; [\forall x ((\forall y \in x) \phi(y, \vec{z}) \Rightarrow \phi(x, \vec{z})) \Rightarrow \forall x \phi(x, \vec{z})]$ $\forall \vec{z} \ \forall a \exists b \forall x (x \in b \Leftrightarrow x \in a \land \phi(x, \vec{z}))$

hold for any formula $\phi(x,\vec{z})$ (may contain ε)

• Combined with extensional peeling, we get

Foundation & Comprehension : ZF formulation ZF_{ε} $\vdash \forall \vec{z}$ $[\forall x ((\forall y \in x) \phi(y, \vec{z}) \Rightarrow \phi(x, \vec{z})) \Rightarrow \forall x \phi(x, \vec{z})]$ $ZF_{\varepsilon} \vdash \forall \vec{z} \; \forall a \exists b \forall x (x \in b \Leftrightarrow x \in a \land \phi(x, \vec{z}))$ for any extensional formula $\phi(x,\vec{z})$ (cannot contain ε)

Leibniz equality and intensional peeling

• Leibniz equality is definable in ZF_{ϵ} :

$$
x = y \equiv \forall z (x \notin z \Rightarrow y \notin z)
$$
 (Could replace \notin by ε)

Thanks to (intensional) Comprehension, we get :

Intensional peeling

For any formula $\phi(x,\vec{z})$:

$$
\mathsf{ZF}_{\varepsilon} \;\; \vdash \;\; \forall \vec{z} \; \forall x \, \forall y \, [x = y \;\; \Rightarrow \; (\phi(x, \vec{z}) \Leftrightarrow \phi(y, \vec{z}))]
$$

Proof : We only need to prove $x = y \Rightarrow (\phi(y, \vec{z}) \Rightarrow \phi(x, \vec{z}))$. (For the converse direction : replace $\phi(x,\vec{z})$ by $\neg \phi(x,\vec{z})$.)

Assume $x = y$ and $\phi(y, \vec{z})$. From Pairing, there exists u such that $y \in u$. From Comprehension, there exists u' such that $\forall x (x \in u' \Leftrightarrow x \in u \wedge \phi(x, \vec{z}))$. By construction, we have $y \in u'$ (since $y \in u$ and $\phi(y, \vec{z})$). Since $x = y$, we get $x \in u'$ (by contraposition). Therefore : $x \in u$ and $\phi(x, \vec{z})$.

- Remarks :
	- Proof does not structurally depend on $\phi(x,\vec{z}) \rightarrow$ parametric
	- This property holds for any formula $\phi(x,\vec{z})$.

Strong inclusion, strong equivalence

• Let
$$
x \sqsubseteq y \equiv \forall z (z \in x \Rightarrow z \in y)
$$

\n $x \sim y \equiv \forall z (z \in x \Leftrightarrow z \in y) (\Leftrightarrow x \sqsubseteq y \wedge y \sqsubseteq x)$

Remarks :

- $x \sqsubseteq y$ is a preorder, stronger than $x \subseteq y$
- $x \sim y$ is the associated equivalence
- $x \sim y$ weaker than $x = y$, stronger than $x \approx y$ (None of the converse implications is derivable)
- **Going back to Comprehension :**

$$
\forall \vec{z} \ \forall a \ \exists b \ \forall x \ (x \ \varepsilon \ b \Leftrightarrow x \ \varepsilon \ a \land \phi(x, \vec{z}))
$$

• The set $b = \{x \varepsilon a : \phi(x)\}\$ is unique up to \sim (and thus up to \approx), but not up to $=$ (Leibniz equality)

• In ZF_{ε} , the (intensional) axioms of Pairing and Union only give upper approximations of the desired sets :

$$
\forall a \forall b \exists c \{a \in c \& b \in c\}
$$

$$
\forall a \exists b (\forall x \in a) (\forall y \in x) y \in b
$$

• Cutting them by Comprehension, we get what we expect :

$$
ZF_{\varepsilon} \vdash \forall a \forall b \exists c' \forall x (x \in c' \Leftrightarrow x = a \lor x = b)
$$

$$
ZF_{\varepsilon} \vdash \forall a \exists b' \forall x (x \in b' \Leftrightarrow (\exists y \in a) \times \varepsilon y)
$$

Note that b' and c' are unique up to strong equivalence \sim .

• And by extensional peeling, we get :

Pairing and Union : ZF formulation

$$
ZF_{\varepsilon} \vdash \forall a \forall b \exists c' \forall x (x \in c' \Leftrightarrow x \approx a \lor x \approx b)
$$

$$
ZF_{\varepsilon} \vdash \forall a \exists b' \forall x (x \in b' \Leftrightarrow (\exists y \in a) x \in y)
$$

 \bullet In ZF_ε, the (intensional) Powerset axiom only gives an upper approximation of the desired set :

 $\forall a \exists b \forall x (\exists y \in b) \forall z (z \in y \Leftrightarrow z \in x \land z \in a)$

Intuitively : b contains a copy of all sets of the form $x \cap a$

• Cutting *b* with Comprehension, we get :

$$
\mathsf{ZF}_{\varepsilon} \vdash \forall a \exists b' \{ (\forall x \varepsilon b') x \sqsubseteq a \& \forall x (x \sqsubseteq a \Rightarrow (\exists x' \varepsilon b') x \sim x') \}
$$

Here, b' is unique up to \approx , but not up to \sim . Cannot do better, since $\{x : x \sqsubseteq a\}$ is a proper class in realizability models.

• And by extensional peeling, we get :

Powerset : ZF formulation

 $\mathsf{ZF}_{\varepsilon} \;\vdash\; \forall a \exists b' \; \forall x \, (x \in b' \; \Leftrightarrow \; x \subseteq a)$

 \bullet ZF_{ϵ} comes with Collection and Infinity schemes :

 $\forall \vec{z} \ \forall a \exists b \ (\forall x \in a) \ [\exists y \ \phi(x, y, \vec{z}) \Rightarrow (\exists y \in b) \ \phi(x, y, \vec{z})]$ $\forall \vec{z}$ $\forall a \exists b$ { $a \in b$ & $(\forall x \in b)$ ($\exists y \phi(x, y, \vec{z}) \Rightarrow (\exists y \in b) \phi(x, y, \vec{z}))$ }

for every formula $\phi(x, y, \vec{z})$

Collection and Infinity schemes : extensional formulation

 ZF_{ϵ} $\vdash \forall \vec{z} \; \forall a \exists b (\forall x \epsilon a) [\exists y \; \phi(x, y, \vec{z}) \Rightarrow (\exists y \in b) \; \phi(x, y, \vec{z})]$ $ZF_{\varepsilon} \vdash \forall \vec{z} \; \forall a \exists b \{a \in b \& (\forall x \in b) (\exists y \phi(x, y, \vec{z}) \Rightarrow (\exists y \in b) \phi(x, y, \vec{z}))\}$ for every extensional formula $\phi(x, y, \vec{z})$

- In general, Collection is stronger than Replacement... ... but in ZF, they are equivalent due to Foundation
- **•** Infinity scheme implies the existence of infinite sets... ... and it is equivalent in presence of Collection

• All axioms of ZF are derivable in ZF_{ε} :

Proposition : ZF_e is an extension of ZF

• Collapsing ε and \in : For every formula ϕ of ZF_{ε}, write ϕ^\dagger the formula of ZF obtained by collapsing $\rlap{/} \epsilon$ to $\rlap{/} \neq$ in ϕ .

