{-# OPTIONS --without-K --safe --guardedness --no-sized-types #-} ------------------------------------------------- -- direct proof that bisimulation is reflexive -- ------------------------------------------------- open import dtt open import equality open import Bisimulation module Bisimulation.reflexivity {I : Set} (w : IS I) where private R : Pow (states w) R (i , (T₁ , T₂)) = T₁ ≡ T₂ private coalg-refl : R ⊂ Φ w R coalg-refl {( i , ( T₁ , T₂ ) )} refl = ( refl , (λ d₁ → refl)) ---------------------------------------- -- proof that bisimilarity is reflexive: reflexivity : {i : I} (T : ν w i) → T ≈ T reflexivity T₁ = record { carrier = R ; coalg = coalg-refl ; init = refl }