

Constructing classical realizability models of Zermelo-Fraenkel set theory

Alexandre Miquel Plume team – LIP/ENS Lyon

June 5th, 2012 Réalisabilité à Chambéry

ZF_{ε}	The model $\mathcal{M}^{(\mathcal{A})}$	Realizing axioms	More axioms	Realizability algebras	Properties of $\mathcal{M}^{(\mathscr{A})}$
Plan					

- 1 The theory $\mathsf{ZF}_{\varepsilon}$
- 2 The model $\mathcal{M}^{(\mathscr{A})}$ of \mathscr{A} -names
- 3 Realizing the axioms of $\mathsf{ZF}_{\varepsilon}$
- 4 Realizing more axioms
- 5 Realizability algebras
- 6 Properties of the model $\mathcal{M}^{(\mathscr{A})}$

$\operatorname{ZF}_{\varepsilon}$	The model $\mathcal{M}^{(\mathscr{A})}$	Realizing axioms	More axioms	Realizability algebras	Properties of $\mathcal{M}^{(\mathcal{A})}$
Plan					

1 The theory $\mathsf{ZF}_{\varepsilon}$

(2) The model $\mathcal{M}^{(\mathscr{A})}$ of \mathscr{A} -names

3 Realizing the axioms of $\mathsf{ZF}_{\varepsilon}$

4 Realizing more axioms

5 Realizability algebras

6 Properties of the model $\mathscr{M}^{(\mathscr{A})}$

ZF_{ε}	The model $\mathscr{M}^{(\mathscr{A})}$	Realizing axioms	More axioms	Realizability algebras	Properties of $\mathcal{M}^{(\mathcal{A})}$
Why	$ZF_{arepsilon}$?				

- A similar difficulty occurs in the construction of
 - a forcing model of ZF [Cohen'63]

[Scott, Solovay, Vopěnka]

[Krivine'00]

- a Boolean-valued model of ZF
- a realizability model of IZF [Myhill-Friedman'73, McCarty'84]
- a classical realizability model of ZF

which is the interpretation of the axiom of extensionality :

$$\forall x \,\forall y \, [x = y \iff \forall z \, (z \in x \iff z \in y)]$$

• The reason is that in these models, sets cannot be given a canonical representation \rightsquigarrow need some extensional collapse

(A similar problem occurs in CS when manipulating sets)

- Most authors solve the problem in the model, when defining the interpretation of extensional equality and membership
- Krivine proposes to address the problem in the syntax, using a non extensional presentation of ZF called $\mathsf{ZF}_{\varepsilon}$ (= assembly language for ZF)

$$\begin{array}{cccccccc} \phi, \psi & ::= & x \notin y & | & x \notin y & | & x \subseteq y \\ & | & \top & | & \bot & | & \phi \Rightarrow \psi & | & \forall x \phi \end{array}$$

• Abbreviations :

Formulas

$$\begin{array}{rcl}
\neg\phi \equiv \phi \Rightarrow \bot & x \in y \equiv \neg(x \notin y) \\
\phi \land \psi \equiv \neg(\phi \Rightarrow \psi \Rightarrow \bot) & x \in y \equiv \neg(x \notin y) \\
\phi \lor \psi \equiv \neg\phi \Rightarrow \neg\psi \Rightarrow \bot & x \in y \equiv \neg(x \notin y) \\
\phi \Rightarrow \psi \equiv (\phi \Rightarrow \psi) \land (\psi \Rightarrow \phi) & x \approx y \equiv x \subseteq y \land y \subseteq x \\
\exists x \{\phi_1 \& \cdots \& \phi_n\} \equiv \neg \forall x (\phi_1 \Rightarrow \cdots \Rightarrow \phi_n \Rightarrow \bot) \\
(\forall x \in a) \phi \equiv \forall x (x \in a \Rightarrow \phi) & (\exists x \in a) \phi \equiv \exists x \{x \in a \& \phi\} \\
(\forall x \in a) \phi \equiv \forall x (x \in a \Rightarrow \phi) & (\exists x \in a) \phi \equiv \exists x \{x \in a \& \phi\} \\
\end{cases}$$

• A formula ϕ is extensional if it does not contain \notin

- Formulas $x \in y$, $x \subseteq y$, $x \approx y$ are extensional $// x \varepsilon y$ is not.
- Extensional formulas are the formulas of ZF

${\sf ZF}_{arepsilon}$	The model $\mathcal{M}^{(\mathscr{A})}$	Realizing axioms	More axioms	Realizability algebras	Properties of $\mathcal{M}^{(\mathcal{A})}$
The a	axioms of ZF	ε			

Extensionality	$\forall x \forall y (x \in y \Leftrightarrow (\exists z \varepsilon y) x \approx z)$
	$\forall x \forall y (x \subseteq y \iff (\forall z \varepsilon x) z \in y)$
Foundation	$\forall \vec{z} \ [\forall x \left((\forall y \varepsilon x) \phi(y, \vec{z}) \Rightarrow \phi(x, \vec{z}) \right) \ \Rightarrow \ \forall x \phi(x, \vec{z})]$
Comprehension	$\forall \vec{z} \; \forall a \exists b \forall x (x \; \varepsilon \; b \; \Leftrightarrow \; x \; \varepsilon \; a \wedge \phi(x, \vec{z}))$
Pairing	$\forall a \forall b \exists c \{ a \varepsilon c \& b \varepsilon c \}$
Union	$\forall a \exists b (\forall x \varepsilon a) (\forall y \varepsilon x) y \varepsilon b$
Powerset	$\forall a \exists b \forall x (\exists y \varepsilon b) \forall z (z \varepsilon y \Leftrightarrow z \varepsilon x \wedge z \varepsilon a)$
Collection	$\forall \vec{z} \forall a \exists b (\forall x \varepsilon a) [\exists y \phi(x, y, \vec{z}) \Rightarrow (\exists y \varepsilon b) \phi(x, y, \vec{z})]$
Infinity	$ \begin{array}{l} \forall \vec{z} \ \forall a \ \exists b \ \{ a \ \varepsilon \ b \ \& \\ (\forall x \ \varepsilon \ b) \ (\exists y \ \phi(x, y, \vec{z}) \Rightarrow (\exists y \ \varepsilon \ b) \ \phi(x, y, \vec{z})) \} \end{array} $

• Proofs formalized in natural deduction + Peirce's law

(1/2)

The extensional relations \in , \subseteq and \approx

The model $\mathcal{M}^{(\mathscr{A})}$ Realizing axioms

• Extensionality axioms define \in and \subseteq by mutual induction

$$\begin{array}{ll} x' \in y & \Leftrightarrow & (\exists y' \varepsilon y) \, x' \approx y' \\ & \Leftrightarrow & (\exists y' \varepsilon y) \, \{x' \subseteq y' \& y' \subseteq x'\} \\ x \subseteq y & \Leftrightarrow & (\forall x' \varepsilon x) \, x' \in y \\ & \Leftrightarrow & (\forall x' \varepsilon x) \, (\exists y' \varepsilon y) \, \{x' \subseteq y' \& y' \subseteq x'\} \end{array}$$

• Foundation scheme expresses that ε is well-founded :

$$\forall \vec{z} \ [\forall x \left((\forall y \, \varepsilon \, x) \phi(y, \vec{z}) \Rightarrow \phi(x, \vec{z}) \right) \ \Rightarrow \ \forall x \, \phi(x, \vec{z})]$$

Combining Extensionality with Foundation, we get :

 $\mathsf{ZF}_{\varepsilon} \vdash \forall x (x \subset x)$ **Reflexivity** :

Induction hypothesis : $\phi(x) \equiv x \subseteq x$

• Consequences : $ZF_{\varepsilon} \vdash \forall x (x \approx x)$ $\mathsf{ZF}_{\varepsilon} \vdash \forall x \forall y (x \varepsilon y \Rightarrow x \in y)$

The extensional relations \in , \subseteq and \approx

• From Extensionality, we have :

$$x \subseteq y \iff (\forall x' \varepsilon x) (\exists y' \varepsilon y) \{x' \subseteq y' \& y' \subseteq x'\}$$

Combined with Foundation again, we get :

 $\mathsf{ZF}_{\varepsilon} \vdash \forall x \forall y \forall z (x \subseteq y \Rightarrow y \subseteq z \Rightarrow x \subseteq z)$ Transitivity :

 $\phi(x) \equiv \forall y \,\forall z \,(x \subseteq y \Rightarrow y \subseteq z \Rightarrow x \subseteq z) \,\land$ Induction hypothesis : $\forall y \forall z (z \overline{\subseteq} y \Rightarrow y \overline{\subseteq} x \Rightarrow z \overline{\subseteq} x)$

So that :

- Inclusion $x \subseteq y$ is a preorder
- Extensional equality $x \approx y$ is the associated equivalence relation

• Extensional (ZF) definitions of \subseteq and \approx are then derivable :

$$\begin{aligned} \mathsf{ZF}_{\varepsilon} &\vdash \forall x \,\forall y \, [x \subseteq y \,\Leftrightarrow \,\forall z \, (z \in x \Rightarrow z \in y)] \\ \mathsf{ZF}_{\varepsilon} &\vdash \forall x \,\forall y \, [x \approx y \,\Leftrightarrow \,\forall z \, (z \in x \Leftrightarrow z \in y)] \end{aligned}$$