Proposition : If $ZF_{\varepsilon} \vdash \phi$, then $ZF \vdash \phi^{\dagger}$

Therefore, if ZF is consistent, then none of the formulas

 $\exists x \exists y (x \in y \land x \notin y), \exists x \exists y (x \approx y \land x \neq y), \text{ etc.}$

is derivable in ZF_{ε} ! (But they are realized...)

Theorem (Conservativity) ZF_{ϵ} is a conservative extension of ZF (and thus equiconsistent)

Proof : Assume ZF_ε $\vdash \phi$, where ϕ is extensional. Then ZF $\vdash \phi^{\dagger}$. But $\phi^{\dagger} \equiv \phi$.

1 [The theory ZF](#page-1-0)_F

- 2 [The model](#page-16-0) $\mathcal{M}^{(\mathcal{A})}$ of \mathcal{A} -names
- 3 Realizing the axioms of ZF_{ε}
- ⁴ [Realizing more axioms](#page-41-0)
- ⁵ [Realizability algebras](#page-51-0)
- **6** [Properties of the model](#page-59-0) $\mathcal{M}^{(\mathcal{A})}$

Syntax

- Syntax of the language is parameterized by
	- A nonempty countable set $\mathcal{K} = \{ \alpha; \ldots \}$ of instructions
	- A nonempty countable set $\Pi_0 = {\alpha; \dots}$ of stack constants
- A term is proof-like if it contains no k_{π} (i.e. refers to no $\alpha \in \Pi_0$)
- Notations : Λ = set of closed terms
 Π = set of stacks $=$ set of stacks $\Lambda \star \Pi$ = set of processes PL = set of closed proof-like terms $(\subseteq \Lambda)$
- **•** Each natural number $n \in \omega$ is encoded as $\overline{n}=\overline{s}^n\overline{0}$ $(∈ PL)$ where $\overline{0} \equiv \lambda xy$. x and $\overline{s} \equiv \lambda nxy$. y $(n \times y)$

We assume that the set $\Lambda \star \Pi$ comes with a preorder $p \succ p'$ of evaluation satisfying the following rules :

- Evaluation not defined but axiomatized. The preorder $p \succ p'$ is another parameter of the calculus, just like the sets K and Π_0
- Extensible machinery : can add extra instructions and rules (We shall see examples later)

• An instance of the λ_c -calculus is defined by the triple $(\mathcal{K}, \Pi_0, \succ)$

• Each classical realizability model (which is based on the λ -calculus) is parameterized by a set of processes $\perp \hspace*{-0.15cm} \perp \subset \Lambda$ \star Π which is saturated, or closed under anti-evaluation (w.r.t. \succ) :

If
$$
p \succ p'
$$
 and $p' \in \mathbb{L}$, then $p \in \mathbb{L}$

Such a set \perp is used as the pole of the model

- We call a standard algebra any pair $\mathscr{A} \equiv ((\mathcal{K}, \Pi_0, \succ), \bot)$ formed by
	- An instance (K, Π_0, \succ) of the λ_c -calculus
	- A saturated set $\perp \!\!\! \perp \subset \Lambda \star \Pi$ (i.e. the pole of the algebra \mathscr{A})
- We shall first see how to build a realizability model $\mathscr{M}^{(\mathscr{A})}$ from an arbitrary standard algebra $\mathscr A$. But this construction more generally works when $\mathscr A$ is an arbitrary realizability algebra

(We shall see the general definition later)

- The whole construction is parameterized by :
	- \bullet An arbitrary model $\mathcal M$ of ZFC, called the ground model
	- An arbitrary standard algebra $\mathscr{A} \in \mathscr{M}$, which is taken as a point of the ground model $\mathcal M$
- In what follows, we call a set any point of $\mathcal M$
	- \bullet We shall never consider sets outside \mathscr{M} !
	- We write $\omega \in \mathcal{M}$ the set of natural numbers in \mathcal{M} . Elements of ω are called the standard natural numbers¹
	- We consider the sets Λ, Π, \succ , $\perp\!\!\!\perp$ that are defined from $\mathscr A$ as points of the ground model M
	- All set-theoretic notations (e.g. $\mathfrak{P}(X)$, $\{x : \phi(x)\}\)$, etc.) are taken relatively to the ground model $\mathcal M$
- Only formulas (of ZF_{ε}) live outside the ground model M

^{1.} This is just a convention of terminology. The set ω might contain numbers that are non standard according to the external/ambient/intuitive/meta theory.

Building the model $\mathscr{M}^{(\mathscr{A})}$ of \mathscr{A} -names

By induction on $\alpha \in On(\subseteq \mathscr{M})$, we define a set $\mathscr{M}^{(\mathscr{A})}_\alpha$ by

$$
\mathscr{M}_{\alpha} = \bigcup_{\beta < \alpha} \mathfrak{P}(\mathscr{M}_{\beta} \times \Pi)
$$

Note that :

\n- \n
$$
\mathcal{M}_0^{(\varnothing)} = \varnothing
$$
\n
\n- \n
$$
\mathcal{M}_{\alpha+1}^{(\varnothing)} = \mathfrak{P}(\mathcal{M}_{\alpha}^{(\varnothing)} \times \Pi)
$$
\n
\n- \n
$$
\mathcal{M}_{\alpha}^{(\varnothing)} = \bigcup_{\beta < \alpha} \mathcal{M}_{\beta}^{(\varnothing)} \quad \text{(for } \alpha \text{ limit ordinal)}
$$
\n
\n

We write $\,\mathscr{M}^{(\mathscr{A})}\,=\, \bigcup \mathscr{M}^{(\mathscr{A})}_\alpha\,$ the (proper) class of \mathscr{A} -names α

Given a name $a \in \mathscr{M}^{(\mathscr{A})}$, we write

• dom(a) = {b : $(\exists \pi \in \Pi)$ $(b, \pi) \in a$ } (the domain of a) • rk(a) the smallest $\alpha \in On$ s.t. $a \in \mathcal{M}_{\alpha}^{(\mathcal{A})}$ (the rank of a)

- Variables x_1, \ldots, x_n, \ldots of the language of ZF_ε are interpreted as names $a_1, \ldots, a_n, \ldots \in \mathcal{M}^{(\mathcal{A})}$
	- We call a formula with parameters in $\mathscr{M}^{(\mathscr{A})}$ any formula of ZF_ε enriched with constants taken in $\mathscr{M}^{(\mathscr{A})}$:

 $\phi(x_1, \ldots, x_k) + a_1, \ldots, a_k \in \mathcal{M}^{(\mathscr{A})} \longrightarrow \phi(a_1, \ldots, a_k)$

- Formulas with parameters in $\mathscr{M}^{(\mathscr{A})}$ constitute the language of the realizability model $\mathcal{M}^{(\mathscr{A})}$
- Closed formulas ϕ with parameters in $\mathscr{M}^{(\mathscr{A})}$ are interpreted as two sets (i.e. points of \mathscr{M}) :
	- A falsity value $\|\phi\| \in \mathfrak{B}(\Pi)$
	- A truth value $|\phi| \in \mathfrak{P}(\Lambda)$, defined by orthogonality :

 $|\phi| = ||\phi||^{\perp} = \{t \in \Lambda : (\forall \pi \in ||\phi||)(t \star \pi \in \bot)\}\$

Given a closed formula ϕ with parameters in $\mathscr{M}^{(\mathscr{A})}$:

Falsity value $\|\phi\| \in \mathfrak{P}(\Pi)$ defined by induction on the size of ϕ $\|a \notin b\|$, $\|a \notin b\|$, $\|a \subseteq b\|$ = (postponed) $\|T\| = \emptyset$ $\|T\| = \Pi$ $\|\phi \Rightarrow \psi\| = |\phi| \cdot \|\psi\| = \{t \cdot \pi : t \in |\phi|, \pi \in \|\psi\|\}$ $\|\forall x \phi(x)\| = \bigcup \|\phi(a)\| = \{\pi \in \Pi : (\exists a \in \mathcal{M}^{(\mathscr{A})}) \ \pi \in \|\phi(a)\|\}$ $a \in \mathcal{M}^{(\mathcal{A})}$

Truth value $\|\phi\| \in \mathfrak{P}(\Lambda)$ defined by orthogonality

$$
|\phi| = ||\phi||^{\perp} = \{t \in \Lambda : (\forall \pi \in ||\phi||)(t \star \pi \in \bot)\}\
$$

• Notations : $t \parallel \phi \equiv t \in |\phi|$ $\mathscr{M}^{(\mathscr{A})} \Vdash \phi \equiv \theta \Vdash \phi$ for some $\theta \in \mathsf{PL}$ \equiv $|\phi| \cap PL \neq \varnothing$ (t realizes ϕ) (ϕ is realized)

Denotation of units :

Falsity value $||T|| = \emptyset$ $||T|| = \Pi$ (by definition) Truth value $|\top| = \varnothing^{\perp\!\!\!\perp} = \Lambda$ $|\perp| = \Pi^{\perp}$ (by orthogonality)

Denotation of universal quantification :

Falsity value:
$$
\|\forall x \, \phi(x)\| = \bigcup_{a \in \mathcal{M}(\mathscr{A})} \|\phi(a)\|
$$
 (by definition)

\nTruth value:
$$
|\forall x \, \phi(x)| = \bigcap_{a \in \mathcal{M}(\mathscr{A})} |\phi(a)|
$$
 (by orthogonality)

Denotation of implication :

Falsity value : $\|\phi \Rightarrow \psi\| = |\phi| \cdot \|\psi\|$ (by definition) Truth value : $|\phi \Rightarrow \psi| \subseteq |\phi| \rightarrow |\psi|$ (by orthogonality) writing $|\phi| \to |\psi| = \{t \in \Lambda : \forall u \in |\phi| \mid tu \in |\psi|\}$ (realizability arrow)

1 Converse inclusion does not hold in general, unless ⊥ closed under Push 2 In all cases : If $t \in |\phi| \to |\psi|$, then $\lambda x \cdot tx \in |\phi \Rightarrow \psi|$ (*η*-expansion)

Deduction/typing rules

$$
\begin{array}{ccc}\n\overline{\Gamma \vdash x : \phi} & (x : \phi) \in \Gamma & \overline{\Gamma \vdash t : \top} & FV(t) \subseteq \text{dom}(\Gamma) & \overline{\Gamma \vdash t : \bot} \\
\frac{\Gamma, x : \phi \vdash t : \psi}{\Gamma \vdash \lambda x. t : \phi \Rightarrow \psi} & \overline{\Gamma \vdash t : \phi \Rightarrow \psi} & \overline{\Gamma \vdash tu : \psi} \\
\frac{\Gamma \vdash t : \phi}{\Gamma \vdash t : \forall x \phi} & \xrightarrow{x \notin FV(\Gamma)} & \overline{\Gamma \vdash t : \forall x \phi} & (e \text{ first-order term}) \\
\frac{\Gamma \vdash t : \forall x \phi}{\Gamma \vdash \neg \bot : \forall x \phi} & \overline{\Gamma \vdash t : \phi \{x := e\}} & (e \text{ first-order term}) \\
\frac{\Gamma \vdash \neg \bot : (\phi \Rightarrow \psi) \Rightarrow \phi \Rightarrow \phi}{\Gamma \vdash \neg \bot : ((\phi \Rightarrow \psi) \Rightarrow \phi) \Rightarrow \phi}\n\end{array}
$$

Adequacy

Given :
$$
-a
$$
 derivable judgment $x_1 : \phi_1, \ldots, x_n : \phi_n \vdash t : \phi$ $-a$ valuation ρ (in $\mathcal{M}^{(\mathcal{A})}$) closing $\phi_1, \ldots, \phi_n, \phi$ $-realizers$ $u_1 \Vdash \phi_1[\rho], \ldots, u_n \Vdash \phi_n[\rho]$ We have : $t\{x_1 := u_1; \ldots; x_n := u_n\} \Vdash \phi[\rho]$

- Interpretation of ℓ reminiscent from forcing in ZF [Cohen'63] and intuitionistic realizability in IZF [Myhill-Friedman'73, McCarty'84]
- In forcing $/$ int. realizability, a name $a \in \mathscr{M}^{(\mathsf{C})}$ is a set of pairs (b, ρ) where $p \in C$ is a certificate witnessing that $b \varepsilon a$:

$$
(b, p) \in a \quad \text{means} : \quad "p \quad \text{forces/realizes} \quad b \in a"
$$

hence : $|b \varepsilon a| = \{p \in C : (b, p) \in a\}$

- \bullet In forcing : p is a forcing condition
- \bullet In intuitionistic realizability : p is a realizer
- But in classical realizability, we use refutations (i.e. stacks) instead :

 $(b, \pi) \in a$ means " π refutes $b \notin a$ " hence : $||b \notin a|| = {\pi \in \Pi : (b, \pi) \in a}$

\n- \n
$$
\pi \in ||b \notin a||
$$
\n implies\n $k_{\pi} \Vdash b \in a \ (\equiv \neg b \notin a)$ \n
\n- \n $||b \notin a|| = \emptyset = ||T||$ \n as soon as\n $b \notin \text{dom}(a)$ \n
\n

$$
ZF_{\varepsilon}
$$
 The model $\mathcal{M}^{(\mathscr{A})}$ Realizing axioms More axioms Realizability algebras Properties of $\mathcal{M}^{(\mathscr{A})}$

Interpretation of $a' \notin a$, $a \subseteq b$ and $a' \notin b$	$(a, a', b \in \mathcal{M}^{(\mathscr{A})})$
$ a' \notin a = \{\pi \in \Pi : (a', \pi) \in a\}$	
$ a \subseteq b = \bigcup_{a' \in \text{dom}(a)} a' \notin b \cdot a' \notin a $	
$ a' \notin b = \bigcup_{b' \in \text{dom}(b)} a' \subseteq b' \cdot b' \subseteq a' \cdot b' \notin b $	