 We can now derive that ≈ is compatible with the two primitive extensional predicates ∉ and ⊆ :

$$\begin{array}{lll} \mathsf{ZF}_{\varepsilon} & \vdash & \forall x \, \forall y \, \forall z \, (x \approx y \Rightarrow x \notin z \Rightarrow y \notin z) \\ \mathsf{ZF}_{\varepsilon} & \vdash & \forall x \, \forall y \, \forall z \, (x \approx y \Rightarrow z \notin x \Rightarrow z \notin y) \\ \mathsf{ZF}_{\varepsilon} & \vdash & \forall x \, \forall y \, \forall z \, (x \approx y \Rightarrow x \subseteq z \Rightarrow y \subseteq z) \\ \mathsf{ZF}_{\varepsilon} & \vdash & \forall x \, \forall y \, \forall z \, (x \approx y \Rightarrow z \subseteq x \Rightarrow z \subseteq y) \end{array}$$

Extensional peeling

For any extensional formula $\phi(x, \vec{z})$:

$$\mathsf{ZF}_{\varepsilon} \vdash \forall \vec{z} \; \forall x \; \forall y \; [x \approx y \; \Rightarrow \; (\phi(x, \vec{z}) \Leftrightarrow \phi(y, \vec{z}))]$$

Proof : by structural induction on $\phi(x, \vec{z})$

- Remarks :
 - Proof structurally depends on $\phi(x, \vec{z}) \rightsquigarrow$ non parametric
 - Only holds when $\phi(x, \vec{z})$ is extensional. Counter-example :

$$x \approx y \not\Rightarrow (x \varepsilon z \Leftrightarrow y \varepsilon z)$$

Consequences of extensional peeling

- Extensional peeling is the tool to derive the usual extensional axioms of ZF from their intensional formulation in ZF_ε. But schemes need to be restricted to extensional formulas (as in ZF)
- In ZF_{ε}, (intensional) Foundation and Comprehension schemes $\forall \vec{z} \ [\forall x ((\forall y \ \varepsilon \ x) \phi(y, \vec{z}) \Rightarrow \phi(x, \vec{z})) \Rightarrow \forall x \ \phi(x, \vec{z})]$

$$\forall \vec{z} \forall a \exists b \forall x (x \in b \Leftrightarrow x \in a \land \phi(x, \vec{z})) \Rightarrow \forall x \phi(x)$$

hold for any formula $\phi(x, \vec{z})$ (may contain ε)

• Combined with extensional peeling, we get

Foundation & Comprehension : ZF formulation $ZF_{\varepsilon} \vdash \forall \vec{z} \ [\forall x ((\forall y \in x)\phi(y, \vec{z}) \Rightarrow \phi(x, \vec{z})) \Rightarrow \forall x \phi(x, \vec{z})]$ $ZF_{\varepsilon} \vdash \forall \vec{z} \ \forall a \exists b \forall x (x \in b \Leftrightarrow x \in a \land \phi(x, \vec{z}))$ for any extensional formula $\phi(x, \vec{z})$ (cannot contain ε)

Leibniz equality and intensional peeling

 \bullet Leibniz equality is definable in ZF_ε :

$$\mathsf{x} = \mathsf{y} \; \equiv \; orall z \left(x \notin z \Rightarrow \mathsf{y} \notin z
ight)$$
 (Could replace \notin by $arepsilon$)

• Thanks to (intensional) Comprehension, we get :

Intensional peeling

ZFE

For any formula $\phi(x, \vec{z})$:

$$\mathsf{ZF}_{\varepsilon} \ \vdash \ \forall \vec{z} \ \forall x \ \forall y \ [x = y \ \Rightarrow \ (\phi(x, \vec{z}) \Leftrightarrow \phi(y, \vec{z}))]$$

Proof: We only need to prove $x = y \Rightarrow (\phi(y, \vec{z}) \Rightarrow \phi(x, \vec{z}))$. (For the converse direction : replace $\phi(x, \vec{z})$ by $\neg \phi(x, \vec{z})$.)

Assume x = y and $\phi(y, \vec{z})$. From Pairing, there exists u such that $y \in u$. From Comprehension, there exists u' such that $\forall x (x \in u' \Leftrightarrow x \in u \land \phi(x, \vec{z}))$. By construction, we have $y \in u'$ (since $y \in u$ and $\phi(y, \vec{z})$). Since x = y, we get $x \in u'$ (by contraposition). Therefore : $x \in u$ and $\phi(x, \vec{z})$.

- Remarks :
 - Proof does not structurally depend on $\phi(x, \vec{z}) \rightsquigarrow$ parametric
 - This property holds for any formula $\phi(x, \vec{z})$.

• Let
$$x \sqsubseteq y \equiv \forall z (z \varepsilon x \Rightarrow z \varepsilon y)$$

 $x \sim y \equiv \forall z (z \varepsilon x \Leftrightarrow z \varepsilon y) (\Leftrightarrow x \sqsubseteq y \land y \sqsubseteq x)$

- Remarks :
 - $x \sqsubseteq y$ is a preorder, stronger than $x \subseteq y$
 - $x \sim y$ is the associated equivalence
 - x ~ y weaker than x = y, stronger than x ≈ y (None of the converse implications is derivable)
- Going back to Comprehension :

$$\forall \vec{z} \; \forall a \, \exists b \, \forall x \, (x \, \varepsilon \, b \Leftrightarrow x \, \varepsilon \, a \wedge \phi(x, \vec{z}))$$

 The set b = {x ε a : φ(x)} is unique up to ~ (and thus up to ≈), but not up to = (Leibniz equality)

• In ZF_{ε} , the (intensional) axioms of Pairing and Union only give upper approximations of the desired sets :

 $\forall a \forall b \exists c \{ a \varepsilon c \& b \varepsilon c \} \\ \forall a \exists b (\forall x \varepsilon a) (\forall y \varepsilon x) y \varepsilon b$

• Cutting them by Comprehension, we get what we expect :

$$\begin{aligned} \mathsf{ZF}_{\varepsilon} &\vdash \forall a \forall b \exists c' \forall x \, (x \, \varepsilon \, c' \, \Leftrightarrow \, x = a \lor x = b) \\ \mathsf{ZF}_{\varepsilon} &\vdash \forall a \exists b' \forall x \, (x \, \varepsilon \, b' \, \Leftrightarrow \, (\exists y \, \varepsilon \, a) \, x \, \varepsilon \, y) \end{aligned}$$

Note that b' and c' are unique up to strong equivalence \sim .

• And by extensional peeling, we get :

Pairing and Union : ZF formulation

$$\mathsf{ZF}_{\varepsilon} \vdash \forall a \forall b \exists c' \forall x (x \in c' \Leftrightarrow x \approx a \lor x \approx b)$$
$$\mathsf{ZF}_{\varepsilon} \vdash \forall a \exists b' \forall x (x \in b' \Leftrightarrow (\exists y \in a) x \in y)$$

 In ZF_ε, the (intensional) Powerset axiom only gives an upper approximation of the desired set :

 $\forall a \exists b \forall x (\exists y \varepsilon b) \forall z (z \varepsilon y \Leftrightarrow z \varepsilon x \land z \varepsilon a)$

Intuitively : b contains a copy of all sets of the form $x \cap a$

• Cutting *b* with Comprehension, we get :

$$\mathsf{ZF}_{\varepsilon} \vdash \forall a \exists b' \{ (\forall x \varepsilon b') x \sqsubseteq a \& \\ \forall x (x \sqsubseteq a \Rightarrow (\exists x' \varepsilon b') x \sim x') \}$$

Here, b' is unique up to \approx , but not up to \sim . Cannot do better, since $\{x : x \sqsubseteq a\}$ is a proper class in realizability models.

• And by extensional peeling, we get :

Powerset : ZF formulation

 $\mathsf{ZF}_{\varepsilon} \vdash \forall a \exists b' \forall x (x \in b' \Leftrightarrow x \subseteq a)$

• $\mathsf{ZF}_{\varepsilon}$ comes with Collection and Infinity schemes :

$$\forall \vec{z} \,\forall a \,\exists b \,(\forall x \,\varepsilon \,a) \,[\exists y \,\phi(x, y, \vec{z}) \Rightarrow (\exists y \,\varepsilon \,b) \,\phi(x, y, \vec{z})] \\ \forall \vec{z} \,\forall a \,\exists b \,\{a \,\varepsilon \,b \,\& \,(\forall x \,\varepsilon \,b) \,(\exists y \,\phi(x, y, \vec{z}) \Rightarrow (\exists y \,\varepsilon \,b) \,\phi(x, y, \vec{z}))\}$$

for every formula $\phi(x, y, \vec{z})$

Collection and Infinity schemes : extensional formulation

 $\begin{aligned} \mathsf{ZF}_{\varepsilon} &\vdash \forall \vec{z} \forall a \exists b (\forall x \varepsilon a) [\exists y \phi(x, y, \vec{z}) \Rightarrow (\exists y \in b) \phi(x, y, \vec{z})] \\ \mathsf{ZF}_{\varepsilon} &\vdash \forall \vec{z} \forall a \exists b \{ a \in b \& (\forall x \in b) (\exists y \phi(x, y, \vec{z}) \Rightarrow (\exists y \in b) \phi(x, y, \vec{z})) \} \\ \text{for every extensional formula } \phi(x, y, \vec{z}) \end{aligned}$

- In general, Collection is stronger than Replacement... ... but in ZF, they are equivalent due to Foundation
- Infinity scheme implies the existence of infinite sets... ... and it is equivalent in presence of Collection

${\sf ZF}_{arepsilon}$	The model $\mathscr{M}^{(\mathscr{A})}$	Realizing axioms	More axioms	Realizability algebras	Properties of $\mathcal{M}^{(\mathscr{A})}$
Cons	ervativity				

• All axioms of ZF are derivable in ZF_ε :

Proposition : ZF_{ε} is an extension of ZF

• **Collapsing** ε and \in : For every formula ϕ of $\mathsf{ZF}_{\varepsilon}$, write ϕ^{\dagger} the formula of ZF obtained by collapsing \notin to \notin in ϕ .