 ZF_{ε} ZF_{ε} **[The model](#page-16-0)** $M^{(\mathscr{A})}$ [Realizing axioms](#page-31-0) [More axioms](#page-41-0) [Realizability algebras](#page-51-0) [Properties of](#page-59-0) $M^{(\mathscr{A})}$

Def. of $\|a' \notin a\|$ is primitive (i.e. non recursive)

Def. of $||a \subseteq b||$ and $||a' \notin b||$ is mutually recursive

- Def. of $||a \subseteq b||$ calls $||a' \notin b||$ $\ell \notin b$ for all $a' \in \text{dom}(a)$
- Def. of $||a' \notin b||$ calls $||a' \subseteq b'||$ and $||b' \subseteq a'$ | for all $b' \in \text{dom}(b)$
- Hence the definition of $\|a\subseteq b\|$ for $a,b\in\mathscr{M}^{(\mathscr{A})}_\alpha$ recursively calls $||a' \subseteq b$ $\mathcal{C}^{\prime}\Vert$ for $\mathsf{a}^{\prime},\mathsf{b}^{\prime}\in\mathscr{M}^{(\mathscr{A})}_{\beta}$ where $\beta<\alpha$

The interpretation of ⊆

• Since
$$
||c \notin a|| = \emptyset
$$
 as soon as $c \notin \text{dom}(a)$:

$$
\begin{array}{rcl}\n\|a \subseteq b\| & = & \bigcup_{c \in \text{dom}(a)} |c \notin b| \cdot \|c \notin a\| \\
& = & \bigcup_{c \in \mathcal{M}^{(\mathscr{A})}} |c \notin b| \cdot \|c \notin a\| \\
& = & \|\forall z (z \notin b \Rightarrow z \notin a)\|\n\end{array}
$$

- Hence the atomic formula $x \subseteq y$ has the very same semantics as the formula $\forall z (z \notin y \Rightarrow z \notin x)$
- By adequacy, we can build $\theta \in \mathsf{PL}$ such that (Exercise : find θ) $\theta \Vdash \forall x \forall y [\forall z (z \notin y \Rightarrow z \notin x) \Leftrightarrow (\forall z \in x) z \in y]$

Realizing Extensionality for ⊆ :

 $\theta \Vdash \forall x \forall y (x \subseteq y \Leftrightarrow (\forall z \in x) z \in y)$

• Since $||c \notin b|| = \emptyset$ as soon as $c \notin \text{dom}(b)$:

$$
\begin{array}{rcl}\n\|a \notin b\| & = & \bigcup_{c \in \text{dom}(b)} |a \subseteq c| \cdot |c \subseteq a| \cdot \|c \notin b\| \\
& = & \bigcup_{c \in \mathcal{M}^{(\mathscr{A})}} |a \subseteq c| \cdot |c \subseteq a| \cdot \|c \notin b\| \\
& = & \|\forall z \left(a \subseteq z \Rightarrow z \subseteq a \Rightarrow z \notin b\right)\|\n\end{array}
$$

 ZF_{ε} ZF_{ε} **[The model](#page-16-0)** $M^{(\mathscr{A})}$ [Realizing axioms](#page-31-0) [More axioms](#page-41-0) [Realizability algebras](#page-51-0) [Properties of](#page-59-0) $M^{(\mathscr{A})}$

- Hence the atomic formula $x \notin y$ has the very same semantics as the formula $\forall z (x \subseteq z \Rightarrow z \subseteq x \Rightarrow z \notin y)$
- By adequacy, we can build $\theta' \in \mathsf{PL}$ such that (Exercise : find θ') $\theta' \Vdash \forall x \forall y [\neg \forall z (x \subseteq z \Rightarrow z \subseteq x \Rightarrow z \notin y) \Leftrightarrow (\exists z \in y) x \approx z]$

Realizing Extensionality for \in :

$$
\theta' \Vdash \forall x \forall y \big(x \in y \Leftrightarrow (\exists z \in y) \, x \approx z\big)
$$

$$
\bullet\ \mathsf{Let}\qquad \tilde{\varnothing}\ =\ \varnothing\qquad\text{and}\qquad \tilde{\varnothing}'\ =\ \{\tilde{\varnothing}\}\times\|\bot\Rightarrow\bot\|
$$

\n- • In the case where
$$
\perp \neq \emptyset
$$
, we have :
\n- $\Pi^{\perp} \neq \emptyset$ \leadsto $\parallel \perp \Rightarrow \perp \parallel = \Pi^{\perp} \cdot \Pi \neq \emptyset$ \leadsto $\tilde{\varnothing} \neq \tilde{\varnothing}'$
\n

- But both names $\tilde{\varnothing}$ and $\tilde{\varnothing}'$ represent the empty set :
- Θ θ $\Vdash \forall x (x \notin \tilde{\varnothing})$ $(\theta \in \text{PL arbitrary})$ $2 \mathsf{I} \Vdash \forall x (x \notin \tilde{\varnothing}')$ **3** Therefore : $\mathscr{M}^{(\mathscr{A})}$ $\Vdash \tilde{\varnothing} \approx \tilde{\varnothing}'$

• Writing
$$
a = \{\tilde{\emptyset}\} \times \Pi
$$
, we get :

①
$$
1 \Vdash \tilde{\varnothing} \varepsilon
$$
 a and $\theta \Vdash \tilde{\varnothing}' \notin a$ ($\theta \in \text{PL arbitrary}$)

 \overline{a}

• Therefore:
$$
\mathcal{M}^{(\mathscr{A})} \Vdash \tilde{\varnothing} \neq \tilde{\varnothing}
$$

• Moreover:
$$
\mathscr{M}^{(\mathscr{A})} \Vdash \tilde{\varnothing}' \in \mathsf{a}
$$

 $0' \in a$ (since $\mathscr{M}^{(\mathscr{A})} \Vdash \tilde{\varnothing} \approx \tilde{\varnothing}'$)

- 1 [The theory ZF](#page-1-0)_F
- **2** [The model](#page-16-0) $\mathcal{M}^{(\mathcal{A})}$ of \mathcal{A} -names
- 3 Realizing the axioms of ZF_ε
- ⁴ [Realizing more axioms](#page-41-0)
- ⁵ [Realizability algebras](#page-51-0)
- **6** [Properties of the model](#page-59-0) $\mathcal{M}^{(\mathcal{A})}$

- For every axiom ϕ of ZF_ε, we want to show that :
	- There is $\theta \in \mathsf{PL}$ such that $\theta \Vdash \phi$
	- Which we write : $M^{(\mathscr{A})} \Vdash \phi$
- We have already shown that :

Realizing Extensionality

$$
\mathcal{M}^{(\mathscr{A})} \Vdash \forall x \forall y (x \in y \Leftrightarrow (\exists z \in y) x \approx z)
$$

$$
\mathcal{M}^{(\mathscr{A})} \Vdash \forall x \forall y (x \subseteq y \Leftrightarrow (\forall z \in x) z \in y)
$$

- We now need to realize the following :
	- **Foundation scheme**
	- Comprehension scheme
	- **•** Pairing and Union axioms
	- **•** Powerset axiom
	-

• Collection & Infinity schemes (we shall only consider Collection)

Consider Turing's fixpoint combinator :

 $\mathbf{Y} \equiv (\lambda y f \cdot f (y y f)) (\lambda y f \cdot f (y y f))$

• We have : $\mathbf{Y} \star t \cdot \pi \succ t \star (\mathbf{Y} t) \cdot \pi$ $(t \in \Lambda, \pi \in \Pi)$

Proposition

For any formula $\psi(\mathsf{x})$ with parameters in $\mathscr{M}^{(\mathscr{A})}$, we have :

$$
\mathbf{Y} \ \Vdash \ \forall x (\forall y (\psi(y) \Rightarrow y \notin x) \Rightarrow \neg \psi(x)) \ \Rightarrow \ \forall x \neg \psi(x)
$$

Proof: We show that **Y** $\Vdash \forall x (\forall y (\psi(y)) \Rightarrow y \notin x) \Rightarrow \neg \psi(x)) \Rightarrow \neg \psi(a)$ for all $a \in \mathcal{M}^{(\mathcal{A})}$, by induction on rk(a).

Realizing foundation

For any formula $\phi(x,\vec{z})$, we have : $\mathscr{M}^{(\mathscr{A})} \Vdash \forall \vec{z} [\forall x ((\forall y \in x) \phi(y, \vec{z}) \Rightarrow \phi(x, \vec{z})) \Rightarrow \forall x \phi(x, \vec{z})]$

Realizing witnessed existential formulas

Lemma

Let $\phi(x_1, \ldots, x_n, y)$ be a formula and $\theta \in \text{PL}$ such that :

$$
(\forall a_1,\ldots,a_n\in\mathscr{M}^{(\mathscr{A})})\;(\exists b\in\mathscr{M}^{(\mathscr{A})})\;\;\theta\Vdash\phi(a_1,\ldots,a_n,b)
$$

Then : $\lambda z . z \theta \Vdash \forall x_1 \cdots \forall x_n \exists y \phi(x_1, \ldots, x_n, y)$

• More generally :

Given a name $a \in \mathscr{M}^{(\mathscr{A})}$ and a formula $\phi(x)$ (with params in $\mathscr{M}^{(\mathscr{A})})$

Let :
$$
b = \bigcup_{c \in \text{dom}(a)} \{c\} \times ||\phi(c) \Rightarrow c \notin a||
$$

- By construction, we have :
	- dom (b) ⊂ dom (a)
	- \bullet $\|c \notin b\| = \| \phi(c) \Rightarrow c \notin a\|$ for all $c \in \mathcal{M}^{(\mathcal{A})}$ (Since $||c \notin b|| = \emptyset = ||\phi(c) \Rightarrow c \notin a||$ as soon as $c \notin \text{dom}(a)$)
- This means that :
	- $x \notin b$ has the same semantics as $\phi(x) \Rightarrow x \notin a$ • $x \in b \equiv \neg x \notin b$ has the same semantics as $\neg(\phi(x) \Rightarrow x \notin a)$

• Let θ_1 and θ_2 be proof-like terms such that :

$$
\theta_1 \Vdash \forall x [\neg (\phi(x) \Rightarrow x \notin a) \Rightarrow x \in a \land \phi(x)]
$$

$$
\theta_2 \Vdash \forall x [x \in a \land \phi(x) \Rightarrow \neg (\phi(x) \Rightarrow x \notin a)]
$$

• Since $x \in b$ has the same semantics as $\neg(\phi(x) \Rightarrow x \notin a)$:

$$
\theta_1 \Vdash \forall x [x \in b \Rightarrow x \in a \land \phi(x)]
$$

$$
\theta_2 \Vdash \forall x [x \in a \land \phi(x) \Rightarrow x \in b]
$$

$$
\lambda u. u \theta_1 \theta_2 \Vdash \forall x [x \in b \Leftrightarrow x \in a \land \phi(x)]
$$

• Hence (by Lemma) :

Realizing Comprehension

For every formula $\phi(\vec{z}, x)$:

 $\lambda z. z (\lambda u. u \theta_1 \theta_2) \Vdash \forall \vec{z} \forall a \exists b \forall x (x \in b \Leftrightarrow x \in a \wedge \phi(x, \vec{z}))$

\n- \n Given
$$
a, b \in \mathcal{M}^{(\mathcal{A})}
$$
, let\n
$$
c = \{a; b\} \times \Pi
$$
\n
\n- \n We have $||a \notin c|| = ||b \notin c|| = ||\perp||$, hence:\n
	\n- \n $|| \vdash a \in c \quad (\equiv \neg a \notin c)$ \n
	\n- \n $|| \vdash b \in c \quad (\equiv \neg b \notin c)$ \n
	\n\n
\n

• Hence (by Lemma) :

Realizing Pairing

 $\lambda z . z$ **II** $\vdash \forall a \forall b \exists c \{ a \varepsilon c \& b \varepsilon c \}$

• Given
$$
a \in \mathcal{M}^{(\mathcal{A})}
$$
, let $b = \bigcup_{a' \in \text{dom}(a)} a'$

Lemma

For all $a', a'' \in \mathscr{M}^{(\mathscr{A})}$: $\|a'' \notin b \Rightarrow a' \notin a\| \subseteq \|a'' \notin a' \Rightarrow a' \notin a\|$

Proof: We notice that $\|a'' \notin a'\| \subseteq \|a'' \notin b\|$ as soon as $a' \in \text{dom}(a)$.

o Hence

$$
\mathbf{I} \Vdash \forall x \forall y ((y \notin x \Rightarrow x \notin a) \Rightarrow (y \notin b \Rightarrow x \notin a))
$$

so we can find $\theta \in PL$ such that :

$$
\theta \Vdash \forall x \forall y (x \in a \Rightarrow y \in x \Rightarrow y \in b)
$$

a Therefore :

Realizing Union

$$
\lambda z. z \theta \Vdash \forall a \exists b (\forall x \varepsilon a) (\forall y \varepsilon x) y \varepsilon b
$$

Realizing Powerset

Given $a \in \mathscr{M}^{(\mathscr{A})}$, let $b = \mathfrak{P}(\mathsf{dom}(a) \times \Pi) \times \Pi$

• For every
$$
c \in \mathcal{M}^{(\mathcal{A})}
$$
, write :
\n
$$
c_{|a} = \bigcup_{d \in \text{dom}(a)} \{d\} \times ||d \varepsilon c \Rightarrow d \notin a||
$$

- We notice that :
	- **1** Formula $z \notin c_{|a|}$ has the same semantics as $z \in c \Rightarrow z \notin a$. Hence there is $\theta \in PL$ such that :

$$
\theta \Vdash \forall z (z \varepsilon c_{|a} \Leftrightarrow z \varepsilon c \wedge z \varepsilon a)
$$

- **2** dom $(c_{|a}) \in \mathfrak{P}(\text{dom}(a) \times \Pi)$, hence $||c_{|a} \notin b|| = ||\bot||$, and thus : $\mathbf{I} \Vdash c_{a} \varepsilon b$
- Therefore :

Realizing Powerset

 $\lambda z. z(\lambda z'. z' \cdot \theta) \Vdash \forall a \exists b \forall x (\exists y \in b) \forall z (z \in y \Leftrightarrow z \in x \land z \in a)$

- Let $\phi(x, y)$ a formula with parameters in $\mathscr{M}^{(\mathscr{A})}$ and $a \in \mathscr{M}^{(\mathscr{A})}$
- \bullet Using Collection in \mathcal{M} , consider a set B such that :

$$
(\forall c \in \text{dom}(a)) (\forall t \in \Lambda) [\exists d (d \in \mathcal{M}^{(\mathscr{A})} \ \land \ t \Vdash \phi(c, d)) \Rightarrow \\
(\exists d \in B) (d \in \mathcal{M}^{(\mathscr{A})} \ \land \ t \Vdash \phi(c, d))]
$$

(Wlog, we can assume that $B\subseteq \mathscr{M}^{(\mathscr{A})})$

• Writing $b = B \times \Pi$, we have:

Lemma

For all $c \in \mathscr{M}^{(\mathscr{A})}$: $\|\forall y (\phi(c, y) \Rightarrow x \notin a)\| \subseteq \|\forall y (\phi(c, y) \Rightarrow y \notin b)\|$

• Hence $I \Vdash \forall x [\forall y (\phi(x, y) \Rightarrow y \notin b) \Rightarrow \forall y (\phi(x, y) \Rightarrow x \notin a)]$ so there is $\theta \in PL$ s.t. : $\theta \Vdash (\forall x \in a) [\exists y \phi(x, y) \Rightarrow (\exists y \in b) \phi(x, y)]$

Realizing Collection

For every formula $\phi(x, y, \vec{z})$:

 $\lambda z \cdot z \theta \Vdash \forall \vec{z} \forall a \exists b (\forall x \in a) [\exists y \phi(x, y, \vec{z}) \Rightarrow (\exists y \in b) \phi(x, y, \vec{z})]$

- 1 The theory ZF_{ε}
- **2** [The model](#page-16-0) $\mathcal{M}^{(\mathcal{A})}$ of \mathcal{A} -names
- 3 Realizing the axioms of ZF_{ε}
- ⁴ [Realizing more axioms](#page-41-0)
- ⁵ [Realizability algebras](#page-51-0)
- **6** [Properties of the model](#page-59-0) $\mathcal{M}^{(\mathcal{A})}$

• It is often convenient to enrich the language of ZF_ε with a *k*-ary function symbol f interpreted as a k -ary class function

$$
f : \underbrace{\mathcal{M}^{(\mathscr{A})} \times \cdots \times \mathcal{M}^{(\mathscr{A})}}_{k} \rightarrow \mathcal{M}^{(\mathscr{A})}
$$

 \bullet We say that f is extensional when

$$
\mathscr{M}^{(\mathscr{A})} \Vdash \forall \vec{x} \ \forall \vec{y} \ (\vec{x} \approx \vec{y} \ \Rightarrow \ f(\vec{x}) \approx f(\vec{y}))
$$

Beware : This is usually not the case!

• But in all cases, we have

$$
\mathscr{M}^{(\mathscr{A})} \ \Vdash \ \forall \vec{x} \ \forall \vec{y} \ (\vec{x} = \vec{y} \ \Rightarrow \ f(\vec{x}) = f(\vec{y}))
$$

(due to intensional peeling)

• **Example :** Consider the successor function $s($ ₋), that is defined for all $a \in \mathcal{M}^{(\mathcal{A})}$ by

$$
s(a) = \{ (b, \overline{0} \cdot \pi) : (b, \pi) \in \text{dom}(a) \}
$$

$$
\cup \{ (a, \overline{1} \cdot \pi) : \pi \in \Pi \}
$$

Intensional/extensional characterization of s

$$
\bullet \quad \mathscr{M}^{(\mathscr{A})} \ \Vdash \ \forall x \, \forall y \, (y \in s(x) \ \Leftrightarrow \ y \in x \vee y = x)
$$

$$
\bullet \quad \mathscr{M}^{(\mathscr{A})} \ \Vdash \ \forall x \, \forall y \, (y \in s(x) \ \Leftrightarrow \ y \in x \vee y \approx x)
$$

³ The successor function *s* is extensional

Actually, this function is intensionally injective :

$$
\mathscr{M}^{(\mathscr{A})} \Vdash \forall x \forall y (s(x) = s(y) \Rightarrow x = y)
$$

Proof: Consider a function $p()$ ('predecessor') such that $p(s(a)) = a$ for all $a \in \mathcal{M}^{(\mathscr{A})}$

Constructing the set $\tilde{\omega}$ of natural numbers

• Let
$$
\tilde{0} = \emptyset
$$
 and $\widetilde{n+1} = s(\tilde{n})$ (for all $n \in \omega$)

• Put
$$
\tilde{\omega} = \{(\tilde{n}, \bar{n} \cdot \pi) : n \in \omega, \pi \in \Pi\}
$$

Intensional properties of $\tilde{\omega}$

$$
\bullet \ \mathscr{M}^{(\mathscr{A})} \ \Vdash \ \forall y \, (y \notin \tilde{0})
$$

$$
\bullet \mathscr{M}^{(\mathscr{A})} \Vdash \forall x \forall y (y \in s(x) \Leftrightarrow y \in x \vee y = x)
$$

$$
\bullet \,\,\mathscr{M}^{(\mathscr{A})} \,\,\Vdash\,\, \tilde{0} \,\varepsilon \,\tilde{\omega}
$$

$$
\bullet \ \mathscr{M}^{(\mathscr{A})} \ \Vdash \ (\forall x \in \tilde{\omega}) \ s(x) \ \varepsilon \ \tilde{\omega}
$$

$$
\bullet \ \mathscr{M}^{(\mathscr{A})} \ \Vdash \ \phi(\tilde{0}) \Rightarrow (\forall x \in \tilde{\omega}) \left(\phi(x) \Rightarrow \phi(s(x)) \right) \Rightarrow (\forall x \in \tilde{\omega}) \phi(x)
$$

where $\phi(x)$ is any formula with parameters in $\mathcal{M}^{(\mathcal{A})}$

• Remark : This implementation of ω provides a canonical intensional representation of natural numbers :

$$
\mathscr{M}^{(\mathscr{A})} \Vdash (\forall x \in \tilde{\omega})(\forall y \in \tilde{\omega})(x \approx y \Leftrightarrow x = y)
$$

- Recall that : $\tilde{\omega} = \{(\tilde{p}, \overline{p} \cdot \pi) : p \in \omega, \pi \in \Pi\}$ and put : $\mathbb{J}\omega = \{(\tilde{p}, \pi) : p \in \omega, \pi \in \Pi\}$ $\exists n = \{(\tilde{p}, \pi) : p < n, \pi \in \Pi\}$
- From the definition, we have : $\mathscr{M}^{(\mathscr{A})} \Vdash \tilde{\omega} \sqsubseteq \mathbb{J}\omega$
- Distinction between (intensional) elements of $\tilde{\omega}$ and of $\mathbb{I}\omega$ is the same as between natural numbers and individuals in 2nd-order logic
- Krivine showed that in some models (such as the threads model) :
	- Inclusion $\tilde{\omega} \sqsubseteq \exists \omega$ is strict
	- $\exists \omega$ is (intensionally) not denumerable
	- Subsets $\exists n \sqsubseteq \exists \omega$ have amazing (intensional) cardinality properties
- However, the set $\exists \omega$ is extensionally equal to $\tilde{\omega}$:

$$
\mathscr{M}^{(\mathscr{A})} \ \Vdash \ \exists \omega \ \approx \ \tilde{\omega}
$$

• Add an instruction quote with the rule

$$
\mathsf{quote} \star t \cdot u \cdot \pi \quad \succ \quad u \star \overline{n}_t \cdot \pi
$$

where n_t is the index of t according to a fixed bijection $n \mapsto t_n$ from ω to Λ

 ZF_{ε} ZF_{ε} [The model](#page-16-0) $\mathscr{M}^{(\mathscr{A})}$ [Realizing axioms](#page-31-0) [More axioms](#page-41-0) [Realizability algebras](#page-51-0) [Properties of](#page-59-0) $\mathscr{M}^{(\mathscr{A})}$

- Let $\phi(x_1, \ldots, x_k, y)$ be a formula
- Consider the $(k + 1)$ -ary function symbol f_{ϕ} interpreted by ²
	- $f_{\phi}(a_1,\ldots,a_k,\tilde{n}) = \text{some } b \in \mathscr{M}^{(\mathscr{A})} \text{ s.t. } t_n \Vdash \phi(a_1,\ldots,a_k,b)$ if there is such a name b
	- $f_{\phi}(a_1, \ldots, a_k, b) = \tilde{\emptyset}$ in all the other cases

Lemma

 λxy . quote y $(x y) \Vdash \forall \vec{x} \; [\forall n (\phi(\vec{x}, f_{\phi}(\vec{x}, n)) \Rightarrow n \notin \tilde{\omega}) \Rightarrow \forall y \neg \phi(\vec{x}, y)]$

^{2.} Assuming that M interprets the choice principle (= conservative ext. of ZFC)

The non extensional axiom of choice $(NEAC)$ (2/2)

$$
\mathscr{M}^{(\mathscr{A})} \Vdash \forall \vec{x} \left[\forall n \left(\phi(\vec{x}, f_{\phi}(\vec{x}, n)) \Rightarrow n \notin \tilde{\omega} \right) \Rightarrow \forall y \neg \phi(\vec{x}, y) \right]
$$

• Taking the contrapositive, we get :

Non extensional axiom of choice (NEAC)

 $\mathscr{M}^{(\mathscr{A})} \Vdash \forall \vec{x} \; [\exists y \; \phi(\vec{x}, y) \Rightarrow (\exists n \in \tilde{\omega}) \; \phi(\vec{x}, f_{\phi}(\vec{x}, n))]$

o Remarks

- $(f_{\phi}(\vec{a}, n))_{n\in\tilde{\omega}}$ is a denumerable sequence of potential witnesses of the existential formula $\exists y \phi(\vec{a}, y)$
- The function f_{ϕ} is not extensional in general, even in the case where the formula ϕ is extensional
- Nevertheless, NEAC is strong enough to imply the axiom of dependent choices (DC)

Alternative formulation of NEAC $(1/3)$

NEAC :
$$
\mathscr{M}^{(\mathscr{A})} \Vdash \forall \vec{x} \; [\exists y \; \phi(\vec{x}, y) \Rightarrow (\exists n \in \tilde{\omega}) \; \phi(\vec{x}, f_{\phi}(\vec{x}, n))]
$$

• Consider the abbreviations :

 $\psi_0(\vec{x}, n) \equiv \phi(\vec{x}, f_{\phi}(\vec{x}, n))$ ("there is witness at index n")

$$
\psi_1(\vec{x},n) \equiv (\forall m \in \tilde{\omega}) (\psi_0(\vec{x},m) \Rightarrow m \notin n)
$$

("no witness below index n ")

• From the minimum principle, we get :

 $\mathscr{M}^{(\mathscr{A})}$ $\Vdash \forall \vec{x} \; [\exists y \; \phi(\vec{x}, y) \Rightarrow (\exists n \in \tilde{\omega}) \; \{\psi_0(\vec{x}, n) \; \& \; \psi_1(\vec{x}, n)\}]$

Idea : Introduce a k-ary function h_{ϕ} such that $h_{\phi}(\vec{x}) \approx f_{\phi}(\vec{x}, n)$,

where *n* is the smallest index s.t. $\phi(\vec{x}, f_{\phi}(\vec{x}, n))$

Alternative formulation of NEAC (2/3)

• For all
$$
\vec{a} = a_1, ..., a_k \in \mathcal{M}^{(\mathcal{A})}
$$
, let :
\n
$$
h_{\phi}(\vec{a}) = \bigcup_{b \in D_{\vec{a}}} \{b\} \times S_{\vec{a},b}
$$
\nwhere : $D_{\vec{a}} = \bigcup_{n \in \omega} \text{dom}(f_{\phi}(\vec{a}, \tilde{n}))$
\n
$$
S_{\vec{a},b} = ||(\forall n \in \tilde{\omega})(\psi_0(\vec{a}, n) \Rightarrow \psi_1(\vec{a}, n) \Rightarrow b \notin f_{\phi}(\vec{a}, n))||
$$

By def. of $h_{\phi}(\vec{a})$, we have for all $b \in \mathscr{M}^{(\mathscr{A})}$: $||b \notin h_{\phi}(\vec{a})|| = ||(\forall n \in \tilde{\omega})(\psi_0(\vec{a}, n) \Rightarrow \psi_1(\vec{a}, n) \Rightarrow b \notin f_{\phi}(\vec{a}, n))||$

• Therefore :

$$
\mathscr{M}^{(\mathscr{A})} \Vdash \forall \vec{x} \; \forall z \, [z \in h_{\phi}(\vec{x}) \Leftrightarrow (\exists n \in \tilde{\omega}) \, \{ \psi_0(\vec{x}, n) \& \psi_1(\vec{x}, n) \& z \in f_{\phi}(\vec{x}, n) \}]
$$

We have shown :

$$
\mathcal{M}^{(\mathscr{A})} \Vdash \forall \vec{x} \; [\exists y \; \phi(\vec{x}, y) \Rightarrow (\exists n \in \tilde{\omega}) \{ \psi_0(\vec{x}, n) \& \psi_1(\vec{x}, n) \}]
$$
\n
$$
\mathcal{M}^{(\mathscr{A})} \Vdash \forall \vec{x} \; \forall z \; [z \in h_{\phi}(\vec{x}) \Leftrightarrow
$$
\n
$$
(\exists n \in \tilde{\omega}) \{ \psi_0(\vec{x}, n) \& \psi_1(\vec{x}, n) \& z \in f_{\phi}(\vec{x}, n) \}]
$$

• Combining these results, we get :

Alternative formulation of NEAC

1 For any formula $\phi(\vec{x}, y)$:

 $\mathscr{M}^{(\mathscr{A})} \Vdash \forall \vec{x} \, [\exists y \, \phi(\vec{x}, y) \Rightarrow \exists y \, \{y \sim h_{\phi}(\vec{x}) \& \phi(\vec{x}, y)\}]$

2 If moreover the formula $\phi(\vec{x}, y)$ is extensional :

 $\mathscr{M}^{(\mathscr{A})} \Vdash \forall \vec{x} [\exists y \phi(\vec{x}, y) \Leftrightarrow \phi(\vec{x}, h_{\phi}(\vec{x}))]$

- **Beware!** The function h_{ϕ} is in general non extensional, even when the formula $\phi(\vec{x}, y)$ is
- But h_{ϕ} can be used in Comprehension, Collection, etc.

- 1 [The theory ZF](#page-1-0)_F
- **2** [The model](#page-16-0) $\mathcal{M}^{(\mathcal{A})}$ of \mathcal{A} -names
- 3 Realizing the axioms of ZF_{ε}
- ⁴ [Realizing more axioms](#page-41-0)
- ⁵ [Realizability algebras](#page-51-0)
- **6** [Properties of the model](#page-59-0) $\mathcal{M}^{(\mathcal{A})}$
- Realizability algebras **by the Community** Character and The Health (Krivine'10]
	- Same idea as PCAs (or OPCAs), but for classical realizability
	- Each realizability algebra $\mathscr A$ contains a pole $\bot\!\!\!\bot$, and defines a classical realizability model $\mathscr{M}^{(\mathscr{A})}$ of ZF $_\varepsilon$ $\;$ (from a ground model $\mathscr{M})$
		- \rightsquigarrow Construction of $\mathscr{M}^{(\mathscr{A})}$ is the same as in the standard case
- Realizability algebras may be built from
	- The λ_c -calculus or Parigot's $\lambda \mu$ -calculus
	- Curien-Herbelin's $\bar{\lambda}\mu$ -calculus (CBN or CBV)
	- Any complete Boolean algebra
- Realizability algebras can combine (standard) classical realizability with Cohen forcing \rightarrow iterated forcing \rightarrow [Krivine'10]
- Slogan : classical realizability $=$ non commutative forcing

Some terminology (where \overline{A} is a fixed set) :

- Proof-term $\equiv \lambda$ -term with ∞ **Proof-terms** $t, u := x \mid \lambda x. t \mid tu \mid \alpha$
- A-environment \equiv finite association list $\sigma \in (\text{Var} \times A)^*$
	- Notations : $\sigma \equiv x_1 := a_1, \ldots, x_n := a_n$ dom (σ) = { x_1 ; . . . ; x_n } $\text{cod}(\sigma) = \{a_1; \ldots; a_n\}$

Environments are ordered, variables may be bound several times

- Compilation function into $A \equiv$ function $(t, \sigma) \mapsto t[\sigma]$
	- taking : proof-term $t + A$ -environment σ closing t,
	- returning : element $t[\sigma] \in A$

Definition

A realizability algebra $\mathscr A$ is given by :

- **•** 3 sets Λ (\mathcal{A} -terms), Π (\mathcal{A} -stacks), $\Lambda \star \Pi$ (\mathcal{A} -processes)
- **•** 3 functions (·): $\mathbf{\Lambda} \times \mathbf{\Pi} \to \mathbf{\Pi}$, (*) : $\mathbf{\Lambda} \times \mathbf{\Pi} \to \mathbf{\Lambda} \star \mathbf{\Pi}$, (k) : $\mathbf{\Pi} \to \mathbf{\Lambda}$
- A compilation function $(t, \sigma) \mapsto t[\sigma]$ into the set **Λ** of $\mathscr A$ -terms
- A subset PL $\subseteq \Lambda$ (of proof-like $\mathscr A$ -terms) such that for all (t, σ) :

If $\text{cod}(\sigma) \subset \text{PL}$, then $t[\sigma] \in \text{PL}$ ($\text{FV}(t) \subset \text{dom}(\sigma)$)

• A set of \mathcal{A} -processes $\bot \bot \subset \Lambda \star \Pi$ (the pole) such that :

$\sigma(x) \star \pi$	$\in \mathbb{L}$	implies	$x[\sigma] \star \pi$	$\in \mathbb{L}$
$t[\sigma, x := a] \star \pi$	$\in \mathbb{L}$	implies	$(\lambda x \cdot t)[\sigma] \star a \cdot \pi \in \mathbb{L}$	
$t[\sigma] \star u[\sigma] \cdot \pi \in \mathbb{L}$	implies	$(tu)[\sigma] \star \pi$	$\in \mathbb{L}$	
$a \star \pi$	$\in \mathbb{L}$	implies	$\alpha[\sigma] \star a \cdot \pi \in \mathbb{L}$	
$a \star \pi$	$\in \mathbb{L}$	implies	$k_{\pi} \star a \cdot \pi' \in \mathbb{L}$	

Canonical example : the λ_c -calculus

- Λ, Π, $Λ \star Π$ = sets of closed terms, stacks, processes
- Compilation $t[\sigma]$ = substitution
- PL = set of closed terms containing no k_{π}
- $\bullet \perp\!\!\!\perp =$ any set of processes closed under anti-evaluation

Variant : the combinatory λ_c -calculus (1/2)

Variant : the combinatory λ_c -calculus

$$
(2/2)
$$

Abstraction $\lambda^* x$. t is defined from binary abstraction $\langle \lambda^* x$. t $|$ r \rangle :

Lemma

For all t, u, r, π : $\langle \lambda^* x \cdot t | r \rangle \star u \cdot \pi \succ r \star t \{x := u\} \cdot \pi$

• Then we let:
$$
\lambda^* x \cdot t \equiv \langle \lambda^* x \cdot t | 1 \rangle
$$

Lemma

For all t, u, π : $\lambda^* \times . t \times u \cdot \pi \succ t \{x := u\} \times \pi$

Compilation function defined as expected, compiling λ as λ^*

Turning Boolean algebras into realizability algebras

• From a Boolean algebra IB, we can build a realizability algebra $\mathscr{A} = (\Lambda, \Pi, \Lambda \star \Pi, \ldots, \bot)$, letting :

$$
\bullet \ \Lambda \ = \ \Pi \ = \ \Lambda \star \Pi \ = \ \mathbb{B}
$$

•
$$
b_1 \cdot b_2 = b_1 \star b_2 = b_1 b_2, k_b = b
$$

$$
\bullet\ \mathsf{PL}=\{1\}
$$

$$
\bullet \ \ t[\sigma] = \prod_{x \in FV(t)} \sigma(x)
$$

$$
\bullet \perp\!\!\!\perp = \{0\}
$$

In the case where IB is complete, the realizability model $\mathscr{M}^{(\mathscr{A})}$ is elementarily equivalent to the Boolean-valued model $\mathcal{M}^{(\mathsf{B})}$

If IB is not complete, then $\mathscr A$ automatically completes IB

- 1 [The theory ZF](#page-1-0)_F
- 2 [The model](#page-16-0) $\mathcal{M}^{(\mathcal{A})}$ of \mathcal{A} -names
- 3 Realizing the axioms of ZF_{ε}
- ⁴ [Realizing more axioms](#page-41-0)
- ⁵ [Realizability algebras](#page-51-0)
- 6 [Properties of the model](#page-59-0) $\mathcal{M}^{(\mathcal{A})}$

(blackboard)