Proposition : If $ZF_{\varepsilon} \vdash \phi$, then $ZF \vdash \phi^{\dagger}$

• Therefore, if ZF is consistent, then none of the formulas

 $\exists x \exists y (x \in y \land x \notin y), \exists x \exists y (x \approx y \land x \neq y), etc.$

is derivable in ZF_{ε} !

(But they are realized...)

Theorem (Conservativity) ZF_{ε} is a conservative extension of ZF (and thus equiconsistent) P f z_{ε} + $z_$

Proof: Assume $ZF_{\varepsilon} \vdash \phi$, where ϕ is extensional. Then $ZF \vdash \phi^{\dagger}$. But $\phi^{\dagger} \equiv \phi$.

${\sf ZF}_{arepsilon}$	The model $\mathcal{M}^{(\mathcal{A})}$	Realizing axioms	More axioms	Realizability algebras	Properties of $\mathcal{M}^{(SI)}$
Plan					

1 The theory $\mathsf{ZF}_{\varepsilon}$

- 2 The model $\mathcal{M}^{(\mathscr{A})}$ of \mathscr{A} -names
- 3 Realizing the axioms of $\mathsf{ZF}_{\varepsilon}$
- 4 Realizing more axioms
- 5 Realizability algebras
- 6 Properties of the model $\mathscr{M}^{(\mathscr{A})}$

${\sf ZF}_{arepsilon}$	The model $\mathscr{M}^{(\mathscr{A})}$	Realizing axioms	More axioms	Realizability algebras	Properties of $\mathcal{M}^{(\mathscr{A})}$
The	λ_c -calculus				(1/2)

SyntaxTerms $t, u ::= x \mid \lambda x . t \mid tu \mid \kappa \mid k_{\pi}$ $(\kappa \in \mathcal{K})$ Stacks $\pi ::= \alpha \mid t \cdot \pi$ $(\alpha \in \Pi_0, t \text{ closed})$ Processes $p, q ::= t \star \pi$ (t closed)

- Syntax of the language is parameterized by
 - \bullet A nonempty countable set $\mathcal{K} = \{ \alpha; \ldots \}$ of instructions
 - A nonempty countable set $\Pi_0 = \{\alpha; \ldots\}$ of stack constants
- A term is proof-like if it contains no k_{π} (i.e. refers to no $\alpha \in \Pi_0$)
- Notations : Λ = set of closed terms Π = set of stacks $\Lambda \star \Pi$ = set of processes PL = set of closed proof-like terms ($\subseteq \Lambda$)
- Each natural number $n \in \omega$ is encoded as $\overline{n} = \overline{s}^n \overline{0}$ ($\in PL$) where $\overline{0} \equiv \lambda xy \cdot x$ and $\overline{s} \equiv \lambda nxy \cdot y (n \times y)$

 We assume that the set Λ ★ Π comes with a preorder p ≻ p' of evaluation satisfying the following rules :

Krivine Abstract Machine (KAM)						
Push Grab	$tu \star \pi$	$\overset{\prec}{\smile}$	$t \star u \cdot \pi$			
Save	$\mathbf{c} \star \mathbf{u} \cdot \mathbf{\pi}$	~	$u \star \mathbf{k}_{\pi} \cdot \pi$			
(reflexivity & tr	$K_{\pi} \star U \cdot \pi$	7	<i>u</i> * π 			
(+ reflexivity & transitivity)						

- Evaluation not defined but axiomatized. The preorder $p \succ p'$ is another parameter of the calculus, just like the sets \mathcal{K} and Π_0
- Extensible machinery : can add extra instructions and rules (We shall see examples later)

• An instance of the λ_c -calculus is defined by the triple $(\mathcal{K}, \Pi_0, \succ)$

Each classical realizability model (which is based on the λ-calculus) is parameterized by a set of processes ⊥ ⊆ Λ ★ Π which is saturated, or closed under anti-evaluation (w.r.t. ≻) :

If
$$p \succ p'$$
 and $p' \in \mathbb{L}$, then $p \in \mathbb{L}$

 \rightsquigarrow Such a set \bot is used as the pole of the model

- We call a standard algebra any pair $\mathscr{A} \equiv ((\mathcal{K}, \Pi_0, \succ), \bot)$ formed by
 - An instance $(\mathcal{K}, \Pi_0, \succ)$ of the λ_c -calculus
 - A saturated set $\mathbb{L} \subseteq \Lambda \star \Pi$ (i.e. the pole of the algebra \mathscr{A})
- We shall first see how to build a realizability model $\mathcal{M}^{(\mathscr{A})}$ from an arbitrary standard algebra \mathscr{A} . But this construction more generally works when \mathscr{A} is an arbitrary realizability algebra

(We shall see the general definition later)

- The whole construction is parameterized by :
 - $\bullet\,$ An arbitrary model $\mathscr M$ of ZFC, called the ground model
 - An arbitrary standard algebra $\mathscr{A}\in\mathscr{M},$ which is taken as a point of the ground model \mathscr{M}
- $\bullet\,$ In what follows, we call a set any point of \mathscr{M}
 - We shall never consider sets outside \mathcal{M} !
 - We write $\omega \in \mathscr{M}$ the set of natural numbers in \mathscr{M} . Elements of ω are called the standard natural numbers¹
 - We consider the sets Λ, Π, ≻, ⊥ that are defined from 𝔄 as points of the ground model 𝓜
 - All set-theoretic notations (e.g. 𝔅(X), {x : φ(x)}, etc.) are taken relatively to the ground model *M*
- Only formulas (of $\mathsf{ZF}_{\varepsilon}$) live outside the ground model \mathscr{M}

^{1.} This is just a convention of terminology. The set ω might contain numbers that are non standard according to the external/ambient/intuitive/meta theory.

Building the model $\mathcal{M}^{(\mathscr{A})}$ of \mathscr{A} -names

Realizing axioms

• By induction on $\alpha \in On(\subseteq \mathscr{M})$, we define a set $\mathscr{M}_{\alpha}^{(\mathscr{A})}$ by

$$\mathscr{M}_{lpha} = \bigcup_{eta < lpha} \mathfrak{P}(\mathscr{M}_{eta} imes \mathsf{\Pi})$$

More axioms

Note that :

The model $\mathcal{M}^{(\mathcal{A})}$

•
$$\mathcal{M}_{0}^{(\mathscr{A})} = \varnothing$$

• $\mathcal{M}_{\alpha+1}^{(\mathscr{A})} = \mathfrak{P}(\mathcal{M}_{\alpha}^{(\mathscr{A})} \times \Pi)$
• $\mathcal{M}_{\alpha}^{(\mathscr{A})} = \bigcup_{\beta < \alpha} \mathcal{M}_{\beta}^{(\mathscr{A})}$ (for α limit ordinal)

• We write $\mathscr{M}^{(\mathscr{A})} = \bigcup_{\alpha} \mathscr{M}^{(\mathscr{A})}_{\alpha}$ the (proper) class of \mathscr{A} -names

• Given a name $a \in \mathscr{M}^{(\mathscr{A})}$, we write

• dom(a) = {b : $(\exists \pi \in \Pi) (b, \pi) \in a$ } (the domain of a) • rk(a) the smallest $\alpha \in On$ s.t. $a \in \mathscr{M}_{\alpha}^{(\mathscr{A})}$ (the rank of a)

- Variables x₁,..., x_n,... of the language of ZF_ε are interpreted as names a₁,..., a_n,... ∈ M^(A)
 - We call a formula with parameters in $\mathcal{M}^{(\mathscr{A})}$ any formula of $\mathsf{ZF}_{\varepsilon}$ enriched with constants taken in $\mathcal{M}^{(\mathscr{A})}$:

 $\phi(\mathbf{x}_1,\ldots,\mathbf{x}_k) \ + \ \mathbf{a}_1,\ldots,\mathbf{a}_k \in \mathscr{M}^{(\mathscr{A})} \quad \rightsquigarrow \quad \phi(\mathbf{a}_1,\ldots,\mathbf{a}_k)$

- Formulas with parameters in $\mathscr{M}^{(\mathscr{A})}$ constitute the language of the realizability model $\mathscr{M}^{(\mathscr{A})}$
- Closed formulas φ with parameters in *M*^(A) are interpreted as two sets (i.e. points of *M*):
 - A falsity value $\|\phi\| \in \mathfrak{P}(\Pi)$
 - A truth value $|\phi| \in \mathfrak{P}(\Lambda)$, defined by orthogonality :

 $|\phi| = \|\phi\|^{\perp} = \{t \in \Lambda : (\forall \pi \in \|\phi\|) (t \star \pi \in \bot)\}$

${\sf ZF}_{arepsilon}$	The model $\mathcal{M}^{(M)}$	Realizing axioms	More axioms	Realizability algebras	Properties of $\mathcal{M}^{(SF)}$
Inter	preting form	nulas			

• Given a closed formula ϕ with parameters in $\mathscr{M}^{(\mathscr{A})}$:

Falsity value $\|\phi\| \in \mathfrak{P}(\Pi)$ defined by induction on the size of ϕ $\|a \notin b\|, \|a \notin b\|, \|a \subseteq b\| = (\text{postponed})$ $\|\top\| = \varnothing \qquad \|\bot\| = \Pi$ $\|\phi \Rightarrow \psi\| = |\phi| \cdot \|\psi\| = \{t \cdot \pi : t \in |\phi|, \pi \in \|\psi\|\}$ $\|\forall x \phi(x)\| = \bigcup_{a \in \mathscr{M}^{(\mathscr{A})}} \|\phi(a)\| = \{\pi \in \Pi : (\exists a \in \mathscr{M}^{(\mathscr{A})}) \ \pi \in \|\phi(a)\|\}$

Truth value $\|\phi\| \in \mathfrak{P}(\Lambda)$ defined by orthogonality

• Notations : $t \Vdash \phi \equiv t \in |\phi|$ (t realizes ϕ) $\mathscr{M}^{(\mathscr{A})} \Vdash \phi \equiv \theta \Vdash \phi$ for some $\theta \in \mathsf{PL}$ $\equiv |\phi| \cap \mathsf{PL} \neq \emptyset$ (ϕ is realized)

ZFE	The model $\mathcal{M}(\omega)$	Realizing axioms	More axioms	Realizability algebras	Properties of $\mathcal{M}^{(M)}$
Anato	my of the	interpretat	ion		

• Denotation of units :

$$\begin{split} \text{Falsity value} & \|\top\| = \varnothing & \|\bot\| = \Pi & \text{(by definition)} \\ \text{Truth value} & |\top| = \varnothing^{\bot} = \Lambda & |\bot| = \Pi^{\bot} & \text{(by orthogonality)} \end{split}$$

• Denotation of universal quantification :

Falsity value :
$$\|\forall x \phi(x)\| = \bigcup_{a \in \mathscr{M}^{(\mathscr{A})}} \|\phi(a)\|$$
 (by definition)Truth value : $|\forall x \phi(x)| = \bigcap_{a \in \mathscr{M}^{(\mathscr{A})}} |\phi(a)|$ (by orthogonality)

Denotation of implication :

 $\begin{array}{lll} \mbox{Falsity value :} & \|\phi \Rightarrow \psi\| &= |\phi| \cdot \|\psi\| & (\mbox{by definition}) \\ \mbox{Truth value :} & |\phi \Rightarrow \psi| &\subseteq |\phi| \rightarrow |\psi| & (\mbox{by orthogonality}) \\ \mbox{writing } |\phi| \rightarrow |\psi| &= \{t \in \Lambda : \forall u \in |\phi| \ tu \in |\psi|\} & (\mbox{realizability arrow}) \\ \end{array}$

(a) Converse inclusion does not hold in general, unless \bot closed under Push (c) In all cases : If $t \in |\phi| \to |\psi|$, then $\lambda x \cdot tx \in |\phi \Rightarrow \psi|$ (η -expansion)

${\sf ZF}_{\varepsilon}$	The model $\mathcal{M}^{(SI)}$	Realizing axioms	More axioms	Realizability algebras	Properties of $\mathcal{M}^{(\mathcal{A})}$
Ade	quacy				

Deduction/typing rules

$$\frac{\Gamma \vdash x : \phi}{\Gamma \vdash x : \psi} \xrightarrow{(x:\phi) \in \Gamma} \overline{\Gamma \vdash t : \top} FV(t) \subseteq \operatorname{dom}(\Gamma) \qquad \frac{\Gamma \vdash t : \bot}{\Gamma \vdash t : \phi} \\
\frac{\Gamma, x : \phi \vdash t : \psi}{\Gamma \vdash \lambda x \cdot t : \phi \Rightarrow \psi} \qquad \frac{\Gamma \vdash t : \phi \Rightarrow \psi \qquad \Gamma \vdash u : \phi}{\Gamma \vdash t : \psi} \\
\frac{\Gamma \vdash t : \phi}{\Gamma \vdash t : \forall x \phi} x \notin FV(\Gamma) \qquad \frac{\Gamma \vdash t : \forall x \phi}{\Gamma \vdash t : \phi \{x := e\}} (e \text{ first-order term}) \\
\overline{\Gamma \vdash \mathbf{c}} : ((\phi \Rightarrow \psi) \Rightarrow \phi) \Rightarrow \phi$$

Adequacy

$$\begin{array}{lll} \text{Given}: & - \text{ a derivable judgment } & \textbf{x}_1:\phi_1,\ldots,\textbf{x}_n:\phi_n\vdash \textbf{t}:\phi\\ & - \text{ a valuation } \rho \ (\text{in } \mathscr{M}^{(\mathscr{A})}) \ \text{closing } \phi_1,\ldots,\phi_n,\phi\\ & - \text{ realizers } \textbf{u}_1\Vdash\phi_1[\rho],\ldots,\textbf{u}_n\Vdash\phi_n[\rho] \\ \end{array} \\ \text{We have}: & \textbf{t}\{\textbf{x}_1:=\textbf{u}_1;\ldots;\textbf{x}_n:=\textbf{u}_n\}\Vdash\phi[\rho] \\ \end{array}$$

- Interpretation of ¢ reminiscent from forcing in ZF [Cohen'63] and intuitionistic realizability in IZF [Myhill-Friedman'73, McCarty'84]
- In forcing / int. realizability, a name a ∈ M^(C) is a set of pairs (b, p) where p ∈ C is a certificate witnessing that b ε a :

$$(b, p) \in a$$
 means : "p forces/realizes $b \in a$ "

hence :

- $|b \varepsilon a| = \{p \in C : (b,p) \in a\}$
- In forcing : *p* is a forcing condition
- In intuitionistic realizability : p is a realizer
- But in classical realizability, we use refutations (i.e. stacks) instead :

 $(b,\pi)\in a$ means " π refutes $b\notin a$ " $\|b\notin a\| = \{\pi\in\Pi : (b,\pi)\in a\}$

hence :

• $\pi \in ||b \notin a||$ implies $k_{\pi} \Vdash b \in a \ (\equiv \neg b \notin a)$ • $||b \notin a|| = \emptyset = ||\top||$ as soon as $b \notin dom(a)$

ZFε	The model $\mathcal{M}^{(SP)}$	Realizing axioms	More axioms	Realizability algebras	Properties of $\mathcal{M}^{(SI}$)

Interpretation of
$$a' \notin a$$
, $a \subseteq b$ and $a' \notin b$

• Def. of $||a' \notin a||$ is primitive (i.e. non recursive)

• Def. of $||a \subseteq b||$ and $||a' \notin b||$ is mutually recursive

- Def. of $\|a \subseteq b\|$ calls $\|a' \notin b\|$ for all $a' \in \mathsf{dom}(a)$
- Def. of $||a' \notin b||$ calls $||a' \subseteq b'||$ and $||b' \subseteq a'||$ for all $b' \in \text{dom}(b)$
- Hence the definition of $||a \subseteq b||$ for $a, b \in \mathcal{M}_{\alpha}^{(\mathscr{A})}$ recursively calls $||a' \subseteq b'||$ for $a', b' \in \mathcal{M}_{\beta}^{(\mathscr{A})}$ where $\beta < \alpha$

The interpretation of \subseteq

• Since
$$||c \notin a|| = \emptyset$$
 as soon as $c \notin dom(a)$:

$$\|a \subseteq b\| = \bigcup_{c \in \text{dom}(a)} |c \notin b| \cdot \|c \notin a\|$$
$$= \bigcup_{c \in \mathscr{M}^{(\mathscr{A})}} |c \notin b| \cdot \|c \notin a\|$$
$$= \|\forall z (z \notin b \Rightarrow z \notin a)\|$$

- Hence the atomic formula x ⊆ y has the very same semantics as the formula ∀z (z ∉ y ⇒ z ∉ x)
- By adequacy, we can build $\theta \in \mathsf{PL}$ such that (Exercise : find θ) $\theta \Vdash \forall x \forall y [\forall z (z \notin y \Rightarrow z \notin x) \Leftrightarrow (\forall z \varepsilon x) z \in y]$

Realizing Extensionality for \subseteq :

 $\theta \Vdash \forall x \forall y (x \subseteq y \Leftrightarrow (\forall z \varepsilon x) z \in y)$

The interpretation of \notin

• Since $||c \notin b|| = \emptyset$ as soon as $c \notin dom(b)$:

$$\|a \notin b\| = \bigcup_{c \in \text{dom}(b)} |a \subseteq c| \cdot |c \subseteq a| \cdot \|c \notin b\|$$
$$= \bigcup_{c \in \mathscr{M}^{(\mathscr{A})}} |a \subseteq c| \cdot |c \subseteq a| \cdot \|c \notin b\|$$
$$= \|\forall z (a \subseteq z \Rightarrow z \subseteq a \Rightarrow z \notin b)\|$$

- Hence the atomic formula x ∉ y has the very same semantics as the formula ∀z (x ⊆ z ⇒ z ⊆ x ⇒ z ∉ y)
- By adequacy, we can build $\theta' \in \mathsf{PL}$ such that (Exercise : find θ') $\theta' \Vdash \forall x \forall y [\neg \forall z (x \subseteq z \Rightarrow z \subseteq x \Rightarrow z \notin y) \Leftrightarrow (\exists z \varepsilon y) x \approx z]$

Realizing Extensionality for \in :

 $\theta' \Vdash \forall x \forall y (x \in y \Leftrightarrow (\exists z \varepsilon y) x \approx z)$

${\sf ZF}_{arepsilon}$	The model $\mathcal{M}^{(\mathcal{B}^{\prime})}$	Realizing axioms	More axioms	Realizability algebras	Properties of $\mathcal{M}^{(S2)}$
Disc	riminating $arepsilon$	$and \in$			

$$\bullet \ \ {\rm Let} \qquad \tilde{\varnothing} \ = \ \ \varnothing \qquad {\rm and} \qquad \tilde{\varnothing}' \ = \ \{\tilde{\varnothing}\} \times \|\bot \Rightarrow \bot\|$$

• In the case where
$$\mathbb{L} \neq \emptyset$$
, we have :

$$\Pi^{\mathbb{L}} \neq \emptyset \quad \rightsquigarrow \quad \|\bot \Rightarrow \bot\| = \Pi^{\mathbb{L}} \cdot \Pi \neq \emptyset \quad \rightsquigarrow \quad \tilde{\emptyset} \neq \tilde{\emptyset}'$$

- $\bullet\,$ But both names $\tilde{\varnothing}$ and $\tilde{\varnothing}'$ represent the empty set :
- $\begin{array}{l} \bullet \ \Vdash \ \forall x \left(x \notin \tilde{\varnothing} \right) & (\theta \in \mathsf{PL arbitrary}) \\ \bullet \ \mathsf{I} \ \Vdash \ \forall x \left(x \notin \tilde{\varnothing}' \right) \\ \bullet \ \mathsf{Therefore} : \ \mathscr{M}^{(\mathscr{A})} \ \Vdash \ \tilde{\varnothing} \approx \tilde{\varnothing}' \end{array}$

• Writing
$$a = {\tilde{\varnothing}} \times \Pi$$
, we get :

$$I \Vdash \tilde{\varnothing} \varepsilon a \quad \text{and} \quad \theta \Vdash \tilde{\varnothing}' \notin a \qquad \qquad (\theta \in \mathsf{PL} \text{ arbitrary}$$

2 Therefore :
$$\mathscr{M}^{(\mathscr{A})} \Vdash \tilde{\mathscr{D}} \neq \tilde{\mathscr{D}}$$

● Moreover :
$$\mathscr{M}^{(\mathscr{A})} \Vdash \widetilde{\varnothing}' \in a$$

(since $\mathscr{M}^{(\mathscr{A})} \Vdash \tilde{\varnothing} \approx \tilde{\varnothing}'$)

${\sf ZF}_{arepsilon}$	The model $\mathcal{M}^{(\mathcal{A})}$	Realizing axioms	More axioms	Realizability algebras	Properties of $\mathcal{M}^{(\mathcal{A})}$
Plan					

- 1 The theory $\mathsf{ZF}_{\varepsilon}$
- (2) The model $\mathcal{M}^{(\mathscr{A})}$ of \mathscr{A} -names
- (3) Realizing the axioms of ZF_ε
- 4 Realizing more axioms
- 5 Realizability algebras
- 6 Properties of the model $\mathscr{M}^{(\mathscr{A})}$

- For every axiom ϕ of $\mathsf{ZF}_{\varepsilon}$, we want to show that :
 - There is $\theta \in \mathsf{PL}$ such that $\ \ \theta \Vdash \phi$
 - Which we write : $\mathcal{M}^{(\mathcal{A})} \Vdash \phi$
- We have already shown that :

Realizing Extensionality

$$\mathcal{M}^{(\mathscr{A})} \Vdash \forall x \,\forall y \, (x \in y \Leftrightarrow (\exists z \,\varepsilon \, y) \, x \approx z)$$
$$\mathcal{M}^{(\mathscr{A})} \Vdash \forall x \,\forall y \, (x \subseteq y \Leftrightarrow (\forall z \,\varepsilon \, x) \, z \in y)$$

- We now need to realize the following :
 - Foundation scheme
 - Comprehension scheme
 - Pairing and Union axioms
 - Powerset axiom
 - Collection & Infinity schemes

(we shall only consider Collection)

${\sf ZF}_{arepsilon}$	The model $\mathcal{M}^{(\mathscr{A})}$	Realizing axioms	More axioms	Realizability algebras	Properties of $\mathcal{M}^{(\mathcal{A})}$
Real	izing Found	ation			

• Consider Turing's fixpoint combinator :

 $\mathbf{Y} \equiv (\lambda y f . f (y y f)) (\lambda y f . f (y y f))$

• We have : $\mathbf{Y} \star t \cdot \pi \succ t \star (\mathbf{Y} t) \cdot \pi$ $(t \in \Lambda, \pi \in \Pi)$

Proposition

For any formula $\psi(\mathsf{x})$ with parameters in $\mathscr{M}^{(\mathscr{A})}$, we have :

$$\mathbf{Y} \Vdash \forall x (\forall y (\psi(y) \Rightarrow y \notin x) \Rightarrow \neg \psi(x)) \Rightarrow \forall x \neg \psi(x)$$

Proof: We show that $\mathbf{Y} \Vdash \forall x (\forall y (\psi(y) \Rightarrow y \notin x) \Rightarrow \neg \psi(x)) \Rightarrow \neg \psi(a)$ for all $a \in \mathscr{M}^{(\mathscr{A})}$, by induction on $\mathsf{rk}(a)$.

Realizing foundation

For any formula $\phi(x, \vec{z})$, we have : $\mathscr{M}^{(\mathscr{A})} \Vdash \forall \vec{z} [\forall x ((\forall y \in x) \phi(y, \vec{z}) \Rightarrow \phi(x, \vec{z})) \Rightarrow \forall x \phi(x, \vec{z})]$

Realizing witnessed existential formulas

Lemma

Let $\phi(x_1, \ldots, x_n, y)$ be a formula and $\theta \in \mathsf{PL}$ such that :

$$\forall a_1,\ldots,a_n \in \mathscr{M}^{(\mathscr{A})}) \ (\exists b \in \mathscr{M}^{(\mathscr{A})}) \ \theta \Vdash \phi(a_1,\ldots,a_n,b)$$

 $\lambda z \cdot z \theta \Vdash \forall x_1 \cdots \forall x_n \exists y \phi(x_1, \dots, x_n, y)$ Then :

• More generally :

Lemma Given -k formulas $\phi_1(\vec{x}, y), \ldots, \phi_k(\vec{x}, y)$ $(\vec{x} \equiv x_1, \ldots, x_n)$ -k terms $\theta_1, \ldots, \theta_k \in \mathsf{PL}$ such that : $(\forall \vec{a} \in \mathcal{M}^{(\mathscr{A})}) \ (\exists b \in \mathcal{M}^{(\mathscr{A})}) \ (\theta_1 \Vdash \phi_1(\vec{a}, b) \land \cdots \land \theta_k \Vdash \phi_k(\vec{a}, b))$ Then : $\lambda z \cdot z \theta_1 \cdots \theta_k \Vdash \forall \vec{x} \exists y \{ \phi_1(\vec{x}, y) \& \cdots \& \phi_k(\vec{x}, y) \}$

• Given a name $a \in \mathscr{M}^{(\mathscr{A})}$ and a formula $\phi(x)$ (with params in $\mathscr{M}^{(\mathscr{A})}$)

Let:
$$b = \bigcup_{c \in \operatorname{dom}(a)} \{c\} \times \|\phi(c) \Rightarrow c \notin a\|$$

- By construction, we have :
 - $\operatorname{dom}(b) \subseteq \operatorname{dom}(a)$
 - $\|c \notin b\| = \|\phi(c) \Rightarrow c \notin a\|$ for all $c \in \mathscr{M}^{(\mathscr{A})}$ (Since $\|c \notin b\| = \varnothing = \|\phi(c) \Rightarrow c \notin a\|$ as soon as $c \notin dom(a)$)
- This means that :
 - $x \notin b$ has the same semantics as $\phi(x) \Rightarrow x \notin a$
 - $x \in b \equiv \neg x \notin b$ has the same semantics as $\neg(\phi(x) \Rightarrow x \notin a)$

• Let θ_1 and θ_2 be proof-like terms such that :

$$\begin{array}{rcl} \theta_1 & \Vdash & \forall x \left[\neg(\phi(x) \Rightarrow x \notin a) \Rightarrow x \varepsilon a \land \phi(x)\right] \\ \theta_2 & \Vdash & \forall x \left[x \varepsilon a \land \phi(x) \Rightarrow \neg(\phi(x) \Rightarrow x \notin a)\right] \end{array}$$

Since x ε b has the same semantics as ¬(φ(x) ⇒ x ∉ a) :

$$\begin{array}{rcl} \theta_1 & \Vdash & \forall x \left[x \ \varepsilon \ b \ \Rightarrow \ x \ \varepsilon \ a \land \phi(x) \right] \\ \theta_2 & \Vdash & \forall x \left[x \ \varepsilon \ a \land \phi(x) \ \Rightarrow \ x \ \varepsilon \ b \right] \\ \Lambda u \, . \, u \, \theta_1 \, \theta_2 & \Vdash & \forall x \left[x \ \varepsilon \ b \ \Leftrightarrow \ x \ \varepsilon \ a \land \phi(x) \right] \end{array}$$

• Hence (by Lemma) :

)

Realizing Comprehension

For every formula $\phi(\vec{z}, x)$:

 $\lambda z \, . \, z \, (\lambda u \, . \, u \, \theta_1 \, \theta_2) \Vdash \forall \vec{z} \, \forall a \, \exists b \, \forall x \, (x \, \varepsilon \, b \, \Leftrightarrow \, x \, \varepsilon \, a \wedge \phi(x, \vec{z}))$

${\rm ZF}_{\varepsilon}$	The model $\mathcal{M}^{(\mathscr{A})}$	Realizing axioms	More axioms	Realizability algebras	Properties of $\mathcal{M}^{(\mathscr{A})}$
Rea	lizing Pairing	3			

• Hence (by Lemma) :

Realizing Pairing

 $\lambda z . z \mathbf{I} \mathbf{I} \Vdash \forall a \forall b \exists c \{ a \varepsilon c \& b \varepsilon c \}$

${\sf ZF}_{arepsilon}$	The model $\mathcal{M}^{(SI)}$	Realizing axioms	More axioms	Realizability algebras	Properties of $\mathcal{M}^{(SI)}$
Real	izing Union				

• Given
$$a \in \mathscr{M}^{(\mathscr{A})}$$
, let $b = \bigcup_{a' \in \mathsf{dom}(a)} a'$

Lemma

For all $a', a'' \in \mathscr{M}^{(\mathscr{A})}$: $\|a'' \notin b \Rightarrow a' \notin a\| \subseteq \|a'' \notin a' \Rightarrow a' \notin a\|$

Proof : We notice that $||a'' \notin a'|| \subseteq ||a'' \notin b||$ as soon as $a' \in \text{dom}(a)$.

Hence

$$\mathbf{I} \Vdash \forall x \forall y ((y \notin x \Rightarrow x \notin a) \Rightarrow (y \notin b \Rightarrow x \notin a))$$

so we can find $\theta \in \mathsf{PL}$ such that :

$$\theta \Vdash \forall x \forall y (x \varepsilon a \Rightarrow y \varepsilon x \Rightarrow y \varepsilon b)$$

• Therefore :

Realizing Union

$$\lambda z . z \theta \Vdash \forall a \exists b (\forall x \varepsilon a) (\forall y \varepsilon x) y \varepsilon b$$

ZF_{ε}	The model $\mathcal{M}^{(S2)}$	Realizing axioms	More axioms	Realizability algebras	Properties of $\mathcal{M}^{(SI)}$
Rea	lizing Power	set			

• Given
$$a \in \mathscr{M}^{(\mathscr{A})}$$
, let $b = \mathfrak{P}(\mathsf{dom}(a) \times \Pi) \times \Pi$

• For every
$$c \in \mathscr{M}^{(\mathscr{A})}$$
, write :
 $c_{|a} = \bigcup_{d \in dom(a)} \{d\} \times \|d \varepsilon c \Rightarrow d \notin a\|$

- We notice that :
 - Formula z ∉ c_{|a} has the same semantics as z ε c ⇒ z ∉ a. Hence there is θ ∈ PL such that :

$$\theta \Vdash \forall z (z \varepsilon c_{|a} \Leftrightarrow z \varepsilon c \land z \varepsilon a)$$

- O dom(c_{|a}) ∈ 𝔅(dom(a) × Π), hence $||c|_a \notin b|| = ||⊥||$,
 and thus: I $\vdash c_{|a} \in b$
- Therefore :

Realizing Powerset

 $\lambda z \,.\, z \,(\lambda z' \,.\, z' \,\mathbf{I} \,\theta) \Vdash \forall a \,\exists b \,\forall x \,(\exists y \,\varepsilon \, b) \,\forall z \,(z \,\varepsilon \, y \,\Leftrightarrow \, z \,\varepsilon \, x \wedge z \,\varepsilon \, a)$

${\sf ZF}_{arepsilon}$	The model $\mathcal{M}^{(\mathscr{A})}$	Realizing axioms	More axioms	Realizability algebras	Properties of $\mathcal{M}^{(\mathscr{A})}$
Rea	lizing Collect	tion			

- Let $\phi(x,y)$ a formula with parameters in $\mathscr{M}^{(\mathscr{A})}$ and $a \in \mathscr{M}^{(\mathscr{A})}$
- Using Collection in \mathcal{M} , consider a set B such that :

$$(\forall c \in \mathsf{dom}(a)) (\forall t \in \Lambda) [\exists d (d \in \mathscr{M}^{(\mathscr{A})} \land t \Vdash \phi(c, d)) \Rightarrow (\exists d \in B) (d \in \mathscr{M}^{(\mathscr{A})} \land t \Vdash \phi(c, d))]$$

(Wlog, we can assume that $B \subseteq \mathscr{M}^{(\mathscr{A})}$)

• Writing $b = B \times \Pi$, we have :

Lemma

 $\text{For all } c \in \mathscr{M}^{(\mathscr{A})}: \quad \|\forall y \, (\phi(c,y) \Rightarrow x \notin a)\| \subseteq \|\forall y \, (\phi(c,y) \Rightarrow y \notin b)\|$

• Hence I $\Vdash \forall x [\forall y (\phi(x, y) \Rightarrow y \notin b) \Rightarrow \forall y (\phi(x, y) \Rightarrow x \notin a)]$ so there is $\theta \in \mathsf{PL}$ s.t. : $\theta \Vdash (\forall x \varepsilon a) [\exists y \phi(x, y) \Rightarrow (\exists y \varepsilon b) \phi(x, y)]$

Realizing Collection

For every formula $\phi(x, y, \vec{z})$:

 $\lambda z \, . \, z \, \theta \ \Vdash \ \forall \vec{z} \, \forall a \, \exists b \, (\forall x \, \varepsilon \, a) \, [\exists y \, \phi(x, y, \vec{z}) \ \Rightarrow \ (\exists y \, \varepsilon \, b) \, \phi(x, y, \vec{z})]$

${\sf ZF}_{arepsilon}$	The model $\mathcal{M}^{(SI)}$	Realizing axioms	More axioms	Realizability algebras	Properties of $\mathcal{M}^{(\mathscr{A})}$
Plan					

- 1 The theory $\mathsf{ZF}_{\varepsilon}$
- (2) The model $\mathcal{M}^{(\mathscr{A})}$ of \mathscr{A} -names
- 3 Realizing the axioms of $\mathsf{ZF}_{\varepsilon}$
- 4 Realizing more axioms
- 5 Realizability algebras
- 6 Properties of the model $\mathscr{M}^{(\mathscr{A})}$

 It is often convenient to enrich the language of ZF_ε with a k-ary function symbol f interpreted as a k-ary class function

$$f : \underbrace{\mathscr{M}^{(\mathscr{A})} \times \cdots \times \mathscr{M}^{(\mathscr{A})}}_{k} \to \mathscr{M}^{(\mathscr{A})}$$

• We say that f is extensional when

$$\mathscr{M}^{(\mathscr{A})} \Vdash \forall \vec{x} \forall \vec{y} \ (\vec{x} \approx \vec{y} \Rightarrow f(\vec{x}) \approx f(\vec{y}))$$

Beware : This is usually not the case!

• But in all cases, we have

$$\mathscr{M}^{(\mathscr{A})} \Vdash \forall \vec{x} \forall \vec{y} \ (\vec{x} = \vec{y} \Rightarrow f(\vec{x}) = f(\vec{y}))$$

(due to intensional peeling)

• **Example** : Consider the successor function *s*(_), that is defined for all *a* ∈ *M*^(*A*) by

$$s(a) = \{(b,\overline{0}\cdot\pi) : (b,\pi) \in \operatorname{dom}(a)\} \\ \cup \{(a,\overline{1}\cdot\pi) : \pi \in \Pi\}$$

Intensional/extensional characterization of s

3 The successor function s is extensional

• Actually, this function is intensionally injective :

$$\mathscr{M}^{(\mathscr{A})} \Vdash \forall x \forall y (s(x) = s(y) \Rightarrow x = y)$$

Proof : Consider a function $p(_{-})$ ('predecessor') such that p(s(a)) = a for all $a \in \mathscr{M}^{(\mathscr{A})}$

Constructing the set $\tilde{\omega}$ of natural numbers

• Let
$$\widetilde{0} = \varnothing$$
 and $\widetilde{n+1} = s(\widetilde{n})$ (for all $n \in \omega$)

• Put
$$\tilde{\omega} = \{(\tilde{n}, \ \overline{n} \cdot \pi) : n \in \omega, \ \pi \in \Pi\}$$

Intensional properties of $\tilde{\omega}$

•
$$\mathcal{M}^{(\mathscr{A})} \Vdash \forall y (y \notin \tilde{0})$$

•
$$\mathcal{M}^{(\mathscr{A})} \Vdash \forall x \forall y (y \varepsilon s(x) \Leftrightarrow y \varepsilon x \lor y = x)$$

•
$$\mathscr{M}^{(\mathscr{A})} \Vdash \tilde{0} \varepsilon \tilde{\omega}$$

•
$$\mathcal{M}^{(\mathscr{A})} \Vdash (\forall x \in \tilde{\omega}) s(x) \in \tilde{\omega}$$

•
$$\mathcal{M}^{(\mathscr{A})} \Vdash \phi(\tilde{0}) \Rightarrow (\forall x \, \varepsilon \, \tilde{\omega}) \, (\phi(x) \Rightarrow \phi(s(x))) \Rightarrow (\forall x \, \varepsilon \, \tilde{\omega}) \, \phi(x)$$

where $\phi(x)$ is any formula with parameters in $\mathcal{M}^{(\mathcal{A})}$

This implementation of ω provides a canonical • Remark : intensional representation of natural numbers :

$$\mathscr{M}^{(\mathscr{A})} \Vdash (\forall x \,\varepsilon \, \tilde{\omega}) \, (\forall y \,\varepsilon \, \tilde{\omega}) \, (x \approx y \, \Leftrightarrow \, x = y)$$

- Recall that : $\tilde{\omega} = \{ (\tilde{p}, \ \overline{p} \cdot \pi) : p \in \omega, \ \pi \in \Pi \}$ and put : $\exists \omega = \{ (\tilde{p}, \ \pi) : p \in \omega, \ \pi \in \Pi \}$ $\exists n = \{ (\tilde{p}, \ \pi) : p < n, \ \pi \in \Pi \}$
- From the definition, we have : $\mathscr{M}^{(\mathscr{A})} \Vdash \tilde{\omega} \sqsubseteq \beth\omega$
- Distinction between (intensional) elements of $\tilde{\omega}$ and of $\exists \omega$ is the same as between natural numbers and individuals in 2nd-order logic
- Krivine showed that in some models (such as the threads model) :
 - Inclusion $\widetilde{\omega}\sqsubseteq \gimel\omega$ is strict
 - $\exists \omega$ is (intensionally) not denumerable
 - Subsets $\exists n \sqsubseteq \exists \omega$ have amazing (intensional) cardinality properties
- $\bullet\,$ However, the set ${\tt I}\omega$ is extensionally equal to $\tilde\omega\,$:

$$\mathscr{M}^{(\mathscr{A})} \Vdash \exists \omega \approx \tilde{\omega}$$

• Add an instruction quote with the rule

Realizing axioms

quote
$$\star t \cdot u \cdot \pi \succ u \star \overline{n}_t \cdot \pi$$

More axioms

Properties of $\mathcal{M}^{(\mathcal{A})}$

(1/2)

where n_t is the index of t according to a fixed bijection $n \mapsto t_n$ from ω to Λ

- Let $\phi(x_1, \ldots, x_k, y)$ be a formula
- Consider the (k + 1)-ary function symbol f_{ϕ} interpreted by ²
 - $f_{\phi}(a_1, \ldots, a_k, \tilde{n}) = \text{some } b \in \mathscr{M}^{(\mathscr{A})} \text{ s.t. } t_n \Vdash \phi(a_1, \ldots, a_k, b)$ if there is such a name b
 - $f_{\phi}(a_1,\ldots,a_k,b) = \tilde{\varnothing}$ in all the other cases

Lemma

ZE a

The model $\mathcal{M}^{(\mathcal{A})}$

 λxy . quote $y(x y) \Vdash \forall \vec{x} [\forall n (\phi(\vec{x}, f_{\phi}(\vec{x}, n)) \Rightarrow n \notin \tilde{\omega}) \Rightarrow \forall y \neg \phi(\vec{x}, y)]$

^{2.} Assuming that \mathcal{M} interprets the choice principle (= conservative ext. of ZFC)

Properties of $\mathcal{M}^{(SI)}$

(n /n)

The non extensional axiom of choice (NEAC)

$$\mathscr{M}^{(\mathscr{A})} \Vdash \forall \vec{x} \left[\forall n \left(\phi(\vec{x}, f_{\phi}(\vec{x}, n) \right) \Rightarrow n \notin \tilde{\omega} \right) \Rightarrow \forall y \neg \phi(\vec{x}, y) \right]$$

• Taking the contrapositive, we get :

Non extensional axiom of choice (NEAC)

$$\mathscr{M}^{(\mathscr{A})} \Vdash \forall \vec{x} [\exists y \phi(\vec{x}, y) \Rightarrow (\exists n \varepsilon \tilde{\omega}) \phi(\vec{x}, f_{\phi}(\vec{x}, n))]$$

Remarks

• $(f_{\phi}(\vec{a}, n))_{n \in \tilde{\omega}}$ is a denumerable sequence of potential witnesses of the existential formula $\exists y \phi(\vec{a}, y)$

More axioms

- The function f_{ϕ} is not extensional in general, even in the case where the formula ϕ is extensional
- Nevertheless, NEAC is strong enough to imply the axiom of dependent choices (DC)

NEAC:
$$\mathcal{M}^{(\mathscr{A})} \Vdash \forall \vec{x} [\exists y \phi(\vec{x}, y) \Rightarrow (\exists n \varepsilon \tilde{\omega}) \phi(\vec{x}, f_{\phi}(\vec{x}, n))]$$

• Consider the abbreviations :

 $\psi_0(\vec{x}, n) \equiv \phi(\vec{x}, f_\phi(\vec{x}, n)) \qquad (\text{"there is witness at index } n")$ $\psi_1(\vec{x}, n) \equiv (\forall m \in \tilde{\omega}) (\psi_0(\vec{x}, m) \Rightarrow m \notin n) \qquad (\text{"no witness below index } n")$

• From the minimum principle, we get :

 $\mathscr{M}^{(\mathscr{A})} \Vdash \forall \vec{x} [\exists y \phi(\vec{x}, y) \Rightarrow (\exists n \varepsilon \tilde{\omega}) \{\psi_0(\vec{x}, n) \& \psi_1(\vec{x}, n)\}]$

Idea : Introduce a k-ary function h_{ϕ} such that $h_{\phi}(ec{x}) ~pprox f_{\phi}(ec{x}, n) \, ,$

where *n* is the smallest index s.t. $\phi(\vec{x}, f_{\phi}(\vec{x}, n))$

More axioms

(2/3)

Alternative formulation of NEAC

• For all
$$\vec{a} = a_1, \dots, a_k \in \mathscr{M}^{(\mathscr{A})}$$
, let :

$$h_{\phi}(\vec{a}) = \bigcup_{b \in D_{\vec{a}}} \{b\} \times S_{\vec{a},b}$$
where : $D_{\vec{a}} = \bigcup_{n \in \omega} \operatorname{dom}(f_{\phi}(\vec{a}, \tilde{n}))$
 $S_{\vec{a},b} = \|(\forall n \in \tilde{\omega}) (\psi_0(\vec{a}, n) \Rightarrow \psi_1(\vec{a}, n) \Rightarrow b \notin f_{\phi}(\vec{a}, n))\|$

• By def. of $h_{\phi}(\vec{a})$, we have for all $b \in \mathcal{M}^{(\mathscr{A})}$: $\|b \notin h_{\phi}(\vec{a})\| = \|(\forall n \varepsilon \tilde{\omega}) (\psi_0(\vec{a}, n) \Rightarrow \psi_1(\vec{a}, n) \Rightarrow b \notin f_{\phi}(\vec{a}, n))\|$

• Therefore :

$$\begin{array}{ccc} \mathscr{M}^{(\mathscr{A})} & \Vdash & \forall \vec{x} \; \forall z \, [z \; \varepsilon \; h_{\phi}(\vec{x}) \Leftrightarrow \\ & (\exists n \, \varepsilon \, \tilde{\omega}) \left\{ \psi_0(\vec{x}, n) \; \& \; \psi_1(\vec{x}, n) \; \& \; z \; \varepsilon \; f_{\phi}(\vec{x}, n) \right\}] \end{array}$$

• We have shown :

 $\begin{aligned} \mathcal{M}^{(\mathscr{A})} & \Vdash \quad \forall \vec{x} \; [\exists y \; \phi(\vec{x}, y) \; \Rightarrow \; (\exists n \, \varepsilon \, \tilde{\omega}) \; \{\psi_0(\vec{x}, n) \; \& \; \psi_1(\vec{x}, n)\}] \\ \mathcal{M}^{(\mathscr{A})} & \Vdash \; \forall \vec{x} \; \forall z \; [z \; \varepsilon \; h_\phi(\vec{x}) \; \Leftrightarrow \\ & (\exists n \, \varepsilon \, \tilde{\omega}) \; \{\psi_0(\vec{x}, n) \; \& \; \psi_1(\vec{x}, n) \; \& \; z \; \varepsilon \; f_\phi(\vec{x}, n)\}] \end{aligned}$

• Combining these results, we get :

Alternative formulation of NEAC

• For any formula $\phi(\vec{x}, y)$:

 $\mathscr{M}^{(\mathscr{A})} \Vdash \forall \vec{x} [\exists y \phi(\vec{x}, y) \Rightarrow \exists y \{ y \sim h_{\phi}(\vec{x}) \& \phi(\vec{x}, y) \}]$

2 If moreover the formula $\phi(\vec{x}, y)$ is extensional :

 $\mathscr{M}^{(\mathscr{A})} \Vdash \forall \vec{x} [\exists y \, \phi(\vec{x}, y) \Leftrightarrow \phi(\vec{x}, h_{\phi}(\vec{x}))]$

- Beware! The function h_{ϕ} is in general non extensional, even when the formula $\phi(\vec{x}, y)$ is
- But h_{ϕ} can be used in Comprehension, Collection, etc.

${\sf ZF}_{arepsilon}$	The model $\mathcal{M}^{(\mathcal{A})}$	Realizing axioms	More axioms	Realizability algebras	Properties of $\mathcal{M}^{(SI)}$
Plan					

- 1 The theory $\mathsf{ZF}_{\varepsilon}$
- 2 The model $\mathcal{M}^{(\mathscr{A})}$ of \mathscr{A} -names
- 3 Realizing the axioms of $\mathsf{ZF}_{\varepsilon}$
- 4 Realizing more axioms
- 5 Realizability algebras
- 6 Properties of the model $\mathscr{M}^{(\mathscr{A})}$

Realizing axioms

Realizability algebras

The model $\mathcal{M}^{(\mathcal{A})}$

- Same idea as PCAs (or OPCAs), but for classical realizability
- Each realizability algebra \mathscr{A} contains a pole \bot , and defines a classical realizability model $\mathscr{M}^{(\mathscr{A})}$ of $\mathsf{ZF}_{\varepsilon}$ (from a ground model \mathscr{M})

 \rightsquigarrow Construction of $\mathscr{M}^{(\mathscr{A})}$ is the same as in the standard case

- Realizability algebras may be built from
 - The $\lambda_c\text{-calculus}$ or Parigot's $\lambda\mu\text{-calculus}$
 - Curien-Herbelin's $\bar{\lambda}\mu$ -calculus
 - Any complete Boolean algebra
- Realizability algebras can combine (standard) classical realizability with Cohen forcing \rightsquigarrow iterated forcing [Krivine'10]
- Slogan : classical realizability = non commutative forcing

[Krivine'10]

${\sf ZF}_{\varepsilon}$	The model $\mathcal{M}^{(\mathcal{A})}$	Realizing axiom	More axioms	Realizability algebras	Properties of $\mathcal{M}^{(SI)}$
Realiz	ability algeb	oras (1/2)		[Krivine'10]

Some terminology (where A is a fixed set) :

- Proof-term $\equiv \lambda$ -term with α Proof-terms $t, u ::= x \mid \lambda x \cdot t \mid tu \mid \alpha$
- A-environment \equiv finite association list $\sigma \in (Var \times A)^*$
 - Notations : $\sigma \equiv x_1 := a_1, \dots, x_n := a_n$ $dom(\sigma) = \{x_1; \dots; x_n\}$ $cod(\sigma) = \{a_1; \dots; a_n\}$

• Environments are ordered, variables may be bound several times

- Compilation function into $A \equiv$ function $(t, \sigma) \mapsto t[\sigma]$
 - taking : proof-term t + A-environment σ closing t,
 - returning : element $t[\sigma] \in A$

${\sf ZF}_{arepsilon}$	The model $\mathcal{M}^{(SI)}$	Realizing axioms	More axioms	Realizability algebras	Properties of $\mathcal{M}^{(SI)}$
Realiz	zability algeb	oras $(2/2)$)		[Krivine'10]

Definition

A realizability algebra \mathscr{A} is given by :

- 3 sets Λ (\mathscr{A} -terms), Π (\mathscr{A} -stacks), $\Lambda \star \Pi$ (\mathscr{A} -processes)
- 3 functions $(\cdot): \Lambda \times \Pi \to \Pi$, $(\star): \Lambda \times \Pi \to \Lambda \star \Pi$, $(k_{-}): \Pi \to \Lambda$
- A compilation function $(t,\sigma)\mapsto t[\sigma]$ into the set Λ of \mathscr{A} -terms
- A subset $\mathsf{PL} \subseteq \mathbf{\Lambda}$ (of proof-like \mathscr{A} -terms) such that for all (t, σ) :

If $\operatorname{cod}(\sigma) \subseteq \mathsf{PL}$, then $t[\sigma] \in \mathsf{PL}$ $(FV(t) \subseteq \operatorname{dom}(\sigma))$

• A set of \mathscr{A} -processes $\mathbb{L} \subseteq \mathbf{\Lambda} \star \mathbf{\Pi}$ (the pole) such that :

Canonical example : the λ_c -calculus

Terms, stacks	and p	roces	ses			
Instructions	κ	::=	с	quote		
Torms	+		v Í	$\lambda + t$	+11	

Terms	t, u	::=	x	λx . t	tu	κ	k_{π}
Stacks	π,π'	::=	$\alpha \mid$	$t\cdot\pi$			$(\alpha \in \Pi_0, t \text{ closed})$
Processes	p,q	::=	$t\star\pi$				(t closed)

- Λ , Π , $\Lambda \star \Pi$ = sets of closed terms, stacks, processes
- Compilation $t[\sigma] =$ substitution
- PL = set of closed terms containing no k_{π}
- \bot = any set of processes closed under anti-evaluation

ε	The model $\mathcal{M}^{(SI)}$	Realizing axioms	More axioms	Realizability algebras	Properties of $\mathcal{M}^{(SI)}$
/aria	nt : the com	binatory .	λ_c -calculus		(1/2)

Variant : the combinatory λ_c -calculus

Terms, stacks and processes							
Instructions	κ	::=	ICBKW	cc ···			
Terms	t, u	::=	$x \mid \kappa \mid tu \mid k_{\pi}$				
Stacks	π,π'	::=	$\alpha \mid t \cdot \pi$	$(\alpha \in \Pi_0, t \text{ closed})$			
Processes	p,q	::=	$t \star \pi$	(t closed)			

Krivine Abstract	Machine ((KAM))
------------------	-----------	-------	---

1	Ι,	*	$t\cdot\pi$	\succ	t	*	π
К	Κ,	*	$t \cdot u \cdot \pi$	\succ	t	*	π
W	W ,	*	$t \cdot u \cdot \pi$	\succ	t	*	$u \cdot u \cdot \pi$
С	С,	*	$t \cdot u \cdot v \cdot \pi$	\succ	t	*	$v \cdot u \cdot \pi$
В	Β,	*	$t \cdot u \cdot v \cdot \pi$	\succ	t	*	$(uv) \cdot \pi$
Push	tu 🤊	*	π	\succ	t	*	$u\cdot\pi$
Save	¢ D	*	$u \cdot \pi$	\succ	и	*	$k_\pi\cdot\pi$
Restore	k_{π}	*	$u \cdot \pi'$	\succ	и	*	π

• Abstraction $\lambda^* x \cdot t$ is defined from binary abstraction $\langle \lambda^* x \cdot t | r \rangle$:

Definition of $\langle \lambda^* x . t \mid r angle$	
$\langle \lambda^* x . t \mid r \rangle \equiv \mathbf{K} (r t)$	$(x \notin FV(t))$
$ \langle \lambda^* \mathbf{x} \cdot \mathbf{x} \mid \mathbf{r} \rangle \equiv \mathbf{r} \langle \lambda^* \mathbf{x} \cdot \mathbf{t}_1 \mathbf{t}_2 \mid \mathbf{r} \rangle \equiv \langle \lambda^* \mathbf{x} \cdot \mathbf{t}_2 \mid \mathbf{B} \mathbf{r} \mathbf{t}_1 \rangle $	$(x \notin FV(t_1) \ x \in FV(t_2))$
$\langle \lambda^* x \cdot t_1 t_2 \mid r \rangle = \langle \lambda^* x \cdot t_2 \mid \mathbf{D} \cdot \mathbf{t}_1 \rangle$ $\langle \lambda^* x \cdot t_1 t_2 \mid r \rangle \equiv \langle \lambda^* x \cdot t_1 \mid \mathbf{C} (\mathbf{B} r) t_2 \rangle$	$(x \in FV(t_1), x \notin FV(t_2))$ $(x \in FV(t_1), x \notin FV(t_2))$
$\langle \lambda^* x . t_1 t_2 \mid r \rangle \equiv \mathbf{W} \langle \lambda^* x . t_2 \mid \mathbf{C} \langle \lambda^* x . t_1 \mid \mathbf{B} r \rangle \rangle$	$(x \in FV(t_1), x \in FV(t_2))$

Lemma

For all t, u, r, π : $\langle \lambda^* x \cdot t \mid r \rangle \star u \cdot \pi \succ r \star t \{x := u\} \cdot \pi$

• Then we let :
$$\lambda^* x \cdot t \equiv \langle \lambda^* x \cdot t | \mathbf{I} \rangle$$

Lemma

For all t, u, π : $\lambda^* x \cdot t \star u \cdot \pi \succ t\{x := u\} \star \pi$

• Compilation function defined as expected, compiling λ as λ^*

Turning Boolean algebras into realizability algebras

• From a Boolean algebra IB, we can build a realizability algebra $\mathscr{A} = (\Lambda, \Pi, \Lambda \star \Pi, \dots, \mathbb{L})$, letting :

•
$$\Lambda = \Pi = \Lambda \star \Pi = IB$$

•
$$b_1 \cdot b_2 = b_1 \star b_2 = b_1 b_2$$
, $k_b = b_1 b_2$

•
$$t[\sigma] = \prod_{x \in FV(t)} \sigma(x)$$

• In the case where IB is complete, the realizability model $\mathscr{M}^{(\mathscr{A})}$ is elementarily equivalent to the Boolean-valued model $\mathscr{M}^{(\mathbb{B})}$

If IB is not complete, then ${\mathscr A}$ automatically completes IB

${\sf ZF}_{arepsilon}$	The model $\mathcal{M}^{(\mathcal{A})}$	Realizing axioms	More axioms	Realizability algebras	Properties of $\mathcal{M}^{(SI)}$
Plan					

- 1 The theory $\mathsf{ZF}_{\varepsilon}$
- (2) The model $\mathcal{M}^{(\mathscr{A})}$ of \mathscr{A} -names
- 3 Realizing the axioms of $\mathsf{ZF}_{\varepsilon}$
- 4 Realizing more axioms
- 5 Realizability algebras
- 6 Properties of the model $\mathcal{M}^{(\mathscr{A})}$

${\sf ZF}_{arepsilon}$	The model $\mathscr{M}^{(\mathscr{A})}$	Realizing axioms	More axioms	Realizability algebras	Properties of $\mathcal{M}^{(\mathscr{A})}$

(blackboard